1
|
Poustforoosh A, Faramarz S, Negahdaripour M, Tüzün B, Hashemipour H. Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. J Biomol Struct Dyn 2024; 42:819-833. [PMID: 37042955 DOI: 10.1080/07391102.2023.2196347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
A complete investigation to understand the pathways that could be affected by glycyrrhizin (licorice), as anti-breast cancer (BC) agent, has not been performed to date. This study aims to investigate the pathways involved in the anti-cancer activity of glycyrrhizin against BC. For this purpose, the target genes of glycyrrhizin were obtained from the ChEMBL database. The BC-associated genes for three types of BC (breast carcinoma, malignant neoplasm of breast, and triple-negative breast neoplasms) were retrieved from DisGeNET. The target genes of glycyrrhizin and the BC-associated genes were compared, and the genes with disease specificity index (DSI) > 0.6 were selected for further evaluation using in silico methods. The protein-protein interaction (PPI) network was constructed, and the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. The potential complexes were further evaluated using molecular dynamics (MD) simulation. The results revealed that among 80 common genes, ten genes had DSI greater than 0.6, which included POLK, TACR2, MC3R, TBXAS1, HH1R, SLCO4A1, NPY2R, ADRA2C, ADRA1A, and SLCO2B1. The binding affinity of glycyrrhizin to the cognate proteins and binding characteristics were assessed using molecular docking and binding free energy calculations (MM/GBSA). POLK, TBXAS1, and ADRA1A showed the highest binding affinity with -8.9, -9.3, and -9.6 kcal/mol, respectively. The final targets had an association with BC at several stages of tumor growth. By affecting these targets, glycyrrhizin could influence and control BC efficiently. MD simulation suggested the pathways triggered by the complex glycyrrhizin-ADRA1A were more likely to happen.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alireza Poustforoosh
- Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Faramarz
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Hassan Hashemipour
- Chemical Engineering Department, Faculty of Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
2
|
Antona A, Leo G, Favero F, Varalda M, Venetucci J, Faletti S, Todaro M, Mazzucco E, Soligo E, Saglietti C, Stassi G, Manfredi M, Pelicci G, Corà D, Valente G, Capello D. Targeting lysine-specific demethylase 1 (KDM1A/LSD1) impairs colorectal cancer tumorigenesis by affecting cancer cells stemness, motility, and differentiation. Cell Death Discov 2023; 9:201. [PMID: 37385999 DOI: 10.1038/s41420-023-01502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.
Collapse
Affiliation(s)
- Annamaria Antona
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy.
| | - Giovanni Leo
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Francesco Favero
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Marco Varalda
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Jacopo Venetucci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Stefania Faletti
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Eleonora Mazzucco
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Enrica Soligo
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Chiara Saglietti
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, Università di Palermo, Via del Vespro 131, 90127, Palermo, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Giuliana Pelicci
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Department of Experimental Oncology, IRCCS, European Institute of Oncology, Via Adamello 16, 20139, Milano, Italy
| | - Davide Corà
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, Department of Translational Medicine, Università del Piemonte Orientale, Corso Trieste 15/A, 28100, Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
- Pathology Unit, Ospedale Sant'Andrea, Corso Mario Abbiate 21, 13100, Vercelli, Italy
| | - Daniela Capello
- Department of Translational Medicine, Centre of Excellence in Aging Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100, Novara, Italy
| |
Collapse
|
3
