1
|
Ragavendran C, Govindaraj A, Kamaraj C, Natarajan D, Malafaia G, Alrefaei AF, Almutairi MH. Fusarium begoniae metabolites: a promising larvicidal, pupicidal potential, histopathological alterations and detoxifications enzyme profiles of medically important mosquito vector Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. 3 Biotech 2024; 14:226. [PMID: 39263325 PMCID: PMC11384672 DOI: 10.1007/s13205-024-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Endophytic fungal molecules have the potential to be a cost-effective chemical source for developing eco-friendly disease-controlling pharmaceuticals that target mosquito-borne illnesses. The primary aims of the study were to identify the fungus Fusarium begoniae larvicidal ability against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. The ethyl acetate extract demonstrated lethal concentrations that kill 50% of exposed larvae (LC50) and 90% of exposed larvae (LC90) for the 1st to 4th instar larvae of An. stephensi (LC50 = 54.821, 66.525, 68.250, and 73.614; LC90 = 104.56, 138.205, 150.415, and 159.466 μg/mL), Cx. quinquefasciatus (LC50 = 64.981, 36.505, 42.230, and 36.514; LC90 = 180.46, 157.105, 140.318, and 153.366 μg/ mL), and Ae. aegypti (LC50 = 74.890, 33.607, 52.173, and 26.974; LC90 = 202.56, 162.205, 130.518, and 163.286 μg/mL). Mycelium metabolites were evaluated for their pupicidal activity towards Ae. aegypti (LC50 = 80.669, LC90 = 119.904), Cx. quinquefasciatus (LC50 = 70.569, LC90 = 109.840), and An. stephensi (LC50 = 73.269, LC90 = 110.590 μg/mL). The highest larvicidal activity was recorded at 300 µg/mL, with 100% mortality against first and second-instar larvae of Cx. quinquefasciatus. Metabolite exposure to larvae exhibited several abnormal behavioral changes. The exposure to F. begoniae metabolite, key esterases such as acetylcholinesterase, α-and-β-carboxylesterase, and acid and alkaline phosphatase activity significantly decreased compared to control larvae. The outcomes of the histology analysis revealed that the mycelium metabolites-treated targeted larvae had a disorganized abdominal mid and hindgut epithelial cells. The is first-hand information on study of ethyl-acetate-derived metabolites from F. begoniae tested against larvae and pupae of Ae. aegypti, Cx. quinquefasciatus and An. stephensi. Bio-indicator toxicity findings demonstrate that A. nauplii displayed no mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04061-z.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077 Tamil Nadu India
| | - Annadurai Govindaraj
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Tamil Nadu, Kattankulathur, Chennai 603203 India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG Brazil
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO Brazil
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Lokole PB, Byamungu GG, Mutwale PK, Ngombe NK, Mudogo CN, Krause RWM, Nkanga CI. Plant-based nanoparticles targeting malaria management. Front Pharmacol 2024; 15:1440116. [PMID: 39185312 PMCID: PMC11341498 DOI: 10.3389/fphar.2024.1440116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Malaria is one of the most devastating diseases across the globe, particularly in low-income countries in Sub-Saharan Africa. The increasing incidence of malaria morbidity is mainly due to the shortcomings of preventative measures such as the lack of vaccines and inappropriate control over the parasite vector. Additionally, high mortality rates arise from therapeutic failures due to poor patient adherence and drug resistance development. Although the causative pathogen (Plasmodium spp.) is an intracellular parasite, the recommended antimalarial drugs show large volumes of distribution and low-to no-specificity towards the host cell. This leads to severe side effects that hamper patient compliance and promote the emergence of drug-resistant strains. Recent research efforts are promising to enable the discovery of new antimalarial agents; however, the lack of efficient means to achieve targeted delivery remains a concern, given the risk of further resistance development. New strategies based on green nanotechnologies are a promising avenue for malaria management due to their potential to eliminate malaria vectors (Anopheles sp.) and to encapsulate existing and emerging antimalarial agents and deliver them to different target sites. In this review we summarized studies on the use of plant-derived nanoparticles as cost-effective preventative measures against malaria parasites, starting from the vector stage. We also reviewed plant-based nanoengineering strategies to target malaria parasites, and further discussed the site-specific delivery of natural products using ligand-decorated nanoparticles that act through receptors on the host cells or malaria parasites. The exploration of traditionally established plant medicines, surface-engineered nanoparticles and the molecular targets of parasite/host cells may provide valuable insights for future discovery of antimalarial drugs and open new avenues for advancing science toward the goal of malaria eradication.
