1
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
2
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
3
|
Sahnane N, Libera L, Facchi S, Carnevali I, Ronchi S, Albeni C, Cromi A, Casarin J, Sessa F, Tibiletti MG. Similarities and differences in gene expression profiles of BRCA1 methylated and mutated epithelial ovarian cancers. Front Oncol 2023; 13:1268127. [PMID: 37854675 PMCID: PMC10579792 DOI: 10.3389/fonc.2023.1268127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction BRCA1 methylated (BRCA1met) epithelial ovarian cancer (EOC) is a recently defined and not well-investigated subset of neoplasms. To date, no studies have focused on the transcriptional profiles of BRCA1met cases, and, as a matter of fact, we still do not know if this subset of EOCs is similar, and to what extent, to BRCA1 mutated (BRCA1mut) cases. Methods We compared a group of 17 BRCA1met cases against 10 BRCA1mut cases using a subset of carefully selected 17 BRCAwt EOCs as a control group. Results First, BRCA1met cases showed a downregulation of the relative transcript, while this association was not observed for BRCA1mut EOCs. The BRCA1met group exhibited a general upregulation of homologous recombination (HR)-related genes, as well as BRCA1mut. Overall, BRCA1met had a different gene expression profile, characterized by diffuse downregulation, whereas BRCA1mut showed a general upregulation (p < 0.0001). Both BRCA1-defective groups showed a slightly activated immune response mediated by interferon (IFN) gamma pathways. Discussion In conclusion, even if the expression profile of many genes related to DNA damage and repair system is shared between BRCA1mut and BRCA1met EOCs supporting that BRCA1met EOCs may benefit from PARPi therapies, our data demonstrate that BRCA1mut and BRCA1met EOCs show different expression profiles, suggesting a different mechanism of carcinogenesis that can be reflected in different responses to therapies and disease recovery.
Collapse
Affiliation(s)
- Nora Sahnane
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Laura Libera
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Sofia Facchi
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Ileana Carnevali
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Susanna Ronchi
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| | - Chiara Albeni
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
| | - Antonella Cromi
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Jvan Casarin
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
- Obstetrics and Gynaecology Department, Del Ponte Women’s and Children’s Hospital, Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, Azienda Socio Sanitaria Territoriale (ASST) Sette Laghi, Varese, Italy
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Maria Grazia Tibiletti
- Research Centre for the Study of Hereditary and Familial Tumors, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
5
|
Shakfa N, Li D, Conseil G, Lightbody ED, Wilson-Sanchez J, Hamade A, Chenard S, Jawa NA, Laight BJ, Afriyie-Asante A, Tyryshkin K, Koebel M, Koti M. Cancer cell genotype associated tumor immune microenvironment exhibits differential response to therapeutic STING pathway activation in high-grade serous ovarian cancer. J Immunother Cancer 2023; 11:jitc-2022-006170. [PMID: 37015760 PMCID: PMC10083863 DOI: 10.1136/jitc-2022-006170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundHigh-grade serous ovarian carcinoma (HGSC) is the most lethal gynecologic malignancy characterized by resistance to chemotherapy and high rates of recurrence. HGSC tumors display a high prevalence of tumor suppressor gene loss. Given the type 1 interferon regulatory function ofBRCA1andPTENgenes and their associated contrasting T-cell infiltrated and non-infiltrated tumor immune microenvironment (TIME) states, respectively, in this study we investigated the potential of stimulator of interferon genes (STING) pathway activation in improving overall survival via enhancing chemotherapy response, specifically in tumors with PTEN deficiency.MethodsExpression of PTEN protein was evaluated in tissue microarrays generated using pretreatment tumors collected from a cohort of 110 patients with HGSC. Multiplex immunofluorescence staining was performed to determine spatial profiles and density of selected lymphoid and myeloid cells. In vivo studies using the syngeneic murine HGSC cell lines, ID8-Trp53–/–;Pten–/–and ID8-Trp53–/–;Brca1–/–, were conducted to characterize the TIME and response to carboplatin chemotherapy in combination with exogenous STING activation therapy.ResultsPatient tumors with absence of PTEN protein exhibited a significantly decreased disease specific survival and intraepithelial CD68+ macrophage infiltration as compared with intact PTEN expression. In vivo studies demonstrated thatPten-deficient ovarian cancer cells establish an immunosuppressed TIME characterized by increased proportions of M2-like macrophages, GR1+MDSCs in the ascites, and reduced effector CD8+ cytotoxic T-cell function compared withBrca1-deficient cells; further, tumors from mice injected withPten-deficient ID8 cells exhibited an aggressive behavior due to suppressive macrophage dominance in the malignant ascites. In combination with chemotherapy, exogenous STING activation resulted in longer overall survival in mice injected withPten-deficient ID8 cells, reprogrammed intraperitoneal M2-like macrophages derived fromPten-deficient ascites to M1-like phenotype and rescued CD8+ cytotoxic T-cell activation.ConclusionsThis study reveals the importance of considering the influence of cancer cell intrinsic genetic alterations on the TIME for therapeutic selection. We establish the rationale for the optimal incorporation of interferon activating therapies as a novel combination strategy in PTEN-deficient HGSC.
