1
|
Schmidt MJ, Naghdloo A, Prabakar RK, Kamal M, Cadaneanu R, Garraway IP, Lewis M, Aparicio A, Zurita-Saavedra A, Corn P, Kuhn P, Pienta KJ, Amend SR, Hicks J. Polyploid cancer cells reveal signatures of chemotherapy resistance. Oncogene 2025; 44:439-449. [PMID: 39578659 PMCID: PMC11810791 DOI: 10.1038/s41388-024-03212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of circulating tumor cells with increased genomic content (CTC-IGC) was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and are associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and the expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Michael J Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Rishvanth K Prabakar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Radu Cadaneanu
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isla P Garraway
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Lewis
- VA Greater Los Angeles Medical Center, Los Angeles, CA, USA
- Departments of Medicine and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Cancer Research and Cellular Therapeutics, Clark, Atlanta, GA, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado Zurita-Saavedra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Kenneth J Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Murgoitio-Esandi J, Tessone D, Naghdloo A, Shishido SN, Zhang B, Xu H, Dasgupta A, Mason J, Nagaraju RM, Hicks J, Kuhn P, Oberai A. Unsupervised Detection of Rare Events in Liquid Biopsy Assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635501. [PMID: 39975209 PMCID: PMC11838382 DOI: 10.1101/2025.01.29.635501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The use of liquid biopsies in the detection, diagnosis and treatment monitoring of different types of cancers and other diseases often requires identifying and enumerating instances of analytes that are rare. Most current techniques that aim to computationally isolate these rare instances or events first learn the signature of the event, and then scan the appropriate biological assay for this signature. While such techniques have proven to be very useful, they are limited because they must first establish what signature to look for, and only then identify events that are consistent with this signature. In contrast to this, in this study, we present an automated approach that does not require the knowledge of the signature of the rare event. It works by breaking the assay into a sequence of components, learning the probability distribution of these components, and then isolating those that are rare. This is done with the help of deep generative algorithms in an unsupervised manner, meaning without a-priori knowledge of the rare event associated with an analyte. In this study, this approach is applied to immunofluorescence microscopy images of peripheral blood, where it is shown that it successfully isolates biologically relevant events in blood from normal donors spiked with cancer-related cells and in blood from patients with late-stage breast cancer.
Collapse
Affiliation(s)
- Javier Murgoitio-Esandi
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, CA, USA
| | - Dean Tessone
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, 90089, CA, USA
| | - Amin Naghdloo
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, CA, USA
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
| | - Stephanie N Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
| | - Brian Zhang
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
| | - Haofeng Xu
- Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, CA, USA
| | - Agnimitra Dasgupta
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, CA, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Rajiv M Nagaraju
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
| | - James Hicks
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
| | - Peter Kuhn
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, CA, USA
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, 90089, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, 90089, CA, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, CA, USA
| | - Assad Oberai
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, 90089, CA, USA
| |
Collapse
|
3
|
Derderian S, Jarry E, Santos A, Vesval Q, Hamel L, Sanchez-Salas R, Rompré-Brodeur A, Kassouf W, Rajan R, Brimo F, Duclos M, Aprikian A, Chevalier S. Clinical significance of stratifying prostate cancer patients through specific circulating genes. Mol Oncol 2025. [PMID: 39840448 DOI: 10.1002/1878-0261.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025] Open
Abstract
Patient stratification remains a challenge for optimal treatment of prostate cancer (PCa). This clinical heterogeneity implies intra-tumoural heterogeneity, with different prostate epithelial cell subtypes not all targeted by current treatments. We reported that such cell subtypes are traceable in liquid biopsies through representative transcripts. Expanding on this concept, we included 57 genes representing cell subtypes, drug targets and relevant to resistance as non-invasive biomarkers for stratification. This panel was tested by RT-qPCR (quantitative reverse transcription polymerase chain reaction) in blood of controls and different categories of PCa patients. Overall, circulating transcripts showed predictive value throughout the disease. Those with aggressive pathological features such as intra-ductal carcinoma at diagnosis showed more genes over-expressed. In metastatic patients, signatures of subtypes or resistance were associated with treatments, progression-free survival and overall survival. Altogether, testing markers of cell diversity, an intrinsic feature of tumours, and drug targets via liquid biopsies represents a valuable means to stratify patients and predict responses to current or new therapeutic modalities. Over-expressed drug target genes suggest potential benefit from targeted treatments, justifying new clinical trials to offer patient-tailored strategies to eventually impact on PCa mortality.
