1
|
Zulfat M, Alkhatabi HA, Alreemi RM, Alamri MA, Khalid A, Abdalla AN, Wadood A. In-silico identification of potential peptide inhibitors to disrupt NLRP3 inflammasome complex formation by blocking NLRP3-ASC pyrin-pyrin interactions. J Biomol Struct Dyn 2024:1-12. [PMID: 39727343 DOI: 10.1080/07391102.2024.2444417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/06/2024] [Indexed: 12/28/2024]
Abstract
The NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome is a well-known and frequently cited regulator of caspase-1 activation. It plays a significant role in several pathophysiological processes and is a major regulator of the innate immune response. A growing amount of scientific evidences for its aberrant activation in various chronic inflammatory diseases attracts a growing interest in the development of new NLRP3 inhibitors. One of the successful strategies used to identify new inhibitors is peptide inhibitors. Compared to small molecule inhibitors, peptide inhibitors show greater selectivity and less toxicity. In this study, we used an in-silico mutagenesis approach to design new peptide inhibitors from reported peptide inhibitor of NLRP3. The sequence of the peptide inhibitor against NLRP3 was searched from the literature and modeled using the online server PEP-FOLD3. The in-silico alanine scanning mutagenesis of the reference peptide revealed that residues, Y23, R28, E6, I26, R20, L19, Q33, K11, L14, and K13 have positive affinity values and are therefore better candidates for substitution to increase binding affinity. By replacing these residues, the affinity of the newly designed peptide inhibitors for the NLRP3 PYD protein was significantly increased. Further, molecular dynamics simulations and binding energy calculations validated the stability and higher binding affinities of the newly designed peptide inhibitors compared to the wild-type peptide inhibitor. Our research revealed that all the suggested peptide inhibitors have higher binding affinities for the NLRP3 protein as compared to the native wild-type peptide inhibitor and could block NLRP3-ASC pyrin-pyrin interaction.
Collapse
Affiliation(s)
- Maryam Zulfat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hind A Alkhatabi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Roaa M Alreemi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asaad Khalid
- Health Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
2
|
Simon JP, Dong S. In-silico screening of missense nsSNPs in Delta-opioid receptor protein and their restoring tendency on MCRT interaction; focusing on dynamic nature. Int J Biol Macromol 2024; 275:133710. [PMID: 38977046 DOI: 10.1016/j.ijbiomac.2024.133710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Delta-opioid receptor protein (OPRD1) is one of the potential targets for treating pain. The presently available opioid agonists are known to cause unnecessary side effects. To discover a novel opioid agonist, our research group has synthesized a chimeric peptide MCRT and proved its potential activity through in vivo analysis. Non-synonymous SNPs (nsSNPs) missense mutations affect the functionality and stability of proteins leading to diseases. The current research was focused on understanding the role of MCRT in restoring the binding tendency of OPRD1 nsSNPs missense mutations on dynamic nature in comparison with Deltorphin-II and morphiceptin. The deleterious effects of nsSNPs were analyzed using various bioinformatics tools for predicting structural, functional, and oncogenic influence. The shortlisted nine nsSNPs were predicted for allergic reactions, domain changes, post-translation modification, multiple sequence alignment, secondary structure, molecular dynamic simulation (MDS), and peptide docking influence. Further, the docked complex of three shortlisted deleterious nsSNPs was analyzed using an MDS study, and the highly deleterious shortlisted nsSNP A149T was further analyzed for higher trajectory analysis. MCRT restored the binding tendency influence caused by nsSNPs on the dynamics of stability, functionality, binding affinity, secondary structure, residues connection, motion, and folding of OPRD1 protein.