Collapse
Affiliation(s)
- Pathy B. Lokole
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Galilée G. Byamungu
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
- Department of Chemistry, Faculty of Sciences and Technology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Paulin K. Mutwale
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Nadège K. Ngombe
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Centre d’Etudes des Substances Naturelles d’Origine Végétale (CESNOV), Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Celestin N. Mudogo
- Unit of Molecular Biology, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rui W. M. Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Faculty of Sciences, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Christian I. Nkanga
- Centre de Recherche en Nanotechnologies Appliquées aux Produits Naturels (CReNAPN), Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
3
|
Pantović Pavlović MR, Ignjatović NL, Gudić S, Vrsalović L, Božić KĐ, Popović ME, Pavlović MM. Modified Titanium Surface with Nano Amorphous Calcium Phosphate@Chitosan Oligolactate as Ion Loading Platform with Multifunctional Properties for Potential Biomedical Application. Ann Biomed Eng 2024; 52:2221-2233. [PMID: 38662122 DOI: 10.1007/s10439-024-03521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Titanium (Ti) is widely used in medical and dental implants. Calcium phosphate (CPs) coatings enhance Ti implants' osteoinductive properties, and additives further improve these coatings. Recently, a nano amorphous calcium phosphate (nACP) coating decorated with chitosan oligolactate (ChOL) and selenium (Se) showed immunomodulatory effects. This study investigates the surface morphology, composition, bioactivity, mechanical properties, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates. Amorphous calcium phosphate (ACP) was synthesized, and the nACP@ChOL-Se hybrid coating was deposited on Ti substrates using in situ anaphoretic deposition. Physico-chemical characterization was used to analyze the surface of the coating (scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier Transform Infrared Spectroscopy). The distribution of Se within the coating was examined with energy-dispersive X-ray spectroscopy (EDS). Bioactivity was evaluated in simulated body fluid (SBF), and adhesion was tested using a scratch test method. In vitro testing determined the release mechanism of Se. SEM images illustrated the surface morphology, while AFM provided a detailed analysis of surface roughness. XRD analysis revealed structural and phase composition, and EDS confirmed Se distribution within the coating. The coating exhibited bioactivity in SBF and showed good adhesion according to the scratch test. In vitro testing uncovered the release mechanism of Se from the coating. This study successfully characterized the surface morphology, composition, bioactivity, and Se-release mechanism of the nACP@ChOL-Se hybrid coating on Ti substrates, offering insights for developing immunomodulatory coatings for medical and dental applications.
Collapse
Affiliation(s)
- Marijana R Pantović Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Nenad L Ignjatović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia
| | - Senka Gudić
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Ladislav Vrsalović
- Faculty of Chemistry and Technology, University of Split, 21000, Split, Croatia
| | - Katarina Đ Božić
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia
| | - Marko E Popović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Miroslav M Pavlović
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia.