Collapse
Affiliation(s)
- Seta Derderian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
| | - Edouard Jarry
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Urology, Centre Hospitalier Régional et Universitaire de Lille, France
| | - Arynne Santos
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
| | - Quentin Vesval
- Department of Urology, Centre Hospitalier Régional et Universitaire de Rennes, France
| | - Lucie Hamel
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | | | | | - Wassim Kassouf
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Raghu Rajan
- Department of Oncology, McGill University, Montreal, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University, Montreal, Canada
| | - Marie Duclos
- Department of Radiation Oncology, McGill University, Montreal, Canada
| | - Armen Aprikian
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
| | - Simone Chevalier
- Urologic Oncology Research Group, Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, Canada
- Department of Surgery (Urology Division), McGill University, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Bonstingl L, Zinnegger M, Sallinger K, Pankratz K, Müller CT, Pritz E, Odar C, Skofler C, Ulz C, Oberauner-Wappis L, Borrás-Cherrier A, Somođi V, Heitzer E, Kroneis T, Bauernhofer T, El-Heliebi A. Advanced single-cell and spatial analysis with high-multiplex characterization of circulating tumor cells and tumor tissue in prostate cancer: Unveiling resistance mechanisms with the CoDuCo in situ assay. Biomark Res 2024; 12:140. [PMID: 39550585 PMCID: PMC11568690 DOI: 10.1186/s40364-024-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Metastatic prostate cancer is a highly heterogeneous and dynamic disease and practicable tools for patient stratification and resistance monitoring are urgently needed. Liquid biopsy analysis of circulating tumor cells (CTCs) and circulating tumor DNA are promising, however, comprehensive testing is essential due to diverse mechanisms of resistance. Previously, we demonstrated the utility of mRNA-based in situ padlock probe hybridization for characterizing CTCs. METHODS We have developed a novel combinatorial dual-color (CoDuCo) assay for in situ mRNA detection, with enhanced multiplexing capacity, enabling the simultaneous analysis of up to 15 distinct markers. This approach was applied to CTCs, corresponding tumor tissue, cancer cell lines, and peripheral blood mononuclear cells for single-cell and spatial gene expression analysis. Using supervised machine learning, we trained a random forest classifier to identify CTCs. Image analysis and visualization of results was performed using open-source Python libraries, CellProfiler, and TissUUmaps. RESULTS Our study presents data from multiple prostate cancer patients, demonstrating the CoDuCo assay's ability to visualize diverse resistance mechanisms, such as neuroendocrine differentiation markers (SYP, CHGA, NCAM1) and AR-V7 expression. In addition, druggable targets and predictive markers (PSMA, DLL3, SLFN11) were detected in CTCs and formalin-fixed, paraffin-embedded tissue. The machine learning-based CTC classification achieved high performance, with a recall of 0.76 and a specificity of 0.99. CONCLUSIONS The combination of high multiplex capacity and microscopy-based single-cell analysis is a unique and powerful feature of the CoDuCo in situ assay. This synergy enables the simultaneous identification and characterization of CTCs with epithelial, epithelial-mesenchymal, and neuroendocrine phenotypes, the detection of CTC clusters, the visualization of CTC heterogeneity, as well as the spatial investigation of tumor tissue. This assay holds significant potential as a tool for monitoring dynamic molecular changes associated with drug response and resistance in prostate cancer.