Collapse
Affiliation(s)
- Noor Shakfa
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Deyang Li
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Gwenaelle Conseil
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | - Juliette Wilson-Sanchez
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Ali Hamade
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Stephen Chenard
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Natasha A Jawa
- Centre for Neuroscience Studies & School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Brian J Laight
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Pathology and Molecular Medicine, Queen's University Cancer Research Institute, Kingston, Ontario, Canada
| | | | - Kathrin Tyryshkin
- Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Martin Koebel
- Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Madhuri Koti
- Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Queen's Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Liu T, Li Y, Wang X, Yang X, Fu Y, Zheng Y, Gong H, He Z. The role of interferons in ovarian cancer progression: Hinderer or promoter? Front Immunol 2022; 13:1087620. [PMID: 36618371 PMCID: PMC9810991 DOI: 10.3389/fimmu.2022.1087620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is a common gynecologic malignancy with poor prognosis and high mortality. Changes in the OC microenvironment are closely related to the genesis, invasion, metastasis, recurrence, and drug-resistance. The OC microenvironment is regulated by Interferons (IFNs) known as a type of important cytokines. IFNs have a bidirectional regulation for OC cells growth and survival. Meanwhile, IFNs positively regulate the recruitment, differentiation and activation of immune cells. This review summarizes the secretion and the role of IFNs. In particular, we mainly elucidate the actions played by IFNs in various types of therapy. IFNs assist radiotherapy, targeted therapy, immunotherapy and biotherapy for OC, except for some IFN pathways that may cause chemo-resistance. In addition, we present some advances in OC treatment with the help of IFN pathways. IFNs have the ability to powerfully modulate the tumor microenvironment and can potentially provide new combination strategies for OC treatment.
Collapse
Affiliation(s)
- Taiqing Liu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinqi Li
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhai Fu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yeteng Zheng
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| |
Collapse
|
7
|
Ovarian cancer cell fate regulation by the dynamics between saturated and unsaturated fatty acids. Proc Natl Acad Sci U S A 2022; 119:e2203480119. [PMID: 36197994 PMCID: PMC9564215 DOI: 10.1073/pnas.2203480119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fatty acids are an important source of energy and a key component of phospholipids in membranes and organelles. Saturated fatty acids (SFAs) are converted into unsaturated fatty acids (UFAs) by stearoyl Co-A desaturase (SCD), an enzyme active in cancer. Here, we studied how the dynamics between SFAs and UFAs regulated by SCD impacts ovarian cancer cell survival and tumor progression. SCD depletion or inhibition caused lower levels of UFAs vs. SFAs and altered fatty acyl chain plasticity, as demonstrated by lipidomics and stimulated Raman scattering (SRS) microscopy. Further, increased levels of SFAs resulting from SCD knockdown triggered endoplasmic reticulum (ER) stress response with brisk activation of IRE1α/XBP1 and PERK/eIF2α/ATF4 axes. Disorganized ER membrane was visualized by electron microscopy and SRS imaging in ovarian cancer cells in which SCD was knocked down. The induction of long-term mild ER stress or short-time severe ER stress by the increased levels of SFAs and loss of UFAs led to cell death. However, ER stress and apoptosis could be readily rescued by supplementation with UFAs and reequilibration of SFA/UFA levels. The effects of SCD knockdown or inhibition observed in vitro translated into suppression of intraperitoneal tumor growth in ovarian cancer xenograft models. Furthermore, a combined intervention using an SCD inhibitor and an SFA-enriched diet initiated ER stress in tumors growing in vivo and potently blocked their dissemination. In all, our data support SCD as a key regulator of the cancer cell fate under metabolic stress and point to treatment strategies targeting the lipid balance.