- Center of Excellence in Chemistry and Environmental Engineering-ICTM, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
4
|
Mohammed EJ, Abdelaziz AEM, Mekky AE, Mahmoud NN, Sharaf M, Al-Habibi MM, Khairy NM, Al-Askar AA, Youssef FS, Gaber MA, Saied E, AbdElgayed G, Metwally SA, Shoun AA. Biomedical Promise of Aspergillus Flavus-Biosynthesized Selenium Nanoparticles: A Green Synthesis Approach to Antiviral, Anticancer, Anti-Biofilm, and Antibacterial Applications. Pharmaceuticals (Basel) 2024; 17:915. [PMID: 39065765 PMCID: PMC11279975 DOI: 10.3390/ph17070915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
This study utilized Aspergillus flavus to produce selenium nanoparticles (Se-NPs) in an environmentally friendly and ecologically sustainable manner, targeting several medicinal applications. These biosynthesized Se-NPs were meticulously characterized using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscope (TEM), and UV-visible spectroscopy (UV), revealing their spherical shape and size ranging between 28 and 78 nm. We conducted further testing of Se-NPs to evaluate their potential for biological applications, including antiviral, anticancer, antibacterial, antioxidant, and antibiofilm activities. The results indicate that biosynthesized Se-NPs could be effective against various pathogens, including Salmonella typhimurium (ATCC 14028), Bacillus pumilus (ATCC 14884), Staphylococcus aureus (ATCC 6538), Clostridium sporogenes (ATCC 19404), Escherichia coli (ATCC 8739), and Bacillus subtilis (ATCC 6633). Additionally, the biosynthesized Se-NPs exhibited anticancer activity against three cell lines: pancreatic carcinoma (PANC1), cervical cancer (Hela), and colorectal adenocarcinoma (Caco-2), with IC50 values of 177, 208, and 216 μg/mL, respectively. The nanoparticles demonstrated antiviral activity against HSV-1 and HAV, achieving inhibition rates of 66.4% and 15.1%, respectively, at the maximum non-toxic concentration, while also displaying antibiofilm and antioxidant properties. In conclusion, the biosynthesized Se-NPs by A. flavus present a promising avenue for various biomedical applications with safe usage.
Collapse
Affiliation(s)
- Eman Jassim Mohammed
- Department of Microbiology, College of Science, Mustansiriyah University, Baghdad 14022, Iraq;
| | - Ahmed E. M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Port-Said University, 23 December Street, Port-Said 42522, Egypt;
| | - Alsayed E. Mekky
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Nashaat N. Mahmoud
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Mohamed Sharaf
- Biochemistry and Molecular Biology Department, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Mahmoud M. Al-Habibi
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11651, Egypt;
| | - Nehal M. Khairy
- Microbiology and Immunology Department, Egypt Drug Authority (EDA), (Formerly NODCAR), Giza 12654, Egypt;
- Microbiology and Immunology Department, Faculty of Pharmacy, Sinai University-East Kantara Branch, Ismailia 41636, Egypt
| | - Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Fady Sayed Youssef
- Department of Pharmacology Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Mahmoud Ali Gaber
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (N.N.M.); (M.A.G.); (E.S.)
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Shimaa A Metwally
- Microbiology and Immunology Department, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo 11651, Egypt;
| | - Aly A. Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Salehey El Gadida University, El Saleheya El Gadida 44813, Egypt;
| |
Collapse
|
5
|
Bizerea-Moga TO, Pitulice L, Bizerea-Spiridon O, Moga TV. Exploring the Link between Oxidative Stress, Selenium Levels, and Obesity in Youth. Int J Mol Sci 2024; 25:7276. [PMID: 39000383 PMCID: PMC11242909 DOI: 10.3390/ijms25137276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a worldwide increasing concern. Although in adults this is easily estimated with the body mass index, in children, who are constantly growing and whose bodies are changing, the reference points to assess weight status are age and gender, and need corroboration with complementary data, making their quantification highly difficult. The present review explores the interaction spectrum of oxidative stress, selenium status, and obesity in children and adolescents. Any factor related to oxidative stress that triggers obesity and, conversely, obesity that induces oxidative stress are part of a vicious circle, a complex chain of mechanisms that derive from each other and reinforce each other with serious health consequences. Selenium and its compounds exhibit key antioxidant activity and also have a significant role in the nutritional evaluation of obese children. The balance of selenium intake, retention, and metabolism emerges as a vital aspect of health, reflecting the complex interactions between diet, oxidative stress, and obesity. Understanding whether selenium status is a contributor to or a consequence of obesity could inform nutritional interventions and public health strategies aimed at preventing and managing obesity from an early age.