Collapse
Affiliation(s)
- Lilli Bonstingl
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- European Liquid Biopsy Society (ELBS), 20246, Hamburg, Germany
| | - Margret Zinnegger
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
| | - Katja Sallinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Karin Pankratz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Christin-Therese Müller
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Corinna Odar
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Christina Skofler
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Christine Ulz
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Lisa Oberauner-Wappis
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Anatol Borrás-Cherrier
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Višnja Somođi
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
| | - Ellen Heitzer
- Diagnostic and Research Center for Molecular BioMedicine, Institute of Human Genetics, Medical University of Graz, 8010, Graz, Austria
- Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, 8010, Graz, Austria
| | - Thomas Kroneis
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010, Graz, Austria
- University Comprehensive Cancer Center (CCC) Graz, 8010, Graz, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010, Graz, Austria.
- Center for Biomarker Research in Medicine (CBmed), 8010, Graz, Austria.
- European Liquid Biopsy Society (ELBS), 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Shishido SN, Marvit A, Pham D, Luo T, Xu L, Mason J, Priceman SJ, Portnow J, Kuhn P. Multi-Omic Characterization of Single Cells and Cell-Free Components Detected in the Cerebrospinal Fluid of Patients with Leptomeningeal Disease. Cancers (Basel) 2024; 16:3746. [PMID: 39594700 PMCID: PMC11592257 DOI: 10.3390/cancers16223746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Up to 30% of patients with breast cancers will develop brain or leptomeningeal metastases, and this risk is especially high with HER2-positive cancers. For patients with central nervous system metastases, cerebrospinal fluid (CSF) liquid biopsies are a promising opportunity to monitor disease, inform treatment, and predict prognosis. This pilot study investigated CSF liquid biopsy analytes from three patients diagnosed with central nervous system metastases based on imaging but not confirmed via clinical cytology. METHODS The detection of cellular analytes with the non-enrichment high-definition single-cell assay (HDSCA3.0) workflow was compared between the CSF and matched peripheral blood (PB) samples. RESULTS Circulating tumor cells (CTCs) were detected in the CSF but not the PB and were subsequently molecularly characterized using single-cell genomics and targeted multiplexed proteomics to reveal a clonal population of phenotypically heterogeneous cells. There was a lack of concordance in the copy number alteration profiles between CTCs and cell-free DNA (cfDNA) in the CSF. Extracellular vesicle surface marker analysis in CSF revealed a prominent signal among tetraspanins (CD9/CD63/CD81), with CD81 exhibiting the highest signal across all patients. CONCLUSIONS The data presented suggest that CSF could be a useful tool for diagnosing and assessing disease severity.
Collapse
Affiliation(s)
- Stephanie N. Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Amelia Marvit
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Doanna Pham
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Theresa Luo
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
| | - Liya Xu
- The Vision Center at Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
- USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Saul J. Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA;
- Department of Medicine, KSOM/NCCC Center for Cancer Cellular Immunotherapy, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Jana Portnow
- Department of Medical Oncology & Therapeutics Research, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA;
| | - Peter Kuhn
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA (D.P.); (T.L.); (J.M.)
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Kuligina ES, Yanus GA, Imyanitov EN. Diversity of the Circulating Tumor Markers: Perspectives of a Multimodal Liquid Biopsy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1985-1997. [PMID: 39647827 DOI: 10.1134/s0006297924110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Over the past decade, liquid biopsy (LB) has become a routine diagnostic test essential for the treatment of malignant tumors of various localizations. Its capabilities include early diagnosis, molecular genotyping, prognosis, prediction, and monitoring of tumor response. Typically, liquid biopsy involves the extraction of a single type of tumor-derived molecules or cellular elements from blood and subsequent molecular analysis. These elements may include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), circulating tumor RNA (ctRNA), or contents of extracellular vesicles (exosomes). Despite the technical sophistication of molecular analysis methods for circulating biomarkers, this diagnostic approach has limited relevance. In a significant proportion of cancer patients (ranging from 10 to 50%, depending on the tumor type), none of these analytes can be detected and analyzed, even in the presence of large, progressing neoplastic foci in the body. It seems reasonable to suggest that heterogeneous fractions of the circulating tumor-specific biomarkers complement each other, thus simultaneous analysis of several fractions will not only increase sensitivity of the method but also more accurately characterize and predict the clinical situation. This review examines the possibilities and advantages of applying a combined multiparametric approach to liquid biopsy, which involves testing multiple circulating analytes in a single blood sample.