Collapse
Affiliation(s)
- Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China,; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
3
|
Ajmal A, Shahab M, Waqas M, Zheng G, Zulfat M, Bin Jardan YA, Wondmie GF, Bourhia M, Ali I. In silico design of peptide inhibitors for Dengue virus to treat Dengue virus-associated infections. Sci Rep 2024; 14:13130. [PMID: 38849372 PMCID: PMC11161489 DOI: 10.1038/s41598-024-63064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Dengue virus is a single positive-strand RNA virus that is composed of three structural proteins including capsid, envelope, and precursor membrane while seven non-structural proteins (NS1, NS2A, NS2B, NS3A, NS3B, NS4, and NS5). Dengue is a viral infection caused by the dengue virus (DENV). DENV infections are asymptomatic or produce only mild illness. However, DENV can occasionally cause more severe cases and even death. There is no specific treatment for dengue virus infections. Therapeutic peptides have several important advantages over proteins or antibodies: they are small in size, easy to synthesize, and have the ability to penetrate the cell membranes. They also have high activity, specificity, affinity, and less toxicity. Based on the known peptide inhibitor, the current study designs peptide inhibitors for dengue virus envelope protein using an alanine and residue scanning technique. By replacing I21 with Q21, L14 with H14, and V28 with K28, the binding affinity of the peptide inhibitors was increased. The newly designed peptide inhibitors with single residue mutation improved the binding affinity of the peptide inhibitors. The inhibitory capability of the new promising peptide inhibitors was further confirmed by the utilization of MD simulation and free binding energy calculations. The molecular dynamics simulation demonstrated that the newly engineered peptide inhibitors exhibited greater stability compared to the wild-type peptide inhibitors. According to the binding free energies MM(GB)SA of these developed peptides, the first peptide inhibitor was the most effective against the dengue virus envelope protein. All peptide derivatives had higher binding affinities for the envelope protein and have the potential to treat dengue virus-associated infections. In this study, new peptide inhibitors were developed for the dengue virus envelope protein based on the already reported peptide inhibitor.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Shahab
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al-Mouz, 616, Nizwa, Oman
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Maryam Zulfat
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | | | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000, Laayoune, Morocco
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
4
|
Khizer H, Maryam A, Ansari A, Ahmad MS, Khalid RR. Leveraging shape screening and molecular dynamics simulations to optimize PARP1-Specific chemo/radio-potentiators for antitumor drug design. Arch Biochem Biophys 2024; 756:110010. [PMID: 38642632 DOI: 10.1016/j.abb.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
PARP1 plays a pivotal role in DNA repair within the base excision pathway, making it a promising therapeutic target for cancers involving BRCA mutations. Current study is focused on the discovery of PARP inhibitors with enhanced selectivity for PARP1. Concurrent inhibition of PARP1 with PARP2 and PARP3 affects cellular functions, potentially causing DNA damage accumulation and disrupting immune responses. In step 1, a virtual library of 593 million compounds has been screened using a shape-based screening approach to narrow down the promising scaffolds. In step 2, hierarchical docking approach embedded in Schrödinger suite was employed to select compounds with good dock score, drug-likeness and MMGBSA score. Analysis supplemented with decomposition energy, molecular dynamics (MD) simulations and hydrogen bond frequency analysis, pinpointed that active site residues; H862, G863, R878, M890, Y896 and F897 are crucial for specific binding of ZINC001258189808 and ZINC000092332196 with PARP1 as compared to PARP2 and PARP3. The binding of ZINC000656130962, ZINC000762230673, ZINC001332491123, and ZINC000579446675 also revealed interaction involving two additional active site residues of PARP1, namely N767 and E988. Weaker or no interaction was observed for these residues with PARP2 and PARP3. This approach advances our understanding of PARP-1 specific inhibitors and their mechanisms of action, facilitating the development of targeted therapeutics.
Collapse
Affiliation(s)
- Hifza Khizer
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arooma Maryam
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Adnan Ansari
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sajjad Ahmad
- School of Chemical Engineering, Hebei University of Technology, Tianjin, 300401, PR China
| | - Rana Rehan Khalid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
5
|
Taghizadeh MS, Taherishirazi M, Niazi A, Afsharifar A, Moghadam A. Structure-guided design and cloning of peptide inhibitors targeting CDK9/cyclin T1 protein-protein interaction. Front Pharmacol 2024; 15:1327820. [PMID: 38808256 PMCID: PMC11130503 DOI: 10.3389/fphar.2024.1327820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 05/30/2024] Open
Abstract
CDK9 (cyclin-dependent kinase 9) plays a significant role in numerous pathological conditions, such as HIV-1 infection and cancer. The interaction between CDK9 and cyclin T1 is crucial for maintaining the kinase's active state. Therefore, targeting this protein-protein interaction offers a promising strategy for inhibiting CDK9. In this study, we aimed to design and characterize a library of mutant peptides based on the binding region of cyclin T1 to CDK9. Using Osprey software, a total of 7,776 mutant peptides were generated. After conducting a comprehensive analysis, three peptides, namely, mp3 (RAADVEGQRKRRE), mp20 (RAATVEGQRKRRE), and mp29 (RAADVEGQDKRRE), were identified as promising inhibitors that possess the ability to bind to CDK9 with high affinity and exhibit low free binding energy. These peptides exhibited favorable safety profiles and displayed promising dynamic behaviors. Notably, our findings revealed that the mp3 and mp29 peptides interacted with a conserved sequence in CDK9 (residues 60-66). In addition, by designing the structure of potential peptides in the plasmid vector pET28a (+), we have been able to pave the way for facilitating the process of their recombinant production in an Escherichia coli expression system in future studies. Predictions indicated good solubility upon overexpression, further supporting their potential for downstream applications. While these results demonstrate the promise of the designed peptides as blockers of CDK9 with high affinity, additional experimental studies are required to validate their biological activity and assess their selectivity. Such investigations will provide valuable insights into their therapeutic potential and pave the way for the future development of peptide-based inhibitors targeting the CDK9-cyclin T1 complex.