Collapse
Affiliation(s)
- Teofana Otilia Bizerea-Moga
- Department XI of Pediatrics-1st Pediatric Discipline, Center for Research on Growth and Developmental Disorders in Children, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq No 2, 300041 Timișoara, Romania;
- 1st Pediatric Clinic, ‘Louis Țurcanu’ Children’s Clinical and Emergency Hospital, Iosif Nemoianu 2, 300011 Timișoara, Romania
| | - Laura Pitulice
- Department of Biology-Chemistry, West University of Timişoara, Pestallozi 16, 300115 Timişoara, Romania;
- The Institute for Advanced Environmental Research (ICAM), Popa Şapcă 4C, 300054 Timişoara, Romania
| | - Otilia Bizerea-Spiridon
- Department of Biology-Chemistry, West University of Timişoara, Pestallozi 16, 300115 Timişoara, Romania;
- The Institute for Advanced Environmental Research (ICAM), Popa Şapcă 4C, 300054 Timişoara, Romania
| | - Tudor Voicu Moga
- Department VII of Internal Medicine-Gastroenterology Discipline, Advanced Regional Research Center in Gastroenterology and Hepatology, ‘Victor Babeș’ University of Medicine and Pharmacy Timișoara, Eftimie Murgu Sq No 2, 300041 Timișoara, Romania;
- Gastroenterology and Hepatology Clinic, ‘Pius Brînzeu’ County Emergency Clinical Hospital, Liviu Rebreanu 156, 300723 Timișoara, Romania
| |
Collapse
|
6
|
Morgan RN, Aboshanab KM. Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects. Future Sci OA 2024; 10:FSO935. [PMID: 38817383 PMCID: PMC11137799 DOI: 10.2144/fsoa-2023-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 06/01/2024] Open
Abstract
In green biological synthesis, metal nanoparticles are produced by plants or microorganisms. Since it is ecologically friendly, economically viable and sustainable, this method is preferable to other traditional ones. For their continuous groundbreaking advancements and myriad physiochemical and biological benefits, nanotechnologies have influenced various aspects of scientific fields. Metal nanoparticles (MNPs) are the field anchor for their outstanding optical, electrical and chemical capabilities that outperform their regular-sized counterparts. This review discusses the most current biosynthesized metal nanoparticles synthesized by various organisms and their biological applications along with the key elements involved in MNP green synthesis. The review is displayed in a manner that will impart assertiveness, help the researchers to open questions, and highlight many points for conducting future research.
Collapse
Affiliation(s)
- Radwa N Morgan
- National Centre for Radiation Research & Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled M Aboshanab
- Microbiology & Immunology Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
7
|
Ibrahim AG, Hamodin AG, Fouda A, Eid AM, Elgammal WE. Fabrication and characterization of a new eco-friendly sulfonamide-chitosan derivative with enhanced antimicrobial and selective cytotoxicity properties. Sci Rep 2024; 14:10228. [PMID: 38702418 PMCID: PMC11068750 DOI: 10.1038/s41598-024-60456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Chitosan (CH) exhibits low antimicrobial activity. This study addresses this issue by modifying the chitosan with a sulfonamide derivative, 3-(4-(N,N-dimethylsulfonyl)phenyl)acrylic acid. The structure of the sulfonamide-chitosan derivative (DMS-CH) was confirmed using Fourier transform infrared spectroscopy and Nuclear magnetic resonance. The results of scanning electron microscopy, thermal gravimetric analysis, and X-ray diffraction indicated that the morphology changed to a porous nature, the thermal stability decreased, and the crystallinity increased in the DMS-CH derivative compared to chitosan, respectively. The degree of substitution was calculated from the elemental analysis data and was found to be moderate (42%). The modified chitosan exhibited enhanced antimicrobial properties at low concentrations, with a minimum inhibitory concentration (MIC) of 50 µg/mL observed for B. subtilis and P. aeruginosa, and a value of 25 µg/mL for S. aureus, E. coli, and C. albicans. In the case of native chitosan, the MIC values doubled or more, with 50 µg/mL recorded for E. coli and C. albicans and 100 μg/mL recorded for B. subtilis, S. aureus, and P. aeruginosa. Furthermore, toxicological examinations conducted on MCF-7 (breast adenocarcinoma) cell lines demonstrated that DMS-CH exhibited greater toxicity (IC50 = 225.47 μg/mL) than pure CH, while still maintaining significant safety limits against normal lung fibroblasts (WI-38). Collectively, these results suggest the potential use of the newly modified chitosan in biomedical applications.