Collapse
Affiliation(s)
- Ekaterina S Kuligina
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia.
| | - Grigoriy A Yanus
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Evgeny N Imyanitov
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| |
Collapse
|
7
|
Hicks J, Schmidt M, Nahgdloo A, Prabakar R, Kamal M, Cadaneanu R, Garraway I, Lewis M, Aparicio A, Zurita A, Corn P, Kuhn P, Pienta K, Amend S. Polyploid cancer cells reveal signatures of chemotherapy resistance. RESEARCH SQUARE 2024:rs.3.rs-4921634. [PMID: 39483900 PMCID: PMC11527255 DOI: 10.21203/rs.3.rs-4921634/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of CTC-IGC was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and their expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ana Aparicio
- The University of Texas M.D. Anderson Cancer Cetner
| | | | | | | | | | | |
Collapse
|
8
|
Resnick K, Shah A, Mason J, Kuhn P, Nieva J, Shishido SN. Circulation of rare events in the liquid biopsy for early detection of lung mass lesions. Thorac Cancer 2024; 15:2100-2109. [PMID: 39233479 PMCID: PMC11471425 DOI: 10.1111/1759-7714.15429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lung cancer screening with low-dose computed tomography (CT) scans (LDCT) has reduced mortality for patients with high-risk smoking histories, but it has significant limitations: LDCT screening implementation remains low, high rates of false-positive scans, and current guidelines exclude those without smoking histories. We sought to explore the utility of liquid biopsy (LBx) in early cancer screening and diagnosis of lung cancer. METHODS Using the high-definition single-cell assay workflow, we analyzed 99 peripheral blood samples from three cohorts: normal donors (NDs) with no known pathology (n = 50), screening CT patients (n = 25) with Lung-RADS score of 1-2, and biopsy (BX) patients (n = 24) with abnormal CT scans requiring tissue biopsy. RESULTS For CT and BX patients, demographic information was roughly equivalent; however, average pack-years smoked differed. A total of 14 (58%) BX patients were diagnosed with primary lung cancer (BX+). The comparison of the rare event enumerations among the cohorts revealed a greater incidence of total events, rare cells, and oncosomes, as well as specific cellular phenotypes in the CT and BX cohorts compared with the ND cohort. LBx analytes were also significantly elevated in the BX compared with the CT samples, but there was no difference between BX+ and BX- samples. CONCLUSIONS The data support the utility of the LBx in distinguishing patients with an alveolar lesion from those without, providing a potential avenue for prescreening before LDCT.
Collapse
Affiliation(s)
- Karen Resnick
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anya Shah
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jeremy Mason
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Institute of Urology, Catherine & Joseph Aresty Department of UrologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Peter Kuhn
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Institute of Urology, Catherine & Joseph Aresty Department of UrologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringViterbi School of Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Aerospace and Mechanical EngineeringViterbi School of Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biological SciencesDornsife College of Letters, Arts, and Sciences, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jorge Nieva
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Stephanie N. Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Schmidt MJ, Naghdloo A, Prabakar RK, Kamal M, Cadaneanu R, Garraway IP, Lewis M, Aparicio A, Zurita-Saavedra A, Corn P, Kuhn P, Pienta KJ, Amend SR, Hicks J. Polyploid cancer cells reveal signatures of chemotherapy resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608632. [PMID: 39229204 PMCID: PMC11370377 DOI: 10.1101/2024.08.19.608632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of circulating tumor cells with increased genomic content (CTC-IGC) was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and their expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.
