1
|
Mohammed AH, Mhammedsharif RM, Jalil PJ, Mhammedsharif SM, Mohammed AS. Comparative study on the biosynthesis of magnetite nanoparticles using Aspergillus elegans extract and their efficacy in dye degradation versus commercial magnetite nanoparticles. Heliyon 2024; 10:e40747. [PMID: 39720037 PMCID: PMC11665457 DOI: 10.1016/j.heliyon.2024.e40747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/26/2024] Open
Abstract
This study compares magnetite (Fe3O4) nanoparticles synthesized using Aspergillus elegans extract versus commercially available magnetite nanoparticles, focusing on their efficacy in dye degradation. The biosynthesis of Fe3O4 nanoparticles using fungal extracts offers a sustainable and eco-friendly alternative to conventional chemical methods. The nanoparticles were characterized using various techniques, including UV-Vis spectroscopy, XRD, FTIR, SEM, TEM, DLS, zeta potential, and VSM analysis, to assess their structural, morphological, and magnetic properties. Results showed that fungus-mediated Fe3O4 nanoparticles were smaller, with an average size of 19.2 nm, and exhibited better crystallinity, surface functionalization, and colloidal stability than their commercial counterparts, which had an average size of 60 nm. Additionally, the fungal nanoparticles displayed superior magnetic properties with a saturation magnetization of 50 emu/g compared to 36 emu/g for commercial Fe3O4. The dye degradation potential of the nanoparticles was tested using methyl violet, methyl orange, and rose bengal dyes. Fungus-mediated Fe3O4 nanoparticles demonstrated higher dye removal efficiency than commercial Fe3O4, indicating enhanced catalytic activity due to their smaller size and larger surface area. This study highlights the potential of myco-synthesized Fe3O4 nanoparticles as effective agents for environmental remediation, particularly in removing of hazardous synthetic dyes from wastewater.
Collapse
Affiliation(s)
- Azhin H. Mohammed
- Physics Department, College of Education, University of Sulaimani, Kurdistan Region, Iraq
| | | | - Parwin J. Jalil
- Scientific Research Centre, Soran University, Kurdistan Region, Iraq
| | | | - Ahmed S. Mohammed
- Civil Engineering Department, College of Engineering, University of Sulaimani, Kurdistan Region, Iraq
| |
Collapse
|
2
|
Rajan A, Laha SS, Sahu NK, Thorat ND, Shankar B. Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy. Mater Today Bio 2024; 29:101348. [PMID: 39669801 PMCID: PMC11636219 DOI: 10.1016/j.mtbio.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
The pervasiveness of cancer is a global health concern posing a major threat in terms of mortality and incidence rates. Magnetic hyperthermia (MHT) employing biocompatible magnetic nanoparticles (MNPs) ensuring selective attachment to target sites, better colloidal stability and conserving nearby healthy tissues has garnered widespread acceptance as a promising clinical treatment for cancer cell death. In this direction, multifunctional iron oxide nanoparticles (IONPs) are of significant interest for improved cancer care due to finite size effect associated with inherent magnetic properties. This review offers a comprehensive perception of IONPs-mediated MHT from fundamentals to clinical translation, by elucidating the underlying mechanism of heat generation and the related influential factors. Biological mechanisms underlying MHT-mediated cancer cell death such as reactive oxygen species generation and lysosomal membrane permeabilization have been discussed in this review. Recent advances in biological interactions (in vitro and in vivo) of IONPs and their translation to clinical MHT applications are briefed. New frontiers and prospects of promising combination cancer therapies such as MHT with photothermal therapy, cancer starvation therapy and sonodynamic therapy are presented in detail. Finally, this review concludes by addressing current crucial challenges and proposing possible solutions to achieve clinical success.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| | - Suvra S. Laha
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, 560012, India
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India
| | - Nanasaheb D. Thorat
- Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre, University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| |
Collapse
|
3
|
Wang H, Jiang X, Qin Y, Xiong Z, Zhao L. Research trends in functionalized Fe 3O 4 composites based on affinity recognition systems for targeted extraction of natural products. J Chromatogr A 2024; 1730:465145. [PMID: 38981147 DOI: 10.1016/j.chroma.2024.465145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