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Li S, Chen X, Chen J, Wu B, Liu J, Guo Y, Li M, Pu X. Multi-omics integration analysis of GPCRs in pan-cancer to uncover inter-omics relationships and potential driver genes. Comput Biol Med 2023; 161:106988. [PMID: 37201441 DOI: 10.1016/j.compbiomed.2023.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest drug target family. Unfortunately, applications of GPCRs in cancer therapy are scarce due to very limited knowledge regarding their correlations with cancers. Multi-omics data enables systematic investigations of GPCRs, yet their effective integration remains a challenge due to the complexity of the data. Here, we adopt two types of integration strategies, multi-staged and meta-dimensional approaches, to fully characterize somatic mutations, somatic copy number alterations (SCNAs), DNA methylations, and mRNA expressions of GPCRs in 33 cancers. Results from the multi-staged integration reveal that GPCR mutations cannot well predict expression dysregulation. The correlations between expressions and SCNAs are primarily positive, while correlations of the methylations with expressions and SCNAs are bimodal with negative correlations predominating. Based on these correlations, 32 and 144 potential cancer-related GPCRs driven by aberrant SCNA and methylation are identified, respectively. In addition, the meta-dimensional integration analysis is carried out by using deep learning models, which predict more than one hundred GPCRs as potential oncogenes. When comparing results between the two integration strategies, 165 cancer-related GPCRs are common in both, suggesting that they should be prioritized in future studies. However, 172 GPCRs emerge in only one, indicating that the two integration strategies should be considered concurrently to complement the information missed by the other such that obtain a more comprehensive understanding. Finally, correlation analysis further reveals that GPCRs, in particular for the class A and adhesion receptors, are generally immune-related. In a whole, the work is for the first time to reveal the associations between different omics layers and highlight the necessity of combing the two strategies in identifying cancer-related GPCRs.
Collapse
Affiliation(s)
- Shiqi Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Binjian Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jing Liu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Xulu KR, Augustine TN. Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals (Basel) 2022; 15:1532. [PMID: 36558983 PMCID: PMC9784118 DOI: 10.3390/ph15121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The association between cancer and a hypercoagulatory environment is well described. Thrombotic complications serve not only as a major mortality risk but the underlying molecular structure and function play significant roles in enhancing tumour progression, which is defined as the tumour's capacity to survive, invade and metastasise, amongst other hallmarks of the disease. The use of anticoagulant or antiplatelet drugs in cardiovascular disease lessens thrombotic effects, but the consequences on tumour progression require interrogation. Therefore, this review considered developments in the management of platelet activation pathways (thromboxane, ADP and thrombin), focusing on the use of Aspirin, Clopidogrel and Atopaxar, and their potential impacts on tumour progression. Published data suggested a cautionary tale in ensuring we adequately investigate not only drug-drug interactions but also those unforeseen reciprocal interactions between drugs and their targets within the tumour microenvironment that may act as selective pressures, enhancing tumour survival and progression.
Collapse
Affiliation(s)
- Kutlwano R. Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
6
|
The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022; 27:molecules27196234. [PMID: 36234768 PMCID: PMC9573598 DOI: 10.3390/molecules27196234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Over the last two decades, there has been an increasing awareness of the role of eicosanoids in the development and progression of several types of cancer, including breast, prostate, lung, and colorectal cancers. Several processes involved in cancer development, such as cell growth, migration, and angiogenesis, are regulated by the arachidonic acid derivative thromboxane A2 (TXA2). Higher levels of circulating TXA2 are observed in patients with multiple cancers, and this is accompanied by overexpression of TXA2 synthase (TBXAS1, TXA2S) and/or TXA2 receptors (TBXA2R, TP). Overexpression of TXA2S or TP in tumor cells is generally associated with poor prognosis, reduced survival, and metastatic disease. However, the role of TXA2 signaling in the stroma during oncogenesis has been underappreciated. TXA2 signaling regulates the tumor microenvironment by modulating angiogenic potential, tumor ECM stiffness, and host immune response. Moreover, the by-products of TXA2S are highly mutagenic and oncogenic, adding to the overall phenotype where TXA2 synthesis promotes tumor formation at various levels. The stability of synthetic enzymes and receptors in this pathway in most cancers (with few mutations reported) suggests that TXA2 signaling is a viable target for adjunct therapy in various tumors to reduce immune evasion, primary tumor growth, and metastasis.
