1
|
Zhang T, Liu Y, Cao J, Jiang L, Wang P, Ren F, Yi H. Exploration of dynamic interaction between β-lactoglobulin and casein micelles during UHT milk process. Int J Biol Macromol 2024; 277:134367. [PMID: 39089562 DOI: 10.1016/j.ijbiomac.2024.134367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The protein aggregation induced by UHT treatment shortens the shelf life of UHT milk. However, the mechanism of β-Lg induced casein micelle aggregation remains unclear. Herein, the dynamic interaction between β-Lg and casein micelles during UHT processing was investigated by experimental techniques and molecular dynamics simulations. Results showed that β-Lg decreased the stability of casein micelles, increased their size and zeta potential. Raman and FTIR spectra analysis suggested that hydrogen and disulfide bonds facilitated their interaction. Cryo-TEM showed that the formation of the casein micelle/β-Lg complex involved rigid binding, flexible linking, and severe cross-linking aggregation during UHT processing. SAXS and MST demonstrated β-Lg bound to κ-casein on micelle surfaces with a dissociation constant (Kd) of 3.84 ± 1.14 μm. Molecular docking and dynamic simulations identified the interacting amino acid residues and clarified that electrostatic and van der Waals forces drove the interaction. UHT treatment increased hydrogen bonds and decreased total binding energy. The non-covalent binding promoted the formation of disulfide bonds between β-Lg and casein micelles under heat treatment. Ultimately, it was concluded that non-covalent interaction and disulfide bonding resulted in casein micelle/β-Lg aggregates. These findings provided scientific insights into protein aggregation in UHT milk.
Collapse
Affiliation(s)
- Tai Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Yisuo Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Jiayuan Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Lu Jiang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Pengjie Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
2
|
Desantis F, Miotto M, Milanetti E, Ruocco G, Di Rienzo L. Computational evidences of a misfolding event in an aggregation-prone light chain preceding the formation of the non-native pathogenic dimer. Proteins 2024; 92:797-807. [PMID: 38314653 DOI: 10.1002/prot.26672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Antibody light chain amyloidosis is a disorder in which protein aggregates, mainly composed of immunoglobulin light chains, deposit in diverse tissues impairing the correct functioning of organs. Interestingly, due to the high susceptibility of antibodies to mutations, AL amyloidosis appears to be strongly patient-specific. Indeed, every patient will display their own mutations that will make the proteins involved prone to aggregation thus hindering the study of this disease on a wide scale. In this framework, determining the molecular mechanisms that drive the aggregation could pave the way to the development of patient-specific therapeutics. Here, we focus on a particular patient-derived light chain, which has been experimentally characterized. We investigated the early phases of the aggregation pathway through extensive full-atom molecular dynamics simulations, highlighting a structural rearrangement and the exposure of two hydrophobic regions in the aggregation-prone species. Next, we moved to consider the pathological dimerization process through docking and molecular dynamics simulations, proposing a dimeric structure as a candidate pathological first assembly. Overall, our results shed light on the first phases of the aggregation pathway for a light chain at an atomic level detail, offering new structural insights into the corresponding aggregation process.
Collapse
Affiliation(s)
- Fausta Desantis
- The Open University Affiliated Research Centre at Istituto Italiano di Tecnologia, Genova, Italy
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| | - Mattia Miotto
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| | - Edoardo Milanetti
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
- Department of Physics, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Di Rienzo
- Istituto Italiano di Tecnologia (IIT), Center for Life Nano & Neuro Science, Roma, Italy
| |
Collapse
|
3
|
Durojaye OA, Yekeen AA, Idris MO, Okoro NO, Odiba AS, Nwanguma BC. Investigation of the MDM2-binding potential of de novo designed peptides using enhanced sampling simulations. Int J Biol Macromol 2024; 269:131840. [PMID: 38679255 DOI: 10.1016/j.ijbiomac.2024.131840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The tumor suppressor p53 plays a crucial role in cellular responses to various stresses, regulating key processes such as apoptosis, senescence, and DNA repair. Dysfunctional p53, prevalent in approximately 50 % of human cancers, contributes to tumor development and resistance to treatment. This study employed deep learning-based protein design and structure prediction methods to identify novel high-affinity peptide binders (Pep1 and Pep2) targeting MDM2, with the aim of disrupting its interaction with p53. Extensive all-atom molecular dynamics simulations highlighted the stability of the designed peptide in complex with the target, supported by several structural analyses, including RMSD, RMSF, Rg, SASA, PCA, and free energy landscapes. Using the steered molecular dynamics and umbrella sampling simulations, we elucidate the dissociation dynamics of p53, Pep1, and Pep2 from MDM2. Notable differences in interaction profiles were observed, emphasizing the distinct dissociation patterns of each peptide. In conclusion, the results of our umbrella sampling simulations suggest Pep1 as a higher-affinity MDM2 binder compared to p53 and Pep2, positioning it as a potential inhibitor of the MDM2-p53 interaction. Using state-of-the-art protein design tools and advanced MD simulations, this study provides a comprehensive framework for rational in silico design of peptide binders with therapeutic implications in disrupting MDM2-p53 interactions for anticancer interventions.