In recent years, target-specific affinity recognition systems based on Fe3O4-based composites have proven to be an effective method for screening natural products. Herbal medicines contain a wide range of natural products and are considered to be a major source for the development of novel drugs. However, the process of isolating and obtaining these bioactive components for the production of novel drugs is complex. Meanwhile, the complexity and diversity of herbal constituents have posed a great challenge to the screening studies of herbal active ingredients. Currently, traditional extraction and screening studies of active ingredients in herbal medicine include extraction and chromatographic separation technology development, serum medicinal chemistry, metabolomics and computerized virtual screening. In order to achieve integrated targeting of Fe3O4 for extraction and separation of natural products from herbs, various Fe3O4-based composites need to be synthesized so that the composites can be further functionalized and modified. Composites such as Fe3O4@SiO2, Fe3O4-based magnetic graphene oxide and Fe3O4-based magnetic carbon nanotubes were used to achieve targeted extraction and isolation of natural products from herbal medicines. The main extraction techniques involved based on these Fe3O4-based composites are molecularly imprinted techniques, immobilized ligand fishing techniques, and cell membrane-coated bionanotechnology methods. This article will present recent advances in the synthesis and modification of Fe3O4 composites and their applications for the extraction of natural products in conjunction with molecular imprinting, immobilization-targeted fishing, and cell-membrane-coated biomimetic techniques, as well as the future goals and challenges of functionalized modification of Fe3O4 composites for the targeted extraction of natural products, like protein overexpression modification, doping of fluorescent substances and genetic engineering development. A deeper understanding of the multi-level, multidisciplinary, and applied studies in materials science and phytochemistry will be provided by this article.
Collapse
Affiliation(s)
- Haiwei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Xu Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Yi Qin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
4
|
Grammatikaki S, Bala VM, Katifelis H, Lampropoulou DI, Mukha I, Vityuk N, Lagopati N, Kouloulias V, Aravantinos G, Gazouli M. Fe 3O 4 and Fe 3O 4core Au shell-based Hyperthermia Reduces Expression of Proliferation Markers Ki-67, TOP2A and TPX2 in a Human Breast Cancer Cell Line. In Vivo 2024; 38:1665-1670. [PMID: 38936909 PMCID: PMC11215606 DOI: 10.21873/invivo.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/AIM Hyperthermia represents an adjuvant local anticancer strategy which relies on the increase of temperature beyond the physiological level. In this study, we investigated the anticancer potential of Fe3O4 and Fe3O4core Aushell nanoparticles as hyperthermic agents in terms of cytotoxicity and studied the expression of cellular markers of proliferation (changes in mRNA levels via real-time polymerase chain reaction). MATERIALS AND METHODS The human breast cancer cell line SK-BR-1 was incubated with either Fe3O4 or Fe3O4core Aushell nanoparticles stabilized with tryptophan, prior to hyperthermia treatment. The normal HEK293 cell line was used as a control. Toxicity was determined using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay to estimate possible toxic effects of the tested nanoparticles. After RNA extraction and cDNA synthesis, mRNA expression of three indicators of proliferation, namely marker of proliferation Ki-67, DNA topoisomerase II alpha (TOP2A) and TPX2 microtubule nucleation factor (TPX2), was investigated. RESULTS At each concentration tested, Fe3O4core Aushell nanoparticles showed greater toxicity compared to Fe3O4, while SK-BR-3 cells were more susceptible to their cytotoxic effects compared to the HEK293 cell line. The expression of Ki-67, TOP2A and TPX2 was reduced in SK-BR-3 cells by both Fe3O4 or Fe3O4core Aushell nanoparticles compared to untreated cells, while the only observed change in HEK293 cells was the up-regulation of TOP2A. CONCLUSION Both Fe3O4core Aushell and Fe3O4 NPs exhibit increased cytotoxicity to the cancer cell line tested (SK-BR-3) compared to HEK293 cells. The down-regulation in SK-BR-3 cells of the three proliferative markers studied, Ki-67, TOP2A and TPX2, after incubation with NPs suggests that cells that survived thermal destruction were not actively proliferating.