Collapse
|
7
|
Gubbala VB, Jytosana N, Trinh VQ, Maurer HC, Naeem RF, Lytle NK, Ma Z, Zhao S, Lin W, Han H, Shi Y, Hunter T, Singh PK, Olive KP, Tan MC, Kaech SM, Wahl GM, DelGiorno KE. Eicosanoids in the pancreatic tumor microenvironment - a multicellular, multifaceted progression. GASTRO HEP ADVANCES 2022; 1:682-697. [PMID: 36277993 PMCID: PMC9583893 DOI: 10.1016/j.gastha.2022.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Eicosanoids, oxidized fatty acids that serve as cell-signaling molecules, have been broadly implicated in tumorigenesis. Here, we aimed to identify eicosanoids associated with pancreatic tumorigenesis and the cell types responsible for their synthesis. METHODS We profiled normal pancreas and pancreatic ductal adenocarcinoma (PDAC) in mouse models and patient samples using mass spectrometry. We interrogated RNA sequencing datasets for eicosanoid synthase or receptor expression. Findings were confirmed by immunostaining. RESULTS In murine models, we identified elevated levels of PGD2, prostacyclin, and thromboxanes in neoplasia while PGE2, 12-HHTre, HETEs, and HDoHEs are elevated specifically in tumors. Analysis of scRNA-seq datasets suggests that PGE2 and prostacyclins are derived from fibroblasts, PGD2 and thromboxanes from myeloid cells, and PGD2 and 5-HETE from tuft cells. In patient samples, we identified a transition from PGD2 to PGE2-producing enzymes in the epithelium during the transition to PDAC, fibroblast/tumor expression of PTGIS, and myeloid/tumor cell expression of TBXAS1. CONCLUSIONS Our analyses identify key changes in eicosanoid species during pancreatic tumorigenesis and the cell types that contribute to their synthesis. Thromboxane and prostacyclin expression is conserved between animal models and human disease and may represent new druggable targets.
Collapse
Affiliation(s)
- Vikas B. Gubbala
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Nidhi Jytosana
- Department of Cell and Developmental Biology, Vanderbilt
University, Nashville, TN, 37232
| | - Vincent Q. Trinh
- Department of Surgery, Vanderbilt University Medical
Center, Nashville, TN, 37232
| | - H. Carlo Maurer
- Department of Medicine, Herbert Irving Comprehensive Cancer
Center, Columbia University Irving Medical Center, New York, NY, 10032
- Internal Medicine II, School of Medicine, Technische
Universität München, Munich, Germany
| | - Razia F. Naeem
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Nikki K. Lytle
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Zhibo Ma
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Steven Zhao
- Immunobiology and Microbial Pathogenesis Laboratory, Salk
Institute for Biological Studies, La Jolla, CA, 92037
| | - Wei Lin
- Molecular Medicine Division, Translational Genomics
Research Institute, Phoenix, AZ, 85004
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics
Research Institute, Phoenix, AZ, 85004
| | - Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for
Biological Studies, La Jolla, CA, 92037
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for
Biological Studies, La Jolla, CA, 92037
| | - Pankaj K. Singh
- Eppley Institute for Research in Cancer, University of
Nebraska Medical Center, Omaha, NE, 68198
| | - Kenneth P. Olive
- Department of Medicine, Herbert Irving Comprehensive Cancer
Center, Columbia University Irving Medical Center, New York, NY, 10032
| | - Marcus C.B. Tan
- Department of Surgery, Vanderbilt University Medical
Center, Nashville, TN, 37232
- Vanderbilt Digestive Disease Research Center, Vanderbilt
University Medical Center, Nashville, TN, 37232
- Vanderbilt Ingram Cancer Center, Nashville, TN,
37232
| | - Susan M. Kaech
- Immunobiology and Microbial Pathogenesis Laboratory, Salk
Institute for Biological Studies, La Jolla, CA, 92037
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, Salk Institute for Biological
Studies, La Jolla, CA, 92037
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt
University, Nashville, TN, 37232
- Vanderbilt Digestive Disease Research Center, Vanderbilt
University Medical Center, Nashville, TN, 37232
- Vanderbilt Ingram Cancer Center, Nashville, TN,
37232
| |
Collapse
|
8
|
