1
|
Michielon E, Boninsegna M, Waaijman T, Fassini D, Spiekstra SW, Cramer J, Gaudriault P, Kodolányi J, de Gruijl TD, Homs-Corbera A, Gibbs S. Environmentally Controlled Microfluidic System Enabling Immune Cell Flow and Activation in an Endothelialised Skin-On-Chip. Adv Healthc Mater 2024:e2400750. [PMID: 39370595 DOI: 10.1002/adhm.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/17/2024] [Indexed: 10/08/2024]
Abstract
Integration of reconstructed human skin (RhS) into organ-on-chip (OoC) platforms addresses current limitations imposed by static culturing. This innovation, however, is not without challenges. Microfluidic devices, while powerful, often encounter usability, robustness, and gas bubble issues that hinder large-scale high-throughput setups. This study aims to develop a novel re-usable multi-well microfluidic adaptor (MMA) with the objective to provide a flexible tool for biologists implementing complex 3D biological models (e.g., skin) while enabling simultaneous user control over temperature, medium flow, oxigen (O2), nitrogen (N2), and carbon dioxide (CO2) without the need for an incubator. The presented MMA device is designed to be compatible with standard, commercially available 6-well multi-well plates (6MWPs) and 12-well transwells. This MMA-6MWP setup is employed to generate a skin-on-chip (SoC). RhS viability is maintained under flow for three days and their morphology closely resembles that of native human skin. A proof-of-concept study demonstrates the system's potential in toxicology applications by combining endothelialised RhS with flowing immune cells. This dynamic setting activates the monocyte-like MUTZ-3 cells (CD83 and CD86 upregulation) upon topical exposure of RhS to a sensitizer, revealing the MMA-6MWP's unique capabilities compared to static culturing, where such activation is absent.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam UMC, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands
| | - Matteo Boninsegna
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
- Department of Physics, Bielefeld University, Universitätsstr 25, 33615, Bielefeld, Germany
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Dario Fassini
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jeremy Cramer
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - Pierre Gaudriault
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - János Kodolányi
- Department of Dental Material Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, 1081 LA, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, Amsterdam UMC, Vrije Universiteit, Amsterdam, 1081 HV, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Antoni Homs-Corbera
- Cherry Biotech SAS, 14 Rue De La Beaune, Bâtiment A, 2ème Étage, Montreuil, 93100, France
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
- Amsterdam institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, 1081 LA, The Netherlands
| |
Collapse
|
2
|
Cho SW, Malick H, Kim SJ, Grattoni A. Advances in Skin-on-a-Chip Technologies for Dermatological Disease Modeling. J Invest Dermatol 2024; 144:1707-1715. [PMID: 38493383 DOI: 10.1016/j.jid.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
Skin-on-a-chip (SoC) technologies are emerging as a paradigm shift in dermatology research by replicating human physiology in a dynamic manner not achievable by current animal models. Although animal models have contributed to successful clinical trials, their ability to predict human outcomes remains questionable, owing to inherent differences in skin anatomy and immune response. Covering areas including infectious diseases, autoimmune skin conditions, wound healing, drug toxicity, aging, and antiaging, SoC aims to circumvent the inherent disparities created by traditional models. In this paper, we review current SoC technologies, highlighting their potential as an alternative to animal models for a deeper understanding of complex skin conditions.
Collapse
Affiliation(s)
- Seo Won Cho
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Texas A&M University School of Medicine, College Station, Texas, USA
| | - Hamza Malick
- Texas A&M University School of Medicine, College Station, Texas, USA
| | - Soo Jung Kim
- Department of Dermatology, Baylor College of Medicine, Houston, Texas, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas, USA; Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas, USA.
| |
Collapse
|
3
|
Lim J, Fang HW, Bupphathong S, Sung PC, Yeh CE, Huang W, Lin CH. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models. ACS Biomater Sci Eng 2024; 10:3548-3567. [PMID: 38712543 PMCID: PMC11167599 DOI: 10.1021/acsbiomaterials.3c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The conception of vascularized organ-on-a-chip models provides researchers with the ability to supply controlled biological and physical cues that simulate the in vivo dynamic microphysiological environment of native blood vessels. The intention of this niche research area is to improve our understanding of the role of the vasculature in health or disease progression in vitro by allowing researchers to monitor angiogenic responses and cell-cell or cell-matrix interactions in real time. This review offers a comprehensive overview of the essential elements, including cells, biomaterials, microenvironmental factors, microfluidic chip design, and standard validation procedures that currently govern angiogenesis-on-a-chip assemblies. In addition, we emphasize the importance of incorporating a microvasculature component into organ-on-chip devices in critical biomedical research areas, such as tissue engineering, drug discovery, and disease modeling. Ultimately, advances in this area of research could provide innovative solutions and a personalized approach to ongoing medical challenges.