Collapse
Affiliation(s)
- Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Amin Naghdloo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Rishvanth K. Prabakar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Currently at: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Mohamed Kamal
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Department of Zoology, Faculty of Science, Benha University, Benha, Egypt
| | - Radu Cadaneanu
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, California, USA
| | - Isla P. Garraway
- Department of Urology, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA and VA Greater Los Angeles, University of California, Los Angeles, Los Angeles, California, USA
| | - Michael Lewis
- VA Greater Los Angeles Medical Center, Los Angeles, CA, USA
- Departments of Medicine and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Cancer Research and Cellular Therapeutics, Clark, Atlanta, GA, USA
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amado Zurita-Saavedra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Kenneth J. Pienta
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah R. Amend
- Cancer Ecology Center, The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Shishido SN, Suresh D, Courcoubetis G, Ye B, Lin E, Mason J, Park K, Lewis M, Wang R, Lo SK, Kuhn P, Pandol S. Determining the efficacy of ExThera Seraph100 blood filtration in patients diagnosed with pancreatic cancer through the liquid biopsy. BJC REPORTS 2024; 2:47. [PMID: 39516545 PMCID: PMC11524105 DOI: 10.1038/s44276-024-00069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cancer becomes lethal as it spreads from the primary site to the rest of the body. Circulating tumor cells (CTCs) are biomarkers of disease progression and have been associated with decreased overall survival. Blood filtration is a novel concept for removing CTCs from circulation to improve patient prognosis. METHODS This study utilizes liquid biopsy to assess the efficacy of ExThera Medical's Seraph® 100 Microbind® Affinity Blood Filter on the blood of patients with pancreatic ductal adenocarcinoma (PDAC) using the third generation high-definition single cell assay workflow. Blood samples from treatment-naïve PDAC patients were collected and analyzed to characterize the CTCs and other rare cells present before and after filtration. RESULTS Examination of 6 paired portal vein blood (PoVB) samples demonstrated a statistically significant decrease in total rare cells, total cytokeratin (CK)+ cells, and CTCs across all patients due to filtration. Furthermore, analysis of 2 paired peripheral blood (PB) samples showed a decrease in total rare cells, total CK+ cells, and specific phenotypes of rare cells after filtration. DISCUSSION These preliminary results demonstrate initial proof of concept that this filtration device can remove CTCs from circulation and may therefore be useful as a therapy or adjunct in PDAC patient care.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Divya Suresh
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - George Courcoubetis
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Brandon Ye
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emmeline Lin
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ken Park
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michael Lewis
- Departments of Medicine and Pathology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Pathology, VA Greater Los Angeles Medical Center, Los Angeles, CA, 90073, USA
- Center for Cancer Research and Development, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Ruoxiang Wang
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Simon K Lo
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Peter Kuhn
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA.
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Stephen Pandol
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
11
|
Li L, Xie W, Zhan L, Wen S, Luo X, Xu S, Cai Y, Tang W, Wang Q, Li M, Xie Z, Deng L, Zhu H, Yu G. Resolving tumor evolution: a phylogenetic approach. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:97-106. [PMID: 39282584 PMCID: PMC11390690 DOI: 10.1016/j.jncc.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 09/19/2024] Open
Abstract
The evolutionary dynamics of cancer, characterized by its profound heterogeneity, demand sophisticated tools for a holistic understanding. This review delves into tumor phylogenetics, an essential approach bridging evolutionary biology with oncology, offering unparalleled insights into cancer's evolutionary trajectory. We provide an overview of the workflow, encompassing study design, data acquisition, and phylogeny reconstruction. Notably, the integration of diverse data sets emerges as a transformative step, enhancing the depth and breadth of evolutionary insights. With this integrated perspective, tumor phylogenetics stands poised to redefine our understanding of cancer evolution and influence therapeutic strategies.