Collapse
|
8
|
Borucka J, Sterzyńska K, Kaźmierczak D, Świerczewska M, Nowacka M, Wojtowicz K, Klejewski A, Nowicki M, Zabel M, Ramlau R, Januchowski R. The significance of interferon gamma inducible protein 16 (IFI16) expression in drug resistant ovarian cancer cell lines. Biomed Pharmacother 2022; 150:113036. [PMID: 35489285 DOI: 10.1016/j.biopha.2022.113036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inherent or developed during treatment drug resistance is the main reason for the low effectiveness of chemotherapy in ovarian cancer. IFI16 is a cytoplasmic/nuclear protein involved in response to virus's infection and cell cycle arrest associated with the cellular senescence. METHODS Here we performed a detailed IFI16 expression analysis in ovarian cancer cell lines sensitive (A2780) and resistant to doxorubicin (DOX) (A2780DR1 and A2780DR2) and paclitaxel (PAC) (A2780PR1). IFI16 mRNA level, protein level in the nuclear and cytoplasmic fraction (Western blot analysis), the protein expression in cancer cells and nuclei (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were performed in this study. RESULTS We observed upregulation of IFI16 expression in drug resistant cell lines with dominant cytoplasmic localization in DOX-resistant cell lines and nuclear one in the PAC-resistant cell line. The most abundantly overexpressed isoforms of IFI16 were IFI16A and IFI16C. Finally, an analysis of a histological type of ovarian cancer (immunohistochemistry) showed expression in serous ovarian cancer. CONCLUSIONS Expression of IFI16 in drug-resistant cell lines suggests its role in drug resistance development in ovarian cancer. Expression in serous ovarian cancer suggests its role in the pathogenesis of this histological type.
Collapse
Affiliation(s)
- Justyna Borucka
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Dominika Kaźmierczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznań, Poland; Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St, 60-535 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St, 65-046 Zielona Gora, Poland
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland
| | - Radosław Januchowski
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St, 65-046 Zielona Gora, Poland.
| |
Collapse
|
9
|
CXC Chemokine Signaling in Progression of Epithelial Ovarian Cancer: Theranostic Perspectives. Int J Mol Sci 2022; 23:ijms23052642. [PMID: 35269786 PMCID: PMC8910147 DOI: 10.3390/ijms23052642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with epithelial ovarian cancer (EOC) are often diagnosed at an advanced stage due to nonspecific symptoms and ineffective screening approaches. Although chemotherapy has been available and widely used for the treatment of advanced EOC, the overall prognosis remains dismal. As part of the intrinsic defense mechanisms against cancer development and progression, immune cells are recruited into the tumor microenvironment (TME), and this process is directed by the interactions between different chemokines and their receptors. In this review, the functional significance of CXC chemokine ligands/chemokine receptors (CXCL/CXCR) and their roles in modulating EOC progression are summarized. The status and prospects of CXCR/CXCL-based theranostic strategies in EOC management are also discussed.