Prostanoid Signaling in Cancers: Expression and Regulation Patterns of Enzymes and Receptors. BIOLOGY 2022; 11:biology11040590. [PMID: 35453789 PMCID: PMC9029281 DOI: 10.3390/biology11040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Cancer-associated disturbance of prostanoid signaling provides an aberrant accumulation of prostanoids. This signaling consists of 19 target genes, encoding metabolic enzymes and G-protein-coupled receptors, and prostanoids (prostacyclin, thromboxane, and prostaglandins E2, F2α, D2, H2). The study addresses the systems biology analysis of target genes in 24 solid tumors using a data mining pipeline. We analyzed differential expression patterns of genes and proteins, promoter methylation status as well as tissue-specific master regulators and microRNAs. Tumor types were clustered into several groups according to gene expression patterns. Target genes were characterized as low mutated in tumors, with the exception of melanoma. We found at least six ubiquitin ligases and eight protein kinases that post-translationally modified the most connected proteins PTGES3 and PTGIS. Models of regulation of PTGIS and PTGIR gene expression in lung and uterine cancers were suggested. For the first time, we found associations between the patient’s overall survival rates with nine multigene transcriptomics signatures in eight tumors. Expression patterns of each of the six target genes have predictive value with respect to cytostatic therapy response. One of the consequences of the study is an assumption of prostanoid-dependent (or independent) tumor phenotypes. Thus, pharmacologic targeting the prostanoid signaling could be a probable additional anticancer strategy.
Collapse
|
9
|
Zhu S, Wang X, Liu L, Ren G. Stabilization of Notch1 and β-catenin in response to ER- breast cancer-specific up-regulation of PSAT1 mediates distant metastasis. Transl Oncol 2022; 20:101399. [PMID: 35339029 PMCID: PMC8956914 DOI: 10.1016/j.tranon.2022.101399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/06/2022] Open
Abstract
PSAT1 is upregulated in metastatic breast cancer. PSAT1 promotes distant metastasis in vivo. PSAT1-facilitated aggressiveness of breast cancer cells promotes early metastasis. PSAT1 activates Wnt/β-catenin and notch signaling pathways by stabilizing the respective proteins. Activation of β-catenin and notch signaling mediates PSAT1-induced aggressiveness of breast cancer cells. Aberrant upregulated PSAT1 is a potential biomarker of early metastasis in breast cancer.
Breast cancer has the highest incidence in women worldwide, with a mortality rate second only to lung cancer. Distant metastasis is the major cause of breast cancer-induced death. While upregulation of phosphoserine aminotransferase 1 (PSAT1) has been reported in several cancer types, its specific roles in breast cancer and potential involvement in distant metastasis remain unclear. In our study, PSAT1 was upregulated in metastatic breast cancer and promoted distant metastasis both in vitro and in vivo. Data obtained from transwell and wound healing, colony, sphere assays and detection of various malignant phenotypic markers showed that PSAT1 mediates distant metastasis by promoting invasion, migration, proliferation, anti-apoptosis, stemness and angiogenesis in breast cancer cells. Mechanistically, PSAT1 activated Notch and β-catenin signaling pathways, leading to enhanced distant metastasis. The clinical relevance of PSAT1 in breast cancer was additionally investigated, which revealed associations of poorer patient prognosis with high PSAT1 mRNA and protein expression. In summary, PSAT1 is a critical molecular regulator of distant metastasis that may effectively serve as a marker of poor prognosis in breast cancer.
Collapse
Affiliation(s)
- Shuxuan Zhu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Rovati G, Contursi A, Bruno A, Tacconelli S, Ballerini P, Patrignani P. Antiplatelet Agents Affecting GPCR Signaling Implicated in Tumor Metastasis. Cells 2022; 11:725. [PMID: 35203374 PMCID: PMC8870128 DOI: 10.3390/cells11040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition. Therefore, agents that affect platelet activation can potentially restrain these prometastatic mechanisms. Although the primary adhesion of platelets to cancer cells is mainly independent of G protein-mediated signaling, soluble mediators released from platelets, such as ADP, thromboxane (TX) A2, and prostaglandin (PG) E2, act through G protein-coupled receptors (GPCRs) to cause the activation of more additional platelets and drive metastatic signaling pathways in cancer cells. In this review, we examine the contribution of the GPCRs of platelets and cancer cells in the development of cancer metastasis. Finally, the possible use of agents affecting GPCR signaling pathways as antimetastatic agents is discussed.