Collapse
Affiliation(s)
- Ahmed G Ibrahim
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, El-Nasr Road, Cairo, 11884, Egypt.
| | - Ahmed G Hamodin
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, El-Nasr Road, Cairo, 11884, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Walid E Elgammal
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, El-Nasr Road, Cairo, 11884, Egypt
| |
Collapse
|
8
|
Davidson E, Pereira J, Leon S, Navarro E, Kavalappara SR, Murphy Z, Anagnostopoulos V, Bag S, Santra S. Chitosan coated selenium: A versatile nano-delivery system for molecular cargoes. Int J Biol Macromol 2024; 267:131176. [PMID: 38599433 DOI: 10.1016/j.ijbiomac.2024.131176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
The use of nanoscale delivery platforms holds tremendous potential to overcome the current limitations associated with the conventional delivery of genetic materials and hydrophobic compounds. Therefore, there is an imperative need to develop a suitable alternative nano-enabled delivery platform to overcome these limitations. This work reports the first one-step hydrothermal synthesis of chitosan functionalized selenium nanoparticles (Selenium-chitosan, SeNP) that are capable of serving as a versatile nanodelivery platform for different types of active ingredients. The chitosan functionalization modified the surface charge to allow the loading of active ingredients and improve biocompatibility. The effective loading of the SeNP was demonstrated using genetic material, a hydrophobic small molecule, and an antibiotic. Furthermore, the loading of active ingredients showed no detrimental effect on the specific properties (fluorescence and bactericidal) of the studied active ingredients. In vitro antimicrobial inhibitory studies exhibited good compatibility between the SeNP delivery platform and Penicillin G (Pen), resulting in a reduction of the minimum inhibitory concentration (MIC) from 32 to 16 ppm. Confocal microscopy images showed the uptake of the SeNP by a macrophage cell line (J774A.1), demonstrating trackability and intracellular delivery of an active ingredient. In summary, the present work demonstrates the potential of SeNP as a suitable delivery platform for biomedical and agricultural applications.
Collapse
Affiliation(s)
- Edwin Davidson
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Jorge Pereira
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Sebastian Leon
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA
| | - Ernesto Navarro
- NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Department of Physiology, Neuroscience and Behavioral Sciences, School of Medicine, St. George's University, St. George, Grenada
| | | | - Zachary Murphy
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Swadeshmukul Santra
- Department of Chemistry, University of Central Florida, Orlando, FL, 32826, USA.; NanoScience Technology Center, University of Central Florida, Orlando, FL, 32826, USA.; Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA..