Collapse
Affiliation(s)
- Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Iuliia Mukha
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nadiia Vityuk
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
| |
Collapse
|
5
|
Matar GH, Andac M. Highly efficient degradation of basic dyes using gold-coated nature-based supermagnetic iron oxide nanoparticles as eco-friendly nanocatalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24894-24912. [PMID: 38459286 PMCID: PMC11636711 DOI: 10.1007/s11356-024-32775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, organic dyes are prevalent components in wastewater discharges due to their extensive use in various industries, posing a significant threat to public health across different organisms. As a result, wastewater treatment has become an indispensable requirement. In this study, we synthesized supermagnetic iron oxide (Fe3O4 NPs) and gold-iron oxide bimetallic nanoparticles (Au@Fe3O4 BNPs) using an eco-friendly method that involved natural compounds extracted from brown Egyptian propolis. We employed UV-visible spectroscopy, FTIR, XRD, VSM, SEM, HRTEM, EDX, Zeta potential and XPS techniques to examine the optical characteristics, chemical structure, crystalline structure, magnetic properties, morphology, size, and chemical composition of these biosynthesized nanoparticles. Furthermore, these nanoparticles were used as nanocatalysts for the removal of cationic dyes. The photocatalytic results indicated high efficiency in the removal of methylene blue (MB), crystal violet (CV), and malachite green (MG) dyes from aqueous solutions using Fe3O4 NPs and Au@Fe3O4 BNPs. The removal rates of MB, CV, and MG were about 95.2% in 70 min, 99.4% in 50 min, and 96.2% in 60 min for Fe3O4 NPs, and 97.1% in 50 min, 99.1% in 30 min, and 98.1% in 50 min for Au@Fe3O4 BNPs, respectively. The study also assessed the potential anti-radical properties of the extract, Fe3O4 NPs, and Au@Fe3O4 BNPs using the DPPH assay, and the results demonstrated their antioxidant activity. Finally, these Fe3O4 NPs and Au@Fe3O4 BNPs have the potential to serve as efficient antioxidants and photocatalysts for removing basic dyes from water.
Collapse
Affiliation(s)
- Ghassan H Matar
- Department of Chemistry, Ondokuz Mayis University, Samsun, Turkey.
| | - Muberra Andac
- Department of Chemistry, Ondokuz Mayis University, Samsun, Turkey
- Department of Nanoscience and Nanotechnology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
6
|
Lewińska A, Radoń A, Gil K, Błoniarz D, Ciuraszkiewicz A, Kubacki J, Kądziołka-Gaweł M, Łukowiec D, Gębara P, Krogul-Sobczak A, Piotrowski P, Fijałkowska O, Wybraniec S, Szmatoła T, Kolano-Burian A, Wnuk M. Carbon-Coated Iron Oxide Nanoparticles Promote Reductive Stress-Mediated Cytotoxic Autophagy in Drug-Induced Senescent Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15457-15478. [PMID: 38483821 PMCID: PMC10982943 DOI: 10.1021/acsami.3c17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The surface modification of magnetite nanoparticles (Fe3O4 NPs) is a promising approach to obtaining biocompatible and multifunctional nanoplatforms with numerous applications in biomedicine, for example, to fight cancer. However, little is known about the effects of Fe3O4 NP-associated reductive stress against cancer cells, especially against chemotherapy-induced drug-resistant senescent cancer cells. In the present study, Fe3O4 NPs in situ coated by dextran (Fe3O4@Dex) and glucosamine-based amorphous carbon coating (Fe3O4@aC) with potent reductive activity were characterized and tested against drug-induced senescent breast cancer cells (Hs 578T, BT-20, MDA-MB-468, and MDA-MB-175-VII cells). Fe3O4@aC caused a decrease in reactive oxygen species (ROS) production and an increase in the levels of antioxidant proteins FOXO3a, SOD1, and GPX4 that was accompanied by elevated levels of cell cycle inhibitors (p21, p27, and p57), proinflammatory (NFκB, IL-6, and IL-8) and autophagic (BECN1, LC3B) markers, nucleolar stress, and subsequent apoptotic cell death in etoposide-stimulated senescent breast cancer cells. Fe3O4@aC also promoted reductive stress-mediated cytotoxicity in nonsenescent breast cancer cells. We postulate that Fe3O4 NPs, in addition to their well-established hyperthermia and oxidative stress-mediated anticancer effects, can also be considered, if modified using amorphous carbon coating with reductive activity, as stimulators of reductive stress and cytotoxic effects in both senescent and nonsenescent breast cancer cells with different gene mutation statuses.