Collapse
Affiliation(s)
- Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20122 Milan, Italy;
| | - Annalisa Contursi
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Annalisa Bruno
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University, 66100 Chieti, Italy
| | - Paola Patrignani
- Laboratory of Systems Pharmacology and Translational Therapies, Center for Advanced Studies and Technology (CAST), School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy; (A.C.); (A.B.); (S.T.); (P.B.)
- Department of Neuroscience, Imaging and Clinical Science, School of Medicine, “G. d’Annunzio” University, 66100 Chieti, Italy
| |
Collapse
|
11
|
Walker OL, Dahn ML, Power Coombs MR, Marcato P. The Prostaglandin E2 Pathway and Breast Cancer Stem Cells: Evidence of Increased Signaling and Potential Targeting. Front Oncol 2022; 11:791696. [PMID: 35127497 PMCID: PMC8807694 DOI: 10.3389/fonc.2021.791696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022] Open
Abstract
Culprits of cancer development, metastasis, and drug resistance, cancer stem cells (CSCs) are characterized by specific markers, active developmental signaling pathways, metabolic plasticity, increased motility, invasiveness, and epithelial-mesenchymal transition. In breast cancer, these cells are often more prominent in aggressive disease, are amplified in drug-resistant tumors, and contribute to recurrence. For breast cancer, two distinct CSC populations exist and are typically defined by CD44+/CD24- cell surface marker expression or increased aldehyde dehydrogenase (ALDH) activity. These CSC populations share many of the same properties but also exhibit signaling pathways that are more active in CD44+/CD24- or ALDH+ populations. Understanding these CSC populations and their shared or specific signaling pathways may lead to the development of novel therapeutic strategies that will improve breast cancer patient outcomes. Herein, we review the current evidence and assess published patient tumor datasets of sorted breast CSC populations for evidence of heightened prostaglandin E2 (PGE2) signaling and activity in these breast CSC populations. PGE2 is a biologically active lipid mediator and in cancer PGE2 promotes tumor progression and poor patient prognosis. Overall, the data suggests that PGE2 signaling is important in propagating breast CSCs by enhancing inherent tumor-initiating capacities. Development of anti-PGE2 signaling therapeutics may be beneficial in inhibiting tumor growth and limiting breast CSC populations.
Collapse
Affiliation(s)
| | | | - Melanie R. Power Coombs
- Pathology, Dalhousie University, Halifax, NS, Canada
- Biology, Acadia University, Wolfville, NS, Canada
| | - Paola Marcato
- Pathology, Dalhousie University, Halifax, NS, Canada
- Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Paola Marcato,
| |
Collapse
|
12
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
13
|
Razdan A, Main NM, Chiu V, Shackel NA, de Souza P, Bryant K, Scott KF. Targeting the eicosanoid pathway in hepatocellular carcinoma. Am J Cancer Res 2021; 11:2456-2476. [PMID: 34249410 PMCID: PMC8263695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023] Open
Abstract
Liver cancer has variable incidence worldwide and high mortality. Histologically, the most common subtype of liver cancer is hepatocellular carcinoma (HCC). Approximately 30-40% of HCC patients are diagnosed at an advanced stage, and at present, there are limited treatment options for such patients. The current first-line therapy with tyrosine kinase inhibitors, sorafenib or lenvatinib, prolongs survival by a median of about 2.5-3 months after which the disease normally progresses. Additionally, many patients discontinue the use of tyrosine kinase inhibitors due to toxicity or may not be suitable candidates due to co-morbidity or frailty. It is, therefore, imperative to identify novel therapeutic targets for advanced HCC patients. Persistent injury to the liver as a result of insults such as hepatitis B or C viral (HBV or HCV) infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), results in chronic inflammation, which progresses to hepatic fibrosis and later, cirrhosis, provides the conditions for initiation of HCC. One of the key pathways studied for its role in inflammation and carcinogenesis is the eicosanoid pathway. In this review, we briefly outline the eicosanoid pathway, describe the mechanisms by which some pathway members either facilitate or counter the development of liver diseases, with the focus on NAFLD/hepatic fibrosis/cirrhosis, and HCC. We describe the link between the eicosanoid pathway, inflammation and these liver diseases, and identify components of the eicosanoid pathway that may be used as potential therapeutic targets in HCC.
