1
|
Popa AD, Gherasim A, Mihalache L, Arhire LI, Graur M, Niță O. Fasting Mimicking Diet for Metabolic Syndrome: A Narrative Review of Human Studies. Metabolites 2025; 15:150. [PMID: 40137116 PMCID: PMC11943686 DOI: 10.3390/metabo15030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic syndrome (MetS) is an association of risk factors that share insulin resistance (IR), exerting a super cumulative effect on the risk of developing cardiometabolic diseases. Lifestyle optimization is a key element in the prevention and non-pharmacological therapy of MetS. Certain studies have concluded that some dietary patterns could be more beneficial as an adjunctive treatment for MetS. Fasting mimicking diet (FMD) is a form of periodic fasting in which caloric intake is restricted for 5 days each month. It has been studied for its beneficial effects not only in patients with neoplasia and neurodegenerative diseases but also for its effects on IR and metabolism. In this narrative review, the effects of FMD in patients with MetS were analyzed, focusing on its impact on key metabolic components and summarizing findings from human studies. FMD has demonstrated beneficial effects on MetS by reducing BMI and waist circumference, preserving lean mass, and improving the metabolic profile. Moreover, individuals with a higher BMI or a greater number of MetS components appear to derive greater benefits from this intervention. However, limitations such as high dropout rates, small sample sizes, and methodological constraints restrict the generalizability of current findings. Further large-scale studies are needed to confirm these effects and establish FMD as a viable non-pharmacological strategy for managing MetS.
Collapse
Affiliation(s)
- Alina Delia Popa
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Andreea Gherasim
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Laura Mihalache
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Lidia Iuliana Arhire
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| | - Mariana Graur
- Faculty of Medicine and Biological Sciences, University “Ștefan cel Mare” of Suceava, 720229 Suceava, Romania;
| | - Otilia Niță
- Internal Medicine II Department, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (L.M.); (L.I.A.); (O.N.)
| |
Collapse
|
2
|
Paoli A. The Influence of Physical Exercise, Ketogenic Diet, and Time-Restricted Eating on De Novo Lipogenesis: A Narrative Review. Nutrients 2025; 17:663. [PMID: 40004991 PMCID: PMC11858292 DOI: 10.3390/nu17040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
De novo lipogenesis (DNL) is a metabolic pathway that converts carbohydrates into fatty acids, primarily occurring in the liver and, to a lesser extent, in adipose tissue. While hepatic DNL is highly responsive to dietary carbohydrate intake and regulated by insulin via transcription factors like SREBP-1c, adipose DNL is more modest and less sensitive to dietary overfeeding. Dysregulated DNL contributes to metabolic disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). Lifestyle interventions, such as physical exercise, ketogenic diets, and time-restricted eating (TRE) offer promising strategies to regulate DNL and improve metabolic health. Physical exercise enhances glucose uptake in muscles, reduces insulin levels, and promotes lipid oxidation, thereby suppressing hepatic DNL. Endurance and resistance training also improve mitochondrial function, further mitigating hepatic triglyceride accumulation. Ketogenic diets shift energy metabolism toward fatty acid oxidation and ketogenesis, lower insulin, and directly downregulate lipogenic enzyme activity in the liver. TRE aligns feeding with circadian rhythms by optimizing AMP-activated protein kinase (AMPK) activation during fasting periods, which suppresses DNL and enhances lipid metabolism. The combined effects of these interventions demonstrate significant potential for improving lipid profiles, reducing hepatic triglycerides, and preventing lipotoxicity. By addressing the distinct roles of the liver and adipose DNL, these strategies target systemic and localized lipid metabolism dysregulation. Although further research is needed to fully understand their long-term impact, these findings highlight the transformative potential of integrating these approaches into clinical practice to manage metabolic disorders and their associated complications.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35100 Padua, Italy;