Collapse
Affiliation(s)
| | | | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Shahab M, de Farias Morais GC, Akash S, Fulco UL, Oliveira JIN, Zheng G, Akter S. A robust computational quest: Discovering potential hits to improve the treatment of pyrazinamide-resistant Mycobacterium tuberculosis. J Cell Mol Med 2024; 28:e18279. [PMID: 38634203 PMCID: PMC11024510 DOI: 10.1111/jcmm.18279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | | | - Shopnil Akash
- Department of PharmacyDaffodil International UniversityDhakaBangladesh
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Guojun Zheng
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| |
Collapse
|
7
|
Shahab M, Zheng G, Bin Jardan YA, Bourhia M. Machine learning and molecular simulation-based protocols to identify novel potential inhibitors for reverse transcriptase against HIV infections. J Biomol Struct Dyn 2024:1-14. [PMID: 38379294 DOI: 10.1080/07391102.2024.2319112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Acquired immunodeficiency syndrome (AIDS) is a potentially fatal condition affecting the human immune system, which is attributed to the human immunodeficiency virus (HIV). The suppression of reverse transcriptase activity is a promising and feasible strategy for the therapeutic management of AIDS. In this study, we employed machine learning algorithms, such as support vector machines (SVM), k-nearest neighbor (k-NN), random forest (RF), and Gaussian naive base (GNB), which are fast and effective tools commonly used in drug design. For model training, we initially obtained a dataset of 5,159 compounds from BindingDB. The models were assessed using tenfold cross-validation to ensure their accuracy and reliability. Among these compounds, 1,645 compounds were labeled as active, having an IC50 below 0.49 µM, while 3,514 compounds were labeled "inactive against reverse transcriptase. Random forest achieved 86% accuracy on the train and test set among the different machine learning algorithms. Random forest model was then applied to an external ZINC dataset. Subsequently, only three hits-ZINC1359750464, ZINC1435357562, and ZINC1545719422-were selected based on the Lipinski Rule, docking score, and good interaction. The stability of these molecules was further evaluated by deploying molecular dynamics simulation and MM/GBSA, which were found to be -38.6013 ± 0.1103 kcal/mol for the Zidovudine/RT complex, -59.1761 ± 2.2926 kcal/mol for the ZINC1359750464/RT complex, -47.6292 ± 2.4206 kcal/mol for the ZINC1435357562/RT complex, and -50.7334 ± 2.5713 kcal/mol for the ZINC1545719422/RT complex.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
8
|
Munna MMR, Islam MA, Shanta SS, Monty MA. Structural, functional, molecular docking analysis of a hypothetical protein from Talaromyces marneffei and its molecular dynamic simulation: an in-silico approach. J Biomol Struct Dyn 2024:1-20. [PMID: 38345137 DOI: 10.1080/07391102.2024.2314264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Telaromyces marneffei (formerly Penicillium marneffei) is an endemic pathogenic fungus in Southern China and Southeast Asia. It can cause disease in patients with travel-related exposure to this organism and high morbidity and mortality in acquired immune deficiency syndrome (AIDS). In this study, we analyzed the structure and function of a hypothetical protein from T. marneffei using several bioinformatics tools and servers to unveil novel pharmacological targets and design a peptide vaccine against specific epitopes. A total of seven functional epitopes were screened on the protein, and 'STGVDMWSV' was the most antigenic, non-allergenic and non-toxic. Molecular docking showed stronger affinity between the CTL epitope 'STGVDMWSV' and the MHC I allele HLA-A*02:01, a higher docking score -234.98 kcal/mol, revealed stable interactions during a 100 ns molecular dynamic simulation. Overall, the results of this study revealed that this hypothetical protein is crucial for comprehending biochemical, physiological pathways and identifying novel therapeutic targets for human health. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Masudur Rahman Munna
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Saima Sajnin Shanta
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Masuma Akter Monty
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| |
Collapse
|
9
|