Collapse
Affiliation(s)
- Olanrewaju Ayodeji Durojaye
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Chemical Sciences, Coal City University, Emene, Enugu State, Nigeria.
| | - Abeeb Abiodun Yekeen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | | | - Nkwachukwu Oziamara Okoro
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Arome Solomon Odiba
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria.
| | - Bennett Chima Nwanguma
- Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State 410001, Nigeria.
| |
Collapse
|
4
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
5
|
Miotto M, Milanetti E, Mincigrucci R, Masciovecchio C, Ruocco G. High-Throughput Interactome Determination via Sulfur Anomalous Scattering. J Phys Chem Lett 2024; 15:3478-3485. [PMID: 38513124 PMCID: PMC11000237 DOI: 10.1021/acs.jpclett.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
We propose a novel approach for detecting the binding between proteins making use of the anomalous diffraction of natively present heavy elements, e.g., sulfurs, inside molecular three-dimensional structures. In particular, we analytically and numerically show that the diffraction patterns produced by the anomalous scattering of the sulfur atoms in a given direction depend additively on the relative distances between all couples of sulfur atoms. Thus, the differences in the patterns produced by bound proteins with respect to their nonbonded states can be exploited to rapidly assess protein complex formation. On the basis of our results, we suggest a possible experimental procedure for detecting protein-protein binding. Overall, the completely label-free and rapid method we propose may be readily extended to probe interactions on a large scale, thus paving the way for the development of a novel field of research based on a synchrotron light source.
Collapse
Affiliation(s)
- Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Mincigrucci
- Elettra-Sincrotrone
Trieste S.C.p.A. di interesse nazionale, Strada Statale 14 - km 163.5 in AREA Science Park,
Basovizza, 34149 Trieste, Italy
| | - Claudio Masciovecchio
- Elettra-Sincrotrone
Trieste S.C.p.A. di interesse nazionale, Strada Statale 14 - km 163.5 in AREA Science Park,
Basovizza, 34149 Trieste, Italy
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Department
of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Pawlędzio S, Ziemniak M, Trzybiński D, Arhangelskis M, Makal A, Woźniak K. Influence of N-protonation on electronic properties of acridine derivatives by quantum crystallography. RSC Adv 2024; 14:5340-5350. [PMID: 38348299 PMCID: PMC10859733 DOI: 10.1039/d3ra08081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Applications of 9-aminoacridine (9aa) and its derivatives span fields such as chemistry, biology, and medicine, including anticancer and antimicrobial activities. Protonation of such molecules can alter their bioavailability as weakly basic drugs like aminoacridines exhibit reduced solubility at high pH levels potentially limiting their effectiveness in patients with elevated gastric pH. In this study, we analyse the influence of protonation on the electronic characteristics of the molecular organic crystals of 9-aminoacridine. The application of quantum crystallography, including aspherical atom refinement, has enriched the depiction of electron density in the studied systems and non-covalent interactions, providing more details than previous studies. Our experimental results, combined with a topological analysis of the electron density and its Laplacian, provided detailed descriptions of how protonation changes the electron density distribution around the amine group and water molecule, concurrently decreasing the electron density at bond critical points of N/O-H bonds. Protonation also alters the molecular architecture of the systems under investigation. This is reflected in different proportions of the N⋯H and O⋯H intermolecular contacts for the neutral and protonated forms. Periodic DFT calculations of the cohesive energies of the crystal lattice, as well as computed interaction energies between molecules in the crystal, confirm that protonation stabilises the crystal structure due to a positive synergy between strong halogen and hydrogen bonds. Our findings highlight the potential of quantum crystallography in predicting crystal structure properties and point to its possible applications in developing new formulations for poorly soluble drugs.
