1
|
Cheng B, Ma Y, Qin P, Wang W, Zhao Y, Liu Z, Zhang Y, Wei L. Characterization of air pollution and associated health risks in Gansu Province, China from 2015 to 2022. Sci Rep 2024; 14:14751. [PMID: 38926518 PMCID: PMC11208435 DOI: 10.1038/s41598-024-65584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution poses a major threat to both the environment and public health. The air quality index (AQI), aggregate AQI, new health risk-based air quality index (NHAQI), and NHAQI-WHO were employed to quantitatively evaluate the characterization of air pollution and the associated health risk in Gansu Province before (P-I) and after (P-II) COVID-19 pandemic. The results indicated that AQI system undervalued the comprehensive health risk impact of the six criteria pollutants compared with the other three indices. The stringent lockdown measures contributed to a considerable reduction in SO2, CO, PM2.5, NO2 and PM10; these concentrations were 43.4%, 34.6%, 21.4%, 17.4%, and 14.2% lower in P-II than P-I, respectively. But the concentration of O3 had no obvious improvement. The higher sandstorm frequency in P-II led to no significant decrease in the ERtotal and even resulted in an increase in the average ERtotal in cities located in northwestern Gansu from 0.78% in P-I to 1.0% in P-II. The cumulative distribution of NHAQI-based population-weighted exposure revealed that 24% of the total population was still exposed to light pollution in spring during P-II, while the air quality in other three seasons had significant improvements and all people were under healthy air quality level.
Collapse
Affiliation(s)
- Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Pengpeng Qin
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Wanci Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuhan Zhao
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Zongrui Liu
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Linbo Wei
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Zhang T, Zhang D, Lyu Z, Zhang J, Wu X, Yu Y. Effects of extreme precipitation on bacterial communities and bioaerosol composition: Dispersion in urban outdoor environments and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123406. [PMID: 38244904 DOI: 10.1016/j.envpol.2024.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Concerns about contaminants dispersed by seasonal precipitation have grown due to their potential hazards to outdoor environments and human health. However, studies on the crucial environmental factors influencing dispersion changes in bacterial communities are limited. This research adopted four-season in situ monitoring and sequencing techniques to examine the regional distribution profiles of bioaerosols, bacterial communities, and risks associated with extreme snowfall versus rainfall events in two monsoon cities. In the early-hours of winter snowfall, airborne cultivable bioaerosol concentrations were 4.1 times higher than the reference exposure limit (500 CFU/m3). The concentration of ambient particles (2.5 μm) exceeded 24,910 particles/L (97 μg/m3), positively correlating with the prevalence of cultivable bioaerosols. These bioaerosols contained cultivable bacterial species such as pathogenic Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Escherichia coli. Bioaerosol concentrations increased by 53.0% during 50-mm snow extremes. Taxonomic analysis revealed that Pseudomonas, Staphylococcus, and Veillonella were the most abundant bacterial taxa in the initial snowmelt samples during winter precipitation. However, their abundance decreased by 87.6% as snowing continued (24 h). Reduced water base cation concentration also led to a 1.15-fold increase in the Shannon index, indicating a similar yet heightened bacterial diversity. Seasonally, Pedobacter and Massilia showed higher relative abundance (25% and 18%, respectively), presenting increased bacterial transmission to the soil. Furthermore, Pseudomonas was identified in 60% of spring snowstorm samples, suggesting long-distance dispersal of pathogenic bacteria. When these atmospheric aerosol particles carrying biological entities (0.65-1.1 μm) penetrated human alveoli, the calculated hazard ratio was 0.55, which as observed in inhalation exposures. Consequently, this study underscores the risk of seasonal precipitation-enhanced ambient bacterial transmission.