Collapse
Affiliation(s)
- Anshuli Razdan
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nathan M Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Vincent Chiu
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Nicholas A Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Paul de Souza
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
- School of Medicine, University of WollongongWollongong, NSW, Australia
| | - Katherine Bryant
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney UniversitySydney, NSW, Australia
- Department of Medical Oncology, Ingham Institute for Applied Medical ResearchSydney, NSW, Australia
| |
Collapse
|
14
|
Cairat M, Al Rahmoun M, Gunter MJ, Severi G, Dossus L, Fournier A. Antiplatelet Drug Use and Breast Cancer Risk in a Prospective Cohort of Postmenopausal Women. Cancer Epidemiol Biomarkers Prev 2021; 30:643-652. [PMID: 33531438 DOI: 10.1158/1055-9965.epi-20-1292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Epidemiologic evidence is insufficient to draw conclusions on the impact of low-dose aspirin use on breast cancer risk, and the potential impact of other antiplatelet drugs such as clopidogrel needs to be explored. METHODS We investigated the association between breast cancer risk and low-dose aspirin or clopidogrel use in the E3N cohort, which includes 98,995 women, with information on breast cancer risk factors collected from biennial questionnaires matched with drug reimbursement data available from 2004. Women with at least two reimbursements of the drug of interest in any previous 3-month period were considered "ever" exposed. Exposure was considered as time-varying and multivariable Cox regression models were used to estimate HRs of breast cancer. RESULTS Among 62,512 postmenopausal women followed during 9 years on average, 2,864 breast cancer cases were identified. Compared with never use, a transient higher breast cancer risk was observed during the third year of low-dose aspirin use [HR2-≤3 years of use = 1.49 (1.08-2.07)], followed by a lower risk [HR4+ years of use = 0.72 (0.52-0.99)]. Clopidogrel ever use was associated with a higher breast cancer risk [HR, 1.30 (1.02-1.68)], restricted to estrogen receptor negative (ER-) tumors [HRER+ = 1.14 (0.83-1.57), HRER- = 3.07 (1.64-5.76), P homogeneity = 0.01]. CONCLUSIONS Low-dose aspirin was associated with a lower breast cancer risk only after several years of use, while ever use of clopidogrel was associated with a higher ER- breast cancer risk. IMPACT Antiplatelet drugs are not good pharmacologic candidates for breast cancer prevention.
Collapse
Affiliation(s)
- Manon Cairat
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Marie Al Rahmoun
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, Villejuif, France
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Gianluca Severi
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, Villejuif, France
- Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Laure Dossus
- Nutrition and Metabolism Section, International Agency for Research on Cancer, Lyon, France
| | - Agnès Fournier
- Paris-Saclay University, UVSQ, Univ. Paris-Sud, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP, Villejuif, France.