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| |
Collapse
|
3
|
Khalafi M, Rosenkranz SK, Ghasemi F, Kheradmand S, Habibi Maleki A, Korivi M, Tsao JP. Efficacy of intermittent fasting on improving liver function in individuals with metabolic disorders: a systematic review and meta-analysis. Nutr Metab (Lond) 2025; 22:1. [PMID: 39762987 PMCID: PMC11706068 DOI: 10.1186/s12986-024-00885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Intermittent fasting (IF) can be an effective dietary therapy for weight loss and improving cardiometabolic health. However, there is scant evidence regarding the role of IF on indicators of liver function, particularly in adults with metabolic disorders. Therefore, we performed a systematic review and meta-analysis to investigate the effects of IF on liver function in adults with metabolic disorders. METHODS Three primary electronic databases including PubMed, Web of Science, and Scopus, were searched from inception to September 2024 to identify original studies that used IF interventions with or without control groups in adults with metabolic disorders. Inclusion criteria were (1) studies of human participants with metabolic diseases, (2) interventions that evaluated the effects of IF, (3) with or without a control group, and (4) measured liver fat, liver steatosis, liver fibrosis, or liver enzymes, including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as primary outcomes. Standardized mean differences (SMD) and 95% confidence intervals were calculated using random effects models. Heterogeneity was assessed using the Cochran's Q statistic and I-squared statistic (I2). Publication bias was assessed using the visual inspection of funnel plots and Egger's tests. The risk of bias was assessed using the PEDro scale and the NIH quality assessment tool. RESULTS A total 21 studies involving 1,226 participants with metabolic disorders were included in the meta-analysis. Overall, IF effectively decreased liver fat with a large effect size [SMD: -1.22 (95% CI: -1.63 to -0.80), p = 0.001], liver steatosis with a medium effect size [SMD: -0.73 (95% CI: -1.12 to -0.35), p = 0.001], ALT with a small effect size [SMD: -0.44 (95% CI: -0.58 to -0.30), p = 0.001], and AST with a small effect size [SMD: -0.30 (95% CI: -0.49 to -0.11), p = 0.001], but not liver fibrosis [SMD: -0.28 (95% CI: -0.59 to 0.02), p = 0.07]. Subgroup analyses showed that IF decreased liver fat and ALT significantly, independent of IF mode, participant age, health status, weight status, and intervention duration. IF significantly decreased liver fibrosis in those with obesity; and decreased AST following 5:2 diets, in middle-aged adults, adults with obesity, and regardless of health status or intervention duration. CONCLUSIONS IF seems to be an effective dietary therapy for improving liver function in adults with metabolic disorders, and many of liver function-related benefits occur regardless of IF mode, intervention duration, or participant health status. LIMITATIONS Significant heterogeneity, small numbers of studies and inclusion of non-randomized trials or single-group pre-post trials were the main limitation of our meta-analysis. Further randomized clinical trials are needed to elucidate the effects of IF on liver function in adults with metabolic disorders.