Collapse
|
10
|
Launonen IM, Lyytikäinen N, Casado J, Anttila EA, Szabó A, Haltia UM, Jacobson CA, Lin JR, Maliga Z, Howitt BE, Strickland KC, Santagata S, Elias K, D'Andrea AD, Konstantinopoulos PA, Sorger PK, Färkkilä A. Single-cell tumor-immune microenvironment of BRCA1/2 mutated high-grade serous ovarian cancer. Nat Commun 2022; 13:835. [PMID: 35149709 PMCID: PMC8837628 DOI: 10.1038/s41467-022-28389-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
The majority of high-grade serous ovarian cancers (HGSCs) are deficient in homologous recombination (HR) DNA repair, most commonly due to mutations or hypermethylation of the BRCA1/2 genes. We aimed to discover how BRCA1/2 mutations shape the cellular phenotypes and spatial interactions of the tumor microenvironment. Using a highly multiplex immunofluorescence and image analysis we generate spatial proteomic data for 21 markers in 124,623 single cells from 112 tumor cores originating from 31 tumors with BRCA1/2 mutation (BRCA1/2mut), and from 13 tumors without alterations in HR genes. We identify a phenotypically distinct tumor microenvironment in the BRCA1/2mut tumors with evidence of increased immunosurveillance. Importantly, we report a prognostic role of a proliferative tumor-cell subpopulation, which associates with enhanced spatial tumor-immune interactions by CD8+ and CD4 + T-cells in the BRCA1/2mut tumors. The single-cell spatial landscapes indicate distinct patterns of spatial immunosurveillance with the potential to improve immunotherapeutic strategies and patient stratification in HGSC.
Collapse
Affiliation(s)
- I-M Launonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - N Lyytikäinen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - J Casado
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - E A Anttila
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - A Szabó
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - U-M Haltia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - C A Jacobson
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J R Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Z Maliga
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - B E Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - K C Strickland
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - S Santagata
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - K Elias
- Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A D D'Andrea
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P A Konstantinopoulos
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - A Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland.
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
11
|
Chen M, Linstra R, van Vugt MATM. Genomic instability, inflammatory signaling and response to cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1877:188661. [PMID: 34800547 DOI: 10.1016/j.bbcan.2021.188661] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
Genomic and chromosomal instability are hallmarks of cancer and shape the genomic composition of cancer cells, thereby determining their behavior and response to treatment. Various genetic and epigenetic alterations in cancer have been linked to genomic instability, including DNA repair defects, oncogene-induced replication stress, and spindle assembly checkpoint malfunction. A consequence of genomic and chromosomal instability is the leakage of DNA from the nucleus into the cytoplasm, either directly or through the formation and subsequent rupture of micronuclei. Cytoplasmic DNA subsequently activates cytoplasmic DNA sensors, triggering downstream pathways, including a type I interferon response. This inflammatory signaling has pleiotropic effects, including enhanced anti-tumor immunity and potentially results in sensitization of cancer cells to immune checkpoint inhibitors. However, cancers frequently evolve mechanisms to avoid immune clearance, including suppression of inflammatory signaling. In this review, we summarize inflammatory signaling pathways induced by various sources of genomic instability, adaptation mechanisms that suppress inflammatory signaling, and implications for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengting Chen
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Renske Linstra
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, the Netherlands.
| |
Collapse
|
12
|
Bronger H. Immunology and Immune Checkpoint Inhibition in Ovarian Cancer - Current Aspects. Geburtshilfe Frauenheilkd 2021; 81:1128-1144. [PMID: 34629492 PMCID: PMC8494520 DOI: 10.1055/a-1475-4335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decade immunotherapies such as immune checkpoint blockade (ICB) against the PD-1/PD-L1 system have revolutionised the treatment of numerous entities. To date, ovarian cancer has benefited very little from this success story. Possible causes include a rather low mutational burden compared to other tumour types, inadequate presentation of (neo-)antigens, and increased infiltration with immunosuppressive immune cells such as regulatory T cells and tumour-associated macrophages. In the clinical trials completed to date, the response rates to PD-1/PD-L1 checkpoint inhibitors have therefore been disappointingly low as well, although isolated long-term remissions have also been observed in ovarian cancer. The task now is to find suitable predictive biomarkers as well as to identify combination partners for ICB therapy that can increase the immunogenicity of ovarian cancer or overcome immunosuppressive resistance mechanisms. This paper provides an overview of the immune milieu in ovarian cancer, its impact on the effect of ICB, and summarises the clinical trial data available to date on ICB in ovarian cancer.