| |
Collapse
|
15
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-"double-edged sword". Cancer Metastasis Rev 2020; 39:1205-1221. [PMID: 32869161 PMCID: PMC7458881 DOI: 10.1007/s10555-020-09926-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken along the road towards a "healthy aging" strategy. Here, we review the changes that occur in platelets during aging, and investigate how these versatile blood components contribute to cancer progression.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
The endothelial barrier and cancer metastasis: Does the protective facet of platelet function matter? Biochem Pharmacol 2020; 176:113886. [PMID: 32113813 DOI: 10.1016/j.bcp.2020.113886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Overwhelming evidence suggests that platelets have a detrimental role in promoting cancer spread via platelet-cancer cell interactions linked to thrombotic mechanisms. On the other hand, a beneficial role of platelets in the preservation of the endothelial barrier in inflammatory conditions has been recently described, a phenomenon that could also operate in cancer-related inflammation. It is tempting to speculate that some antiplatelet strategies to combat cancer metastasis may impair the endogenous platelet-dependent mechanisms preserving endothelial barrier function. If the protective function of platelets is impaired, it may lead to increased endothelial permeability and more efficient cancer cell intravasation in the primary tumor and cancer cell extravasation at metastatic sites. In this commentary, we discuss current evidence that could support this hypothesis.
Collapse
|
17
|
Targeting the COX1/2-Driven thromboxane A2 pathway suppresses Barrett's esophagus and esophageal adenocarcinoma development. EBioMedicine 2019; 49:145-156. [PMID: 31707149 PMCID: PMC7113183 DOI: 10.1016/j.ebiom.2019.10.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background Barrett's esophagus (BE), a complication of gastroesophageal reflux disease (GERD), predisposes patients to esophageal adenocarcinoma (EAC). Reliable biomarkers for early detection and discovery of potential drug targets are urgently needed for improved BE and EAC patient outcomes. Methods Patient biopsy samples were evaluated for COX1/2, and thromboxane A2 synthase (TBXAS) expression. Circulating prostaglandins biosynthesis was determined using enzyme immunoassay kits. Anchorage-independent cell growth assay, crystal violet staining assay, and xenograft experiments were conducted to assess BE and EAC cell growth. A surgical mouse model of reflux (i.e., esophagoduodenostomy) was established and samples were analyzed using an enzyme immunoassay kit, immunohistochemistry, immunoblotting, or RT-PCR. Esophageal biopsy samples (pre- and post-intervention) were obtained from a randomized clinical trial in which participants were administered esomeprazole (40 mg) twice daily in combination with an acetylsalicylic acid (ASA) placebo or 81 or 325 mg ASA for 28 days. Esophageal biopsy specimens before and after the intervention period were analyzed. Findings COX2 and TBXAS are highly expressed in BE and EAC patients accompanied by a pronounced elevation of circulating TXA2 levels. ASA suppressed BE and EAC growth by targeting the TXA2 pathway. Additionally, biopsies from 49 patients (with similar baseline characteristics) showed that ASA substantially decreased serum TXA2 levels, resulting in reduced inflammation. Interpretation This study establishes the importance of the COX1/2-driven TXA2 pathway in BE and EAC pathophysiology and lays the groundwork for introducing a TXA2-targeting strategy for EAC prevention and early detection. Funding Hormel Foundation, Exact Sciences, Pentax Medical, Intromedic and National Cancer.
Collapse
|
18
|
Cianciaruso C, Beltraminelli T, Duval F, Nassiri S, Hamelin R, Mozes A, Gallart-Ayala H, Ceada Torres G, Torchia B, Ries CH, Ivanisevic J, De Palma M. Molecular Profiling and Functional Analysis of Macrophage-Derived Tumor Extracellular Vesicles. Cell Rep 2019; 27:3062-3080.e11. [PMID: 31167148 PMCID: PMC6581796 DOI: 10.1016/j.celrep.2019.05.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, modulate multiple aspects of cancer biology. Tumor-associated macrophages (TAMs) secrete EVs, but their molecular features and functions are poorly characterized. Here, we report methodology for the enrichment, quantification, and proteomic and lipidomic analysis of EVs released from mouse TAMs (TAM-EVs). Compared to source TAMs, TAM-EVs present molecular profiles associated with a Th1/M1 polarization signature, enhanced inflammation and immune response, and a more favorable patient prognosis. Accordingly, enriched TAM-EV preparations promote T cell proliferation and activation ex vivo. TAM-EVs also contain bioactive lipids and biosynthetic enzymes, which may alter pro-inflammatory signaling in the cancer cells. Thus, whereas TAMs are largely immunosuppressive, their EVs may have the potential to stimulate, rather than limit, anti-tumor immunity.