| |
Collapse
|
9
|
El Sayed AM, Alanazi TI. Improving the structural, optical, and electrical properties of carboxymethyl cellulose/starch/selenium oxide nanocomposites for flexible electronic devices. Sci Rep 2024; 14:3398. [PMID: 38336969 PMCID: PMC10858174 DOI: 10.1038/s41598-024-53268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Nanocomposites based on biopolymers are interesting materials owing to their multifunctionality and ease of preparation. In this study, the solution casting method was used to mix selenium oxide nanoparticles (SeO2 NP) made by a solvothermal method into a bio-blend of carboxymethyl cellulose and starch (CMC/St). XRD analysis showed that SeO2 NP increased the amorphous portion inside the blend. HR-TEM revealed the spherical morphology of these NP with an average diameter of 16.88 nm. The FE-SEM indicated a satisfactory uniform distribution and homogeneity in the surface morphology of the films. FTIR confirmed the interaction between SeO2 and the blend functional groups. The films preserved good transmission after doping, and their direct and indirect band gaps decreased. The refractive index, absorption index, optical conductivity, and other dispersion parameters were improved after SeO2 loading. The DC conductivity of the blend is in the range of 3.8 × 10-7 to 5.6 × 10-4 S/m and improved after loading SeO2 NP. The IV characteristic curves in the temperature range of 300-415 K were studied to figure out the conduction mechanism in the CMC/St/SeO2 composites. Because the optical and electrical properties improved, these nanocomposites could be used for coatings and other things like waveguides, photovoltaic cells, and light-emitting diodes.
Collapse
Affiliation(s)
- Adel M El Sayed
- Physics Department, Faculty of Science, Fayoum University, El-Fayoum, 63514, Egypt.
| | - Tarek I Alanazi
- Department of Physics, College of Science, Northern Border University, 73222, Arar, Saudi Arabia.
| |
Collapse
|
10
|
Mikhailova EO. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023; 28:8125. [PMID: 38138613 PMCID: PMC10745377 DOI: 10.3390/molecules28248125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Selenium nanoparticles (SeNPs) are extremely popular objects in nanotechnology. "Green" synthesis has special advantages due to the growing necessity for environmentally friendly, non-toxic, and low-cost methods. This review considers the biosynthesis mechanism of bacteria, fungi, algae, and plants, including the role of various biological substances in the processes of reducing selenium compounds to SeNPs and their further packaging. Modern information and approaches to the possible biomedical use of selenium nanoparticles are presented: antimicrobial, antiviral, anticancer, antioxidant, anti-inflammatory, and other properties, as well as the mechanisms of these processes, that have important potential therapeutic value.
Collapse
Affiliation(s)
- Ekaterina O Mikhailova
- Institute of Innovation Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
11
|
Shah SH, Shan X, Baig S, Zhao H, Ismail B, Shahzadi I, Majeed Z, Nawazish S, Siddique M, Baig A. First identification of potato tuber rot caused by Penicillium solitum, its silver nanoparticles synthesis, characterization and use against harmful pathogens. FRONTIERS IN PLANT SCIENCE 2023; 14:1255480. [PMID: 37929179 PMCID: PMC10620797 DOI: 10.3389/fpls.2023.1255480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/19/2023] [Indexed: 11/07/2023]
Abstract
Potato is one of the highly consumed vegetable crop grown in different regions across Pakistan that is affected by fungal diseases. The current research was conducted to identify fungal pathogen causing mold-like disease of potato in Khyber Pakhtunkhwa (KP), Pakistan. For molecular identification and characterization of the fungal disease; potato tuber samples were collected followed by culturing on potato dextrose agar (PDA). Based on morphological features, the pathogen was identified as a Penicillium species. This result was obtained in 45 different isolates from potato tubers. Molecular identification was done using β-tubulin primers and ITS5 sequencing of 13 different isolates that releveled 98% homology with BLAST (GenBank accession no. KX958076) as Penicillium solitum (GenBank accession nos. ON307317; ON307475 and ON310801). Phylogenetic tree was constructed that showed Penicillium solitum prevalence along with Penicillium polonicum and Penicillium citrinum on potato tubers. Based on this, Penicillium solitum based silver nanoparticles (Ag NPs) were synthesized and characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), energy dispersive X-ray (EDX) and field emission scanning electron microscopy (FE SEM). UV-analysis showed a characteristic peak at 410 nm confirming synthesis of Penicillium solitum based Ag NPs. This was further confirmed by XRD followed by EDX and SEM that showed face cubic crystal structure with Ag as major constituent of 18 nm formed spherical Ag NPs. FTIR showed band stretching of O-H, N-O and C-H of biological origin. Similarly, Penicillium solitum based Ag NPs presented strong anti-bacterial and anti-fungal activity at 0.5 level of significance LSD. According to our knowledge, this is the first report of Penicillium solitum identification in Pakistan, its Ag NPs synthesis and characterization to be used against pathogens of agricultural significance.