Collapse
Affiliation(s)
- Holger Bronger
- Klinik und Poliklinik für Frauenheilkunde, Klinikum rechts der Isar, Technische Universität München, München, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort München und Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
13
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
14
|
Bruand M, Barras D, Mina M, Ghisoni E, Morotti M, Lanitis E, Fahr N, Desbuisson M, Grimm A, Zhang H, Chong C, Dagher J, Chee S, Tsianou T, Dorier J, Stevenson BJ, Iseli C, Ronet C, Bobisse S, Genolet R, Walton J, Bassani-Sternberg M, Kandalaft LE, Ren B, McNeish I, Swisher E, Harari A, Delorenzi M, Ciriello G, Irving M, Rusakiewicz S, Foukas PG, Martinon F, Dangaj Laniti D, Coukos G. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep 2021; 36:109412. [PMID: 34289354 PMCID: PMC8371260 DOI: 10.1016/j.celrep.2021.109412] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigate mechanisms leading to inflammation and immunoreactivity in ovarian tumors with homologous recombination deficiency (HRD). BRCA1 loss is found to lead to transcriptional reprogramming in tumor cells and cell-intrinsic inflammation involving type I interferon (IFN) and stimulator of IFN genes (STING). BRCA1-mutated (BRCA1mut) tumors are thus T cell inflamed at baseline. Genetic deletion or methylation of DNA-sensing/IFN genes or CCL5 chemokine is identified as a potential mechanism to attenuate T cell inflammation. Alternatively, in BRCA1mut cancers retaining inflammation, STING upregulates VEGF-A, mediating immune resistance and tumor progression. Tumor-intrinsic STING elimination reduces neoangiogenesis, increases CD8+ T cell infiltration, and reverts therapeutic resistance to dual immune checkpoint blockade (ICB). VEGF-A blockade phenocopies genetic STING loss and synergizes with ICB and/or poly(ADP-ribose) polymerase (PARP) inhibitors to control the outgrowth of Trp53-/-Brca1-/- but not Brca1+/+ ovarian tumors in vivo, offering rational combinatorial therapies for HRD cancers.
Collapse
Affiliation(s)
- Marine Bruand
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marco Mina
- Swiss Institute of Bioinformatics, Lausanne, Switzerland; Department of Computational Biology, UNIL, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Matteo Morotti
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Mathieu Desbuisson
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alizée Grimm
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Hualing Zhang
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chloe Chong
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Julien Dagher
- Institute of Pathology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Sora Chee
- Ludwig Institute for Cancer Research and University of California, La Jolla, CA, USA
| | - Theodora Tsianou
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Julien Dorier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | | | | | - Catherine Ronet
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Josephine Walton
- Department of Surgery & Cancer, Ovarian Cancer Action Research Centre, Hammersmith Hospital, Imperial College London, London, UK
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Bing Ren
- Ludwig Institute for Cancer Research and University of California, La Jolla, CA, USA
| | - Iain McNeish
- Department of Surgery & Cancer, Ovarian Cancer Action Research Centre, Hammersmith Hospital, Imperial College London, London, UK
| | | | - Alexandre Harari
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Mauro Delorenzi
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Institute of Bioinformatics, Lausanne, Switzerland; Department of Computational Biology, UNIL, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Periklis G Foukas
- 2nd Department of Pathology, Attikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
| |
Collapse
|
15
|
Ardighieri L, Missale F, Bugatti M, Gatta LB, Pezzali I, Monti M, Gottardi S, Zanotti L, Bignotti E, Ravaggi A, Tognon G, Odicino F, Calza S, Missolo-Koussou Y, Ries CH, Helft J, Vermi W. Infiltration by CXCL10 Secreting Macrophages Is Associated With Antitumor Immunity and Response to Therapy in Ovarian Cancer Subtypes. Front Immunol 2021; 12:690201. [PMID: 34220848 PMCID: PMC8253056 DOI: 10.3389/fimmu.2021.690201] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/27/2021] [Indexed: 02/02/2023] Open
Abstract
Ovarian carcinomas (OCs) are poorly immunogenic and immune checkpoint inhibitors (ICIs) have offered a modest benefit. In this study, high CD3+ T-cells and CD163+ tumor-associated macrophages (TAMs) densities identify a subgroup of immune infiltrated high-grade serous carcinomas (HGSCs) with better outcomes and superior response to platinum-based therapies. On the contrary, in most clear cell carcinomas (CCCs) showing poor prognosis and refractory to platinum, a high TAM density is associated with low T cell frequency. Immune infiltrated HGSC are characterized by the 30-genes signature (OC-IS30) covering immune activation and IFNγ polarization and predicting good prognosis (n = 312, TCGA). Immune infiltrated HGSC contain CXCL10 producing M1-type TAM (IRF1+pSTAT1Y701+) in close proximity to T-cells. A fraction of these M1-type TAM also co-expresses TREM2. M1-polarized TAM were barely detectable in T-cell poor CCC, but identifiable across various immunogenic human cancers. Single cell RNA sequencing data confirm the existence of a tumor-infiltrating CXCL10+IRF1+STAT1+ M1-type TAM overexpressing antigen processing and presentation gene programs. Overall, this study highlights the clinical relevance of the CXCL10+IRF1+STAT1+ macrophage subset as biomarker for intratumoral T-cell activation and therefore offers a new tool to select patients more likely to respond to T-cell or macrophage-targeted immunotherapies.