Collapse
Affiliation(s)
- Chiara Cianciaruso
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tim Beltraminelli
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florent Duval
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sina Nassiri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - André Mozes
- Flow Cytometry Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Gerardo Ceada Torres
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carola H Ries
- Roche Innovation Center Munich, Roche Pharma Research and Early Development, 82377 Penzberg, Germany
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
19
|
Serhan K, Gartung A, Panigrahy D. Drawing a link between the thromboxane A 2 pathway and the role of platelets and tumor cells in ovarian cancer. Prostaglandins Other Lipid Mediat 2018; 137:40-45. [PMID: 29933028 DOI: 10.1016/j.prostaglandins.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy among women. Due to the heterogeneity and complexity of the disease, as well as the insidious onset of symptoms, timely diagnosis remains extremely challenging. Despite recent advances in chemotherapy regimens for ovarian cancer patients, many still suffer from recurrence and ultimately succumb to the disease; thus, there is an urgent need for the identification of novel therapeutic targets. Within this rapidly evolving field, the role of platelets in the ovarian cancer tumor microenvironment has garnered increased attention. It is well-established that platelets and tumor cells exhibit bidirectional communication in which platelets enhance tumor cell invasion, extravasation, and protection from host system defenses, while tumor cells serve as platelet agonists, increasing platelet adhesion, aggregation, and degranulation. This mini-review focuses on the platelet-tumor cell relationship in ovarian cancer, specifically highlighting the essential role of bioactive lipid mediators at this interface.
Collapse
Affiliation(s)
- Karolina Serhan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Smeda M, Kieronska A, Proniewski B, Jasztal A, Selmi A, Wandzel K, Zakrzewska A, Wojcik T, Przyborowski K, Derszniak K, Stojak M, Kaczor D, Buczek E, Watala C, Wietrzyk J, Chlopicki S. Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour. Oncotarget 2018; 9:17810-17824. [PMID: 29707148 PMCID: PMC5915156 DOI: 10.18632/oncotarget.24891] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously. In conclusion, distinct platelet-dependent mechanisms inhibited by ASA+Cl treatment promoted cancer malignancy and VM in the presence of primary tumour and afforded protection against pulmonary metastasis in the absence of primary tumour. In view of our data, long-term inhibition of platelet function by dual anti-platelet therapy (ASA+Cl) might pose a hazard when applied to a patient with undiagnosed and untreated malignant cancer prone to undergo VM.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Anna Kieronska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Anna Selmi
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Krystyna Wandzel
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Tomasz Wojcik
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Dawid Kaczor
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Kosciuszki 4, Lodz 90-419, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Experimental Oncology, Rudolfa Weigla 4, Wroclaw 53-114, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow 30-348, Poland
- Chair of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, Krakow 31-531, Poland
| |
Collapse
|
21
|
Rai T, Bode AM, Dong Z. The Hormel Institute International Cancer Research Conference—2017 meeting report. NPJ Precis Oncol 2018. [PMCID: PMC5871895 DOI: 10.1038/s41698-018-0046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Despite considerable advances in our understanding of the mechanisms that contribute to cancer and improved treatment outcomes for many cancers, the burden of cancer still remains a huge issue for society. Thus, cancer researchers from around the globe must pool their resources to improve cancer care and outcomes. The 2017 Hormel Institute International Cancer Research Conference, co-sponsored by the Masonic Cancer Center, University of Minnesota, provided an opportunity for a diverse group of scientists to meet and discuss recent advances in cancer research and prevention. The 2-day conference, held in Austin, Minnesota, on June 19–20, 2017, was divided into nine scientifically driven sessions that focused broadly on fundamental cancer research, molecular mechanisms of tumor development, tumor stem cells, tumor therapeutic and preventive mechanisms, and achievements in tumor prevention and therapy.
Collapse
|