Collapse
Affiliation(s)
- Syed Haseeb Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Xiaoliang Shan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Sofia Baig
- Independent Researcher, Abbottabad, Pakistan
| | - Hongwei Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Bushra Ismail
- Department of Chemistry, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Zahid Majeed
- Department of Biotechnology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shamyla Nawazish
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
12
|
Sans-Serramitjana E, Obreque M, Muñoz F, Zaror C, Mora MDLL, Viñas M, Betancourt P. Antimicrobial Activity of Selenium Nanoparticles (SeNPs) against Potentially Pathogenic Oral Microorganisms: A Scoping Review. Pharmaceutics 2023; 15:2253. [PMID: 37765222 PMCID: PMC10537110 DOI: 10.3390/pharmaceutics15092253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Biofilms are responsible for the most prevalent oral infections such as caries, periodontal disease, and pulp and periapical lesions, which affect the quality of life of people. Antibiotics have been widely used to treat these conditions as therapeutic and prophylactic compounds. However, due to the emergence of microbial resistance to antibiotics, there is an urgent need to develop and evaluate new antimicrobial agents. This scoping review offers an extensive and detailed synthesis of the potential role of selenium nanoparticles (SeNPs) in combating oral pathogens responsible for causing infectious diseases. A systematic search was conducted up until May 2022, encompassing the MEDLINE, Embase, Scopus, and Lilacs databases. We included studies focused on evaluating the antimicrobial efficacy of SeNPs on planktonic and biofilm forms and their side effects in in vitro studies. The selection process and data extraction were carried out by two researchers independently. A qualitative synthesis of the results was performed. A total of twenty-two articles were considered eligible for this scoping review. Most of the studies reported relevant antimicrobial efficacy against C. albicans, S. mutans, E. faecalis, and P. gingivalis, as well as effective antioxidant activity and limited toxicity. Further research is mandatory to critically assess the effectiveness of this alternative treatment in ex vivo and in vivo settings, with detailed information about SeNPs concentrations employed, their physicochemical properties, and the experimental conditions to provide enough evidence to address the construction and development of well-designed and safe protocols.
Collapse
Affiliation(s)
- Eulàlia Sans-Serramitjana
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Macarena Obreque
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Fernanda Muñoz
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
| | - Carlos Zaror
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Universidad de La Frontera, Manuel Montt #112, Temuco 4811230, Chile;
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| | - María de La Luz Mora
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Biotechnological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, University of Barcelona, 08907 Barcelona, Spain;
| | - Pablo Betancourt
- Center for Research in Dental Sciences (CICO), Endodontic Laboratory, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile; (M.O.); (F.M.)
- Department of Integral Adultos, Faculty of Dentistry, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
13
|
Nassar ARA, Atta HM, Abdel-Rahman MA, El Naghy WS, Fouda A. Myco-synthesized copper oxide nanoparticles using harnessing metabolites of endophytic fungal strain Aspergillus terreus: an insight into antibacterial, anti-Candida, biocompatibility, anticancer, and antioxidant activities. BMC Complement Med Ther 2023; 23:261. [PMID: 37481531 PMCID: PMC10363295 DOI: 10.1186/s12906-023-04056-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.
Collapse
Affiliation(s)
| | - Hossam M Atta
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Wageih S El Naghy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|