Collapse
Affiliation(s)
- Anna Lewińska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Adrian Radoń
- Łukasiewicz
Research Network—Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Kacper Gil
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Dominika Błoniarz
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz
Research Network—Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Jerzy Kubacki
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Mariola Kądziołka-Gaweł
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Dariusz Łukowiec
- Faculty
of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland
| | - Piotr Gębara
- Department
of Physics, Częstochowa University
of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland
| | | | - Piotr Piotrowski
- Faculty
of
Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Oktawia Fijałkowska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Sylwia Wybraniec
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Tomasz Szmatoła
- Center
of Experimental and Innovative Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Aleksandra Kolano-Burian
- Łukasiewicz
Research Network—Institute of Non-Ferrous Metals, Sowińskiego 5, 44-100 Gliwice, Poland
| | - Maciej Wnuk
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
7
|
Kolhar P, Sannakki B, Verma M, S.V. P, Alshehri M, Shah NA. Synthesis, Characterization and Investigation of Optical and Electrical Properties of Polyaniline/Nickel Ferrite Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2223. [PMID: 37570541 PMCID: PMC10421054 DOI: 10.3390/nano13152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Nickel ferrite nanoparticles are prepared by using a low-temperature self-propagating solution combustion method using urea as fuel. The prepared nickel ferrite nanoparticles were doped with polyaniline in the three different weight ratios of 10%, 30% and 50% by using an in situ polymerization method and by adding ammonium persulfate as an oxidizing agent. The obtained samples were characterized by using XRD, FTIR, SEM and a UV-visible spectrophotometer. XRD examined crystalline peaks of ferrites and amorphous peak of polyaniline and confirmed the formation of the composites. FTIR examined the chemical nature of samples and showed peaks due to polyaniline and the characteristic peaks that were less than 1000 cm-1 wavenumber were due to metal-oxygen bond vibrations of ferrites. AC conductivity increased with frequency in all samples and the highest AC conductivity was seen in polyaniline/nickel ferrite 50%. DC conductivity increased in all samples with the temperature showing the semiconducting nature of the samples. Activation energy was evaluated by using Arrhenius plots and there was a decrease in activation energy with the addition of ferrite content. The UV-visible absorption peaks of polyaniline showed shifting in the composites. The optical direct and indirect band gaps were evaluated by plotting Tauc plots and the values of the optical band gap decreased with addition of ferrite in polyaniline and the Urbach energy increased in the samples with 10%, 30% and 50% polyaniline/nickel ferrite composites. The optical properties of these composites with a low band gap can find applications in devices such as solar cells.
Collapse
Affiliation(s)
- Priyanka Kolhar
- Department of Physics, Gulbarga University, Kalaburgi 585106, India; (P.K.); (B.S.)
| | - Basavaraja Sannakki
- Department of Physics, Gulbarga University, Kalaburgi 585106, India; (P.K.); (B.S.)
| | - Meenakshi Verma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 160055, India;
| | - Prabhakar S.V.
- Department of Electronics, Maharani’s Science College for Women (Autonomous), Mysore 570005, India;
| | - Mansoor Alshehri
- Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nehad Ali Shah
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|