Collapse
Affiliation(s)
- Mousa Khalafi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Sara K Rosenkranz
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Faeghe Ghasemi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Guilan, Iran
| | - Shokoufeh Kheradmand
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Aref Habibi Maleki
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mallikarjuna Korivi
- Institute of Human Movement and Sports Engineering, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Jung-Piao Tsao
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
4
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
5
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Yao K, Su H, Cui K, Gao Y, Xu D, Wang Q, Ha Z, Zhang T, Chen S, Liu T. Effectiveness of an intermittent fasting diet versus regular diet on fat loss in overweight and obese middle-aged and elderly people without metabolic disease: a systematic review and meta-analysis of randomized controlled trials. J Nutr Health Aging 2024; 28:100165. [PMID: 38308923 DOI: 10.1016/j.jnha.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/31/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVE As the number of adults aged over 40 with obesity increases dramatically, intermittent fasting interventions (IF) may help them to lose fat and weight. This systematic review investigated the most recent research on the effects of intermittent fasting and a regular diet on body composition and lipids in adults aged over 40 with obesity without the metabolic disease. DATA SOURCES Randomized controlled trials (RCTs) on IF on adults aged over 40 with obesity were retrieved from PubMed, Web of Science, EBSCO, China Knowledge Network (CNKI), VIP database, Wanfang database with the experimental group using IF and the control group using a regular diet. Revman was used for meta-analysis. Effect sizes are expressed as weighted mean differences (WMD) and 95% confidence intervals (CI). STUDY SELECTION A total of 9 articles of randomised controlled trials that met the requirements were screened for inclusion. Studies typically lasted 2-6 weeks. The experimental population was aged 42-66 years, with a BMI range of 25.7-35 kg/m2. SYNTHESIS A total of 9 RCTs were included. meta-analysis showed that body weight (MD: -2.05 kg; 95% CI (-3.84, -0.27); p = 0.02), BMI (MD: -0.73 kg/m2; 95% CI (-1.05, -0.41); p < 0.001), fat mass (MD: -2.14 kg; 95% CI (-3.81, 0.47); p = 0.01), and TG (MD = -0.32 mmol/L, 95% CI (-0.50, -0.15, p < 0.001) were significantly lower in the experimental group than in the control group. No significant reduction in lean body mass (MD: -0.31 kg; 95% CI (-0.96, 0.34); p = 0.35). CONCLUSION IF had a reduction in body weight, BMI, fat mass, and TG in adults aged over 40 with obesity without metabolic disease compared to RD, and IF did not cause a significant decrease in lean body mass, which suggests healthy and effective fat loss. However, more long-term and high-quality trials are needed to reach definitive conclusions.
Collapse
Affiliation(s)
- Ke Yao
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Hao Su
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China.
| | - Kaiyin Cui
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Ye Gao
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Dengyun Xu
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Qian Wang
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Zhitong Ha
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Teng Zhang
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Shuning Chen
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| | - Tao Liu
- Key Laboratory of Exercise and Physical Fitness, Beijing Sport University, Beijing, China; The School of Sports Science, Beijing Sport University, Beijing, China
| |
Collapse
|
7
|
Xu H, Yuan M, Niu K, Yang W, Jiang M, Zhang L, Zhou J. Involvement of Bile Acid Metabolism and Gut Microbiota in the Amelioration of Experimental Metabolism-Associated Fatty Liver Disease by Nobiletin. Molecules 2024; 29:976. [PMID: 38474489 DOI: 10.3390/molecules29050976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolism-associated fatty liver disease (MAFLD), a growing health problem worldwide, is one of the major risks for the development of cirrhosis and liver cancer. Oral administration of nobiletin (NOB), a natural citrus flavonoid, modulates the gut microbes and their metabolites in mice. In the present study, we established a mouse model of MAFLD by subjecting mice to a high-fat diet (HFD) for 12 weeks. Throughout this timeframe, NOB was administered to investigate its potential benefits on gut microbial balance and bile acid (BA) metabolism using various techniques, including 16S rRNA sequencing, targeted metabolomics of BA, and biological assays. NOB effectively slowed the progression of MAFLD by reducing serum lipid levels, blood glucose levels, LPS levels, and hepatic IL-1β and TNF-α levels. Furthermore, NOB reinstated diversity within the gut microbial community, increasing the population of bacteria that produce bile salt hydrolase (BSH) to enhance BA excretion. By exploring further, we found NOB downregulated hepatic expression of the farnesoid X receptor (FXR) and its associated small heterodimer partner (SHP), and it increased the expression of downstream enzymes, including cholesterol 7α-hydroxylase (CYP7A1) and cytochrome P450 27A1 (CYP27A1). This acceleration in cholesterol conversion within the liver contributes to mitigating MAFLD. The present findings underscore the significant role of NOB in regulating gut microbial balance and BA metabolism, revealing that long-term intake of NOB plays beneficial roles in the prevention or intervention of MAFLD.
Collapse
Affiliation(s)
- Hongling Xu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingming Yuan
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Kailin Niu
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Yang
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| | - Jing Zhou
- Laboratory Animal Center Affiliate from Research Office, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China
| |
Collapse
|