Collapse
Affiliation(s)
- Laura Ardighieri
- Unit of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Francesco Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mattia Bugatti
- Unit of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Irene Pezzali
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matilde Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Laura Zanotti
- 'Angelo Nocivelli" Institute of Molecular Medicine, ASST Spedali Civili of Brescia- University of Brescia, Brescia, Italy.,Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eliana Bignotti
- 'Angelo Nocivelli" Institute of Molecular Medicine, ASST Spedali Civili of Brescia- University of Brescia, Brescia, Italy.,Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Antonella Ravaggi
- 'Angelo Nocivelli" Institute of Molecular Medicine, ASST Spedali Civili of Brescia- University of Brescia, Brescia, Italy.,Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Science, University of Brescia, Brescia, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Clinical and Experimental Science, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Big & Open Data Innovation Laboratory, University of Brescia, Brescia, Italy
| | - Yoann Missolo-Koussou
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Center for Cancers Immunotherapy, Translational Immunotherapy Team, Paris, France
| | | | - Julie Helft
- PSL University, Institut Curie Research Center, INSERM U932 & SiRIC, Center for Cancers Immunotherapy, Translational Immunotherapy Team, Paris, France
| | - William Vermi
- Unit of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv 2021; 4:5011-5024. [PMID: 33057635 DOI: 10.1182/bloodadvances.2020002512] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Somatic TP53 mutations and 17p deletions with genomic loss of TP53 occur in 37% to 46% of acute myeloid leukemia (AML) with adverse-risk cytogenetics and correlate with primary induction failure, high risk of relapse, and dismal prognosis. Herein, we aimed to characterize the immune landscape of TP53-mutated AML and determine whether TP53 abnormalities identify a patient subgroup that may benefit from immunotherapy with flotetuzumab, an investigational CD123 × CD3 bispecific dual-affinity retargeting antibody (DART) molecule. The NanoString PanCancer IO360 assay was used to profile 64 diagnostic bone marrow (BM) samples from patients with TP53-mutated (n = 42) and TP53-wild-type (TP53-WT) AML (n = 22) and 45 BM samples from patients who received flotetuzumab for relapsed/refractory (R/R) AML (15 cases with TP53 mutations and/or 17p deletion). The comparison between TP53-mutated and TP53-WT primary BM samples showed higher expression of IFNG, FOXP3, immune checkpoints, markers of immune senescence, and phosphatidylinositol 3-kinase-Akt and NF-κB signaling intermediates in the former cohort and allowed the discovery of a 34-gene immune classifier prognostic for survival in independent validation series. Finally, 7 out of 15 patients (47%) with R/R AML and TP53 abnormalities showed complete responses to flotetuzumab (<5% BM blasts) on the CP-MGD006-01 clinical trial (NCT #02152956) and had significantly higher tumor inflammation signature, FOXP3, CD8, inflammatory chemokine, and PD1 gene expression scores at baseline compared with nonresponders. Patients with TP53 abnormalities who achieved a complete response experienced prolonged survival (median, 10.3 months; range, 3.3-21.3 months). These results encourage further study of flotetuzumab immunotherapy in patients with TP53-mutated AML.