Nasir A, Rahman MU, Khan M, Zahid M, Shahab M, Jiao H, Zeb A, Shah SA, Khan H. Vitamin B6 Via p-JNK/Nrf-2/NF-κB Signaling Ameliorates Cadmium Chloride-Induced Oxidative Stress Mediated Memory Deficits in Mice Hippocampus. Curr Neuropharmacol 2024; 23:116-127. [PMID: 39092643 PMCID: PMC11519820 DOI: 10.2174/1570159x22999240730154422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Cadmium chloride (Cd) is a pervasive environmental heavy metal pollutant linked to mitochondrial dysfunction, memory loss, and genetic disorders, particularly in the context of neurodegenerative diseases like Alzheimer's disease (AD). METHODS This study investigated the neurotherapeutic potential of vitamin B6 (Vit. B6) in mitigating Cd-induced oxidative stress and neuroinflammation-mediated synaptic and memory dysfunction. Adult albino mice were divided into four groups: Control (saline-treated), Cd-treated, Cd+Vit. B6- treated, and Vit. B6 alone-treated. Cd and Vit. B6 were administered intraperitoneally, and behavioral tests (Morris Water Maze, Y-Maze) were conducted. Subsequently, western blotting, antioxidant assays, blood glucose, and hyperlipidemia assessments were performed. RESULTS Cd-treated mice exhibited impaired cognitive function, while Cd+Vit. B6-treated mice showed significant improvement. Cd-induced neurotoxic effects, including oxidative stress and neuroinflammation, were observed, along with disruptions in synaptic proteins (SYP and PSD95) and activation of p-JNK. Vit. B6 administration mitigated these effects, restoring synaptic and memory deficits. Molecular docking and MD simulation studies confirmed Vit. B6's inhibitory effect on IL-1β, NRF2, and p-JNK proteins. CONCLUSION These results highlight Vit. B6 as a safe therapeutic supplement to mitigate neurodegenerative disorders, emphasizing the importance of assessing nutritional interventions for combating environmental neurotoxicity in the interest of public health.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mujeeb Ur Rahman
- Department of Zoology, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Manzar Khan
- Department of Zoology, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjun Jiao
- Department of Pharmacy, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Amir Zeb
- Department of Natural and Basic Sciences, University of Turbat, Turbat 92600, Pakistan
| | - Shahid Ali Shah
- Department of Biology, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Shahab M, Aiman S, Alshammari A, Alasmari AF, Alharbi M, Khan A, Wei DQ, Zheng G. Immunoinformatics-based potential multi-peptide vaccine designing against Jamestown Canyon Virus (JCV) capable of eliciting cellular and humoral immune responses. Int J Biol Macromol 2023; 253:126678. [PMID: 37666399 DOI: 10.1016/j.ijbiomac.2023.126678] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Jamestown Canyon virus (JCV) is a deadly viral infection transmitted by various mosquito species. This mosquito-borne virus belongs to Bunyaviridae family, posing a high public health threat in the in tropical regions of the United States causing encephalitis in humans. Common symptoms of JCV include fever, headache, stiff neck, photophobia, nausea, vomiting, and seizures. Despite the availability of resources, there is currently no vaccine or drug available to combat JCV. The purpose of this study was to develop an epitope-based vaccine using immunoinformatics approaches. The vaccine aimed to be secure, efficient, bio-compatible, and capable of stimulating both innate and adaptive immune responses. In this study, the protein sequence of JCV was obtained from the NCBI database. Various bioinformatics methods, including toxicity evaluation, antigenicity testing, conservancy analysis, and allergenicity assessment were utilized to identify the most promising epitopes. Suitable linkers and adjuvant sequences were used in the design of vaccine construct. 50s ribosomal protein sequence was used as an adjuvant at the N-terminus of the construct. A total of 5 CTL, 5 HTL, and 5 linear B cell epitopes were selected based on non-allergenicity, immunological potential, and antigenicity scores to design a highly immunogenic multi-peptide vaccine construct. Strong interactions between the proposed vaccine and human immune receptors, i.e., TLR-2 and TLR-4, were revealed in a docking study using ClusPro software, suggesting their possible relevance in the immunological response to the vaccine. Immunological and physicochemical properties assessment ensured that the proposed vaccine demonstrated high immunogenicity, solubility and thermostability. Molecular dynamics simulations confirmed the strong binding affinities, as well as dynamic and structural stability of the proposed vaccine. Immune simulation suggest that the vaccine has the potential to effectively stimulate cellular and humoral immune responses to combat JCV infection. Experimental and clinical assays are required to validate the results of this study.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key laboratories of chemical Resources Engineering Beijing University of chemical technology, Beijing 100029, China
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abbas Khan
- Deparment of Biostatistics and Bioinformatics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Dong-Qing Wei
- Deparment of Biostatistics and Bioinformatics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Guojun Zheng
- State key laboratories of chemical Resources Engineering Beijing University of chemical technology, Beijing 100029, China.