Collapse
Affiliation(s)
- Joshua Lim
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsu-Wei Fang
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Sasinan Bupphathong
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
- High-value
Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Po-Chan Sung
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chen-En Yeh
- School
of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei Huang
- Department
of Orthodontics, Rutgers School of Dental
Medicine, Newark, New Jersey 07103, United States
| | - Chih-Hsin Lin
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2024:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
5
|
He C, Lu F, Liu Y, Lei Y, Wang X, Tang N. Emergent trends in organ-on-a-chip applications for investigating metastasis within tumor microenvironment: A comprehensive bibliometric analysis. Heliyon 2024; 10:e23504. [PMID: 38187238 PMCID: PMC10770560 DOI: 10.1016/j.heliyon.2023.e23504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background With the burgeoning advancements in disease modeling, drug development, and precision medicine, organ-on-a-chip has risen to the forefront of biomedical research. Specifically in tumor research, this technology has exhibited exceptional potential in elucidating the dynamics of metastasis within the tumor microenvironment. Recognizing the significance of this field, our study aims to provide a comprehensive bibliometric analysis of global scientific contributions related to organ-on-a-chip. Methods Publications pertaining to organ-on-a-chip from 2014 to 2023 were retrieved at the Web of Science Core Collection database. Rigorous analyses of 2305 articles were conducted using tools including VOSviewer, CiteSpace, and R-bibliometrix. Results Over the 10-year span, global publications exhibited a consistent uptrend, anticipating continued growth. The United States and China were identified as dominant contributors, characterized by strong collaborative networks and substantial research investments. Predominant institutions encompass Harvard University, MIT, and the Chinese Academy of Sciences. Leading figures in the domain, such as Dr. Donald Ingber and Dr. Yu Shrike Zhang, emerge as pivotal collaboration prospects. Lab on a Chip, Micromachines, and Frontiers in Bioengineering and Biotechnology were the principal publishing journals. Pertinent keywords encompassed Microfluidic, Microphysiological System, Tissue Engineering, Organoid, In Vitro, Drug Screening, Hydrogel, Tumor Microenvironment, and Bioprinting. Emerging research avenues were identified as "Tumor Microenvironment and Metastasis," "Application of organ-on-a-chip in drug discovery and testing" and "Advancements in personalized medicine applications". Conclusion The organ-on-a-chip domain has demonstrated a transformative impact on understanding disease mechanisms and drug interactions, particularly within the tumor microenvironment. This bibliometric analysis underscores the ever-increasing importance of this field, guiding researchers and clinicians towards potential collaborative avenues and research directions.
Collapse
Affiliation(s)
- Chunrong He
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Fangfang Lu
- Department of Ophthalmology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yi Liu
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuanhu Lei
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiaoxu Wang
- Department of Orthopaedics, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ning Tang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Jordan R, Ford-Scheimer SL, Alarcon RM, Atala A, Borenstein JT, Brimacombe KR, Cherry S, Clevers H, Davis MI, Funnell SGP, Gehrke L, Griffith LG, Grossman AC, Hartung T, Ingber DE, Kleinstreuer NC, Kuo CJ, Lee EM, Mummery CL, Pickett TE, Ramani S, Rosado-Olivieri EA, Struble EB, Wan Z, Williams MS, Hall MD, Ferrer M, Markossian S. Report of the Assay Guidance Workshop on 3-Dimensional Tissue Models for Antiviral Drug Development. J Infect Dis 2023; 228:S337-S354. [PMID: 37669225 PMCID: PMC10547463 DOI: 10.1093/infdis/jiad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The National Center for Advancing Translational Sciences (NCATS) Assay Guidance Manual (AGM) Workshop on 3D Tissue Models for Antiviral Drug Development, held virtually on 7-8 June 2022, provided comprehensive coverage of critical concepts intended to help scientists establish robust, reproducible, and scalable 3D tissue models to study viruses with pandemic potential. This workshop was organized by NCATS, the National Institute of Allergy and Infectious Diseases, and the Bill and Melinda Gates Foundation. During the workshop, scientific experts from academia, industry, and government provided an overview of 3D tissue models' utility and limitations, use of existing 3D tissue models for antiviral drug development, practical advice, best practices, and case studies about the application of available 3D tissue models to infectious disease modeling. This report includes a summary of each workshop session as well as a discussion of perspectives and challenges related to the use of 3D tissues in antiviral drug discovery.
Collapse
Affiliation(s)
- Robert Jordan
- Bill and Melinda Gates Foundation, Seattle, Washington, USA
| | - Stephanie L Ford-Scheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Rodolfo M Alarcon
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Mindy I Davis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Simon G P Funnell
- UK Health Security Agency, Salisbury, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Linda G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Abigail C Grossman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Thomas Hartung
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Donald E Ingber
- Harvard Medical School, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nicole C Kleinstreuer
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle, North Carolina, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Thames E Pickett
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Evi B Struble
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark S Williams
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Sarine Markossian
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|