Collapse
Affiliation(s)
- Ting Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Dingqiang Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Zhonghang Lyu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Jitao Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Xian Wu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Guo Q, He Z, Wang Z. Change in Air Quality during 2014-2021 in Jinan City in China and Its Influencing Factors. TOXICS 2023; 11:210. [PMID: 36976975 PMCID: PMC10056825 DOI: 10.3390/toxics11030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Air pollution affects climate change, food production, traffic safety, and human health. In this paper, we analyze the changes in air quality index (AQI) and concentrations of six air pollutants in Jinan during 2014-2021. The results indicate that the annual average concentrations of PM10, PM2.5, NO2, SO2, CO, and O3 and AQI values all declined year after year during 2014-2021. Compared with 2014, AQI in Jinan City fell by 27.3% in 2021. Air quality in the four seasons of 2021 was obviously better than that in 2014. PM2.5 concentration was the highest in winter and PM2.5 concentration was the lowest in summer, while it was the opposite for O3 concentration. AQI in Jinan during the COVID epoch in 2020 was remarkably lower compared with that during the same epoch in 2021. Nevertheless, air quality during the post-COVID epoch in 2020 conspicuously deteriorated compared with that in 2021. Socioeconomic elements were the main reasons for the changes in air quality. AQI in Jinan was majorly influenced by energy consumption per 10,000-yuan GDP (ECPGDP), SO2 emissions (SDE), NOx emissions (NOE), particulate emissions (PE), PM2.5, and PM10. Clean policies in Jinan City played a key role in improving air quality. Unfavorable meteorological conditions led to heavy pollution weather in the winter. These results could provide a scientific reference for the control of air pollution in Jinan City.
Collapse
Affiliation(s)
- Qingchun Guo
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
- Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
| | - Zhenfang He
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
- Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhaosheng Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Kaewrat J, Janta R, Sichum S, Rattikansukha C, Tala W, Kanabkaew T. Human Health Risks and Air Quality Changes Following Restrictions for the Control of the COVID-19 Pandemic in Thailand. TOXICS 2022; 10:toxics10090520. [PMID: 36136484 PMCID: PMC9501010 DOI: 10.3390/toxics10090520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 05/16/2023]
Abstract
The coronavirus (COVID-19) pandemic first impacted Thailand in early 2020. The government imposed lockdown measures from April to May 2020 to control the spread of infection. Daily lifestyles then morphed into a so-called new normal in which activities were conducted at home and people avoided congregation in order to prevent the spread of an infectious disease. This study evaluated the long-term air quality improvement which resulted from the restrictions enforced on normal human activities in Thailand. The air quality index (AQI) of six criteria pollutants and health risk assessments were evaluated in four areas, including metropolitan, suburban, industrial, and tourism areas in Thailand. The results showed that, after the restriction measures, the overall AQI improved by 30%. The subindex of each pollutant (sub-AQI) of most pollutants significantly improved (by 30%) in metropolitan areas after human activities changed due to the implementation of lockdown measures. With regard to industrial and tourism areas, only the sub-AQI of traffic-related pollutants decreased (34%) while the sub-AQIs of other pollutants before and after lockdown were similar. However, the changes in human activities were not clearly related to air quality improvement in the suburban area. The overall hazard index (HI) after lockdown decreased by 23% because of the reduction of traffic-related pollutants. However, the HI value remained above the recommended limits for the health of the adult residents in all areas. Therefore, strict regulations to control other pollutant sources, such as industry and open burning, will also be necessary for air quality improvement in Thailand.
Collapse
Affiliation(s)
- Jenjira Kaewrat
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Sustainable Disaster Management, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Rungruang Janta
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Sustainable Disaster Management, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Correspondence: ; Tel.: +66-75-672-401
| | - Surasak Sichum
- Center of Excellence in Sustainable Disaster Management, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chuthamat Rattikansukha
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Sustainable Disaster Management, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wittaya Tala
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Chemistry Research Laboratory (ECRL), Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thongchai Kanabkaew
- Faculty of Public Health, Thammasat University, Pathum Thani 10120, Thailand
| |
Collapse
|