Collapse
|
17
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Iyer S, Zhang S, Yucel S, Horn H, Smith SG, Reinhardt F, Hoefsmit E, Assatova B, Casado J, Meinsohn MC, Barrasa MI, Bell GW, Pérez-Villatoro F, Huhtinen K, Hynninen J, Oikkonen J, Galhenage PM, Pathania S, Hammond PT, Neel BG, Farkkila A, Pépin D, Weinberg RA. Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy. Cancer Discov 2020; 11:384-407. [PMID: 33158843 DOI: 10.1158/2159-8290.cd-20-0818] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transformed murine-fallopian tube epithelial cells to phenocopy homologous recombination-deficient tumors through a combined loss of Trp53, Brca1, Pten, and Nf1 and overexpression of Myc and Trp53 R172H, which was contrasted with an identical model carrying wild-type Brca1. For homologous recombination-proficient tumors, we constructed genotypes combining loss of Trp53 and overexpression of Ccne1, Akt2, and Trp53 R172H, and driven by KRAS G12V or Brd4 or Smarca4 overexpression. These lines form tumors recapitulating human disease, including genotype-driven responses to treatment, and enabled us to identify follistatin as a driver of resistance to checkpoint inhibitors. These data provide proof of concept that our models can identify new immunotherapy targets in HGSC. SIGNIFICANCE: We engineered a panel of murine fallopian tube epithelial cells bearing mutations typical of HGSC and capable of forming tumors in syngeneic immunocompetent hosts. These models recapitulate tumor microenvironments and drug responses characteristic of human disease. In a Ccne1-overexpressing model, immune-checkpoint resistance was driven by follistatin.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Sonia Iyer
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Shuang Zhang
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, New York, New York
| | - Simge Yucel
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Heiko Horn
- Stanley Center, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Pediatric Surgical Research Laboratories, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Sean G Smith
- Marble Center for Cancer Nanomedicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Esmee Hoefsmit
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | - Julia Casado
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marie-Charlotte Meinsohn
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | | | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Fernando Pérez-Villatoro
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kaisa Huhtinen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, Turku, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pamoda M Galhenage
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, Massachusetts
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, Massachusetts
| | - Paula T Hammond
- Marble Center for Cancer Nanomedicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, New York, New York
| | - Anniina Farkkila
- Research Program in Systems Oncology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Dana-Farber Cancer Institute Harvard Medical School, Boston, Massachusetts
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, Massachusetts.
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Massachusetts Institute of Technology Ludwig Center for Molecular Oncology, Cambridge, Massachusetts
| |
Collapse
|
19
|
Matei D, Nephew KP. Epigenetic Attire in Ovarian Cancer: The Emperor's New Clothes. Cancer Res 2020; 80:3775-3785. [PMID: 32381656 PMCID: PMC7501210 DOI: 10.1158/0008-5472.can-19-3837] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is an aggressive epithelial tumor that remains a major cause of cancer morbidity and mortality in women. Epigenetic alterations including DNA methylation and histone modifications are being characterized in ovarian cancer and have been functionally linked to processes involved in tumor initiation, chemotherapy resistance, cancer stem cell survival, and tumor metastasis. The epigenetic traits of cancer cells and of associated tumor microenvironment components have been shown to promote an immunosuppressive tumor milieu. However, DNA methylation and histone modifications are reversible, and therapies targeting the epigenome have been implicated in potential reinvigoration of the antitumor immunity. In this review, we provide an overview specifically of DNA methylation and histone modifications as "clothes of the ovarian cancer genome" in relationship to their functional effects and highlight recent developments in the field. We also address the clinical implications of therapeutic strategies to remove or alter specific articles of genomic "clothing" and restore normal cellular function. As the clothes of the genome continue to be deciphered, we envision that the epigenome will become an important therapeutic target for cancer.
Collapse
Affiliation(s)
- Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
- Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana.
- Department of Anatomy, Cell Biology and Physiology; Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| |
Collapse
|