Collapse
Affiliation(s)
- Sylwia Pawlędzio
- Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Marcin Ziemniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Damian Trzybiński
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Mihails Arhangelskis
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Anna Makal
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| | - Krzysztof Woźniak
- Department of Chemistry, Biological and Chemical Research Centre, University of Warsaw Żwirki i Wigury 101 02-093 Warszawa Poland
| |
Collapse
|
7
|
Parisi G, Piacentini R, Incocciati A, Bonamore A, Macone A, Rupert J, Zacco E, Miotto M, Milanetti E, Tartaglia GG, Ruocco G, Boffi A, Di Rienzo L. Design of protein-binding peptides with controlled binding affinity: the case of SARS-CoV-2 receptor binding domain and angiotensin-converting enzyme 2 derived peptides. Front Mol Biosci 2024; 10:1332359. [PMID: 38250735 PMCID: PMC10797010 DOI: 10.3389/fmolb.2023.1332359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
The development of methods able to modulate the binding affinity between proteins and peptides is of paramount biotechnological interest in view of a vast range of applications that imply designed polypeptides capable to impair or favour Protein-Protein Interactions. Here, we applied a peptide design algorithm based on shape complementarity optimization and electrostatic compatibility and provided the first experimental in vitro proof of the efficacy of the design algorithm. Focusing on the interaction between the SARS-CoV-2 Spike Receptor-Binding Domain (RBD) and the human angiotensin-converting enzyme 2 (ACE2) receptor, we extracted a 23-residues long peptide that structurally mimics the major interacting portion of the ACE2 receptor and designed in silico five mutants of such a peptide with a modulated affinity. Remarkably, experimental KD measurements, conducted using biolayer interferometry, matched the in silico predictions. Moreover, we investigated the molecular determinants that govern the variation in binding affinity through molecular dynamics simulation, by identifying the mechanisms driving the different values of binding affinity at a single residue level. Finally, the peptide sequence with the highest affinity, in comparison with the wild type peptide, was expressed as a fusion protein with human H ferritin (HFt) 24-mer. Solution measurements performed on the latter constructs confirmed that peptides still exhibited the expected trend, thereby enhancing their efficacy in RBD binding. Altogether, these results indicate the high potentiality of this general method in developing potent high-affinity vectors for hindering/enhancing protein-protein associations.
Collapse
Affiliation(s)
- Giacomo Parisi
- Department of Basic and Applied Sciences for Engineering (SBAI), Università“Sapienza”, Roma, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Alessio Incocciati
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Alberto Macone
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Jakob Rupert
- Department of Biology and Biotechnologies “Charles Darwin”, Università“Sapienza”, Roma, Italy
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Elsa Zacco
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Mattia Miotto
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
| | - Edoardo Milanetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
- Department of Physics, Università“Sapienza”, Roma, Italy
| | - Gian Gaetano Tartaglia
- Department of Biology and Biotechnologies “Charles Darwin”, Università“Sapienza”, Roma, Italy
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
- Department of Physics, Università“Sapienza”, Roma, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences “Alessandro Rossi Fanelli”, Università“Sapienza”, Roma, Italy
| | - Lorenzo Di Rienzo
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Roma, Italy
| |
Collapse
|
8
|
Acquasaliente L, Pierangelini A, Pagotto A, Pozzi N, De Filippis V. From haemadin to haemanorm: Synthesis and characterization of full-length haemadin from the leech Haemadipsa sylvestris and of a novel bivalent, highly potent thrombin inhibitor (haemanorm). Protein Sci 2023; 32:e4825. [PMID: 37924304 PMCID: PMC10683372 DOI: 10.1002/pro.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 μM) and its potency was enhanced by 10-fold after Phe3 → β-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 μM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Andrea Pierangelini
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Anna Pagotto
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Nicola Pozzi
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research CenterSaint Louis UniversitySt. LouisMissouriUSA
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| |
Collapse
|