| |
Collapse
|
11
|
Shahab M, Zulfat M, Zheng G. Structure-based virtual screening, molecular simulation and free energy calculations of traditional Chinese medicine, ZINC database revealed potent inhibitors of estrogen-receptor α (ERα). J Biomol Struct Dyn 2023; 42:13261-13274. [PMID: 37904521 DOI: 10.1080/07391102.2023.2275174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/07/2023] [Indexed: 11/01/2023]
Abstract
Breast Cancer, a heterogeneous disease at the molecular level, is the most common cause of woman mortality worldwide. We used molecular screening and simulation approaches to target nuclear receptor protein-estrogen receptor alpha (Erα) protein to design and develop of specific and compelling drugs from traditional Chinese medicine (TCM), and ZINC database against pathophysiology of breast cancer. Using virtual screening, only six hits TCM22717, TCM23524, TCM31953, while ZINC05632920, ZINC05773243, and ZINC12780336 demonstrated better pharmacological potential than the 4-hydroxytamoxifen (OHT) taken as control. Binding mode of each of the top hit revealed that these compounds could block the main active site residues and block the function of Erα protein. Moreover, molecular simulation revealed that the identified compounds exhibit stable dynamics and may induce stronger therapeutic effects in experimental setup. All the complexes reported tighter structural packing and less flexible behaviour. We found that the average hydrogen bonds in the identified complexes remained higher than the control drug. Finally, the total binding free energy demonstrated the best hits among the all. The BF energy results revealed -30.4525 ± 3.3565 for the 4-hydroxytamoxifen (OHT)/Erα complex, for the TCM22717/Erα -57.0597 ± 3.4852 kcal/mol, for the TCM23524/Erα complex the BF energy was -56.9084 ± 3.3737 kcal/mol, for the TCM31953/Erα the BF energy was -32.4191 ± 3.8864 kcal/mol while for the ZINC05632920/Erα complex -46.3182 ± 2.7380, ZINC05773243/Erα complex -38.3690 ± 2.8240, and ZINC12780336/Erα complex the BF energy was calculated to be -35.8048 ± 4.1571 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Maryam Zulfat
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
12
|
Shahab M, Al-Madhagi H, Zheng G, Zeb A, Alasmari AF, Alharbi M, Alasmari F, Khan MQ, Khan M, Wadood A. Structure based virtual screening and molecular simulation study of FDA-approved drugs to inhibit human HDAC6 and VISTA as dual cancer immunotherapy. Sci Rep 2023; 13:14466. [PMID: 37660065 PMCID: PMC10475047 DOI: 10.1038/s41598-023-41325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Cancer immunotherapy has significantly contributed to the treatment of various types of cancers mainly by targeting immune checkpoint inhibitors (ICI). Among them, V-domain immunoglobulin suppressor of T cell activation (VISTA) has been explored as a promising therapeutic target. Besides, histone deacetylase 6 (HDAC6) has been demonstrated to be efficacious target for several cancers. The current theoretical work was performed to explore the virtual repurposing of the FDA-approved drugs as inhibitors against these two (VISTA and HDAC6) cancers therapeutic targets. The crystal structure of the two proteins were downloaded from PDB and subjected to virtual screening by DrugRep webserver while using FDA-approved drugs library as ligands database. Our study revealed that Oxymorphone and Bexarotene are the top-ranked inhibitors of VISTA and HDAC6, respectively. The docking score of Bexarotene was predicted as - 10 kcal/mol while the docking score of Oxymorphone was predicted as - 6.2 kcal/mol. Furthermore, a total of 100 ns MD simulation revealed that the two drugs Oxymorphone and Bexarotene formed stable complexes with VISTA and HDAC6 drug targets. As compared to the standard drug the two drugs Oxymorphone and Bexarotene revealed great stability during the whole 100 ns MD simulation. The binding free energy calculation further supported the Root Mean Square Deviation (RMSD) result which stated that as compared to the ref/HDAC6 (- 18.0253 ± 2.6218) the binding free energy score of the Bexarotene/HDAC6 was good (- 51.9698 ± 3.1572 kcal/mol). The binding free energy score of Oxymorphone/VISTA and Ref/VISTA were calculated as - 36.8323 ± 3.4565, and - 21.5611 ± 4.8581 respectively. In conclusion, the two drugs deserve further consideration as cancer treatment option.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Amir Zeb
- Department of Natural and Basic Science, Faculty of Science and Engineering, University of Turbat, Turbat, 92600, Pakistan
| | - Abdullah Fayez Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Qayash Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|