Collapse
Affiliation(s)
- Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaodi Wen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital, Nanjing, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Division of Laboratory Medicine, Microbiome Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yantong Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyuan Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Bai L, Courcoubetis G, Mason J, Hicks JB, Nieva J, Kuhn P, Shishido SN. Longitudinal tracking of circulating rare events in the liquid biopsy of stage III-IV non-small cell lung cancer patients. Discov Oncol 2024; 15:142. [PMID: 38700626 PMCID: PMC11068717 DOI: 10.1007/s12672-024-00984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
In the United States, lung cancer is the second most common type of cancer with non-small cell lung cancer (NSCLC) encompassing around 85% of total lung cancer cases. Late-stage patients with metastatic disease have worsening prognosis, highlighting the importance of longitudinal disease monitoring. Liquid biopsy (LBx) represents a way for physicians to non-invasively track tumor analytes, such as circulating tumor cells (CTCs), and understand tumor progression in real-time through analyzing longitudinal blood samples. CTCs have been shown to be effective predictive biomarkers in measuring treatment efficacy and survival outcomes. We used the third-generation High-Definition Single Cell Assay (HDSCA3.0) workflow to analyze circulating rare events longitudinally during treatment in a cohort of 10 late-stage NSCLC patients, identifying rare events including circulating cancer cells (i.e., CTCs), and oncosomes. Here, we show (1) that there is a cancer specific LBx profile, (2) there is considerable heterogeneity of rare cells and oncosomes, and (3) that LBx data elements correlated with patient survival outcomes. Additional studies are warranted to understand the biological significance of the rare events detected, and the clinical potential of the LBx to monitor and predict response to treatment in NSCLC patient care.
Collapse
Affiliation(s)
- Lily Bai
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - George Courcoubetis
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - James B Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jorge Nieva
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Catherine and Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
13
|
Shishido SN, Lin E, Nissen N, Courcoubetis G, Suresh D, Mason J, Osipov A, Hendifar AE, Lewis M, Gaddam S, Pandol S, Kuhn P, Lo SK. Cancer-related cells and oncosomes in the liquid biopsy of pancreatic cancer patients undergoing surgery. NPJ Precis Oncol 2024; 8:36. [PMID: 38360856 PMCID: PMC10869814 DOI: 10.1038/s41698-024-00521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a five-year survival rate of less than 10% due to its late diagnosis, rapid metastasis, and chemotherapeutic resistance. For a small proportion (10-20%) of early-stage patients however, surgical resection of the pancreatic tumor offers the best chance for survival but the effect of surgery on disease dissemination is unknown. The primary objective of this study was to characterize cellular and acellular blood-based analytes in portal and peripheral blood before pancreatic manipulation, during tumor dissection and immediately after surgical resection to determine the effects of the surgery. This study used the non-enriching third generation High-Definition Single Cell Assay (HDSCA3.0) workflow to investigate heterogeneous circulating rare cell population in the blood. Blood from both sites taken before surgical manipulation of the pancreas had significantly greater incidence of total rare cellular and acellular analytes than normal donor samples. Post-surgery portal and peripheral blood had significantly greater incidence of specific cellular and acellular subtypes compared to the matched pre- and during-surgery samples. Our results reveal that in patients with PDAC liquid biopsy analytes are increased in both the portal and peripheral blood; portal blood contains a higher frequency of analytes than in the peripheral blood; total analytes in the portal and peripheral blood samples were significantly associated with the tumor volume and pathological T stage; and the surgical procedure increased the blood levels of circulating cellular and acellular analytes, but not Epi.CTCs or Mes.CTCs. This study demonstrates liquid biopsy's utility in monitoring patients with PDAC with surgically resectable disease.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emmeline Lin
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nicholas Nissen
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - George Courcoubetis
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Divya Suresh
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Arsen Osipov
- IM Hematology Oncology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Andrew E Hendifar
- IM Hematology Oncology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Michael Lewis
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Greater Los Angeles Veterans Affairs System, Los Angeles, CA, 90073, USA
- Clark Atlanta University, Center for Cancer Research and Therapeutic Development, Atlanta, GA, 30314, USA
| | - Srinivas Gaddam
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Stephen Pandol
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Peter Kuhn
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA.
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Simon K Lo
- Pancreatic and Biliary Diseases Program, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
14
|
Shishido SN, Hart O, Jeong S, Moriarty A, Heeke D, Rossi J, Bot A, Kuhn P. Liquid biopsy approach to monitor the efficacy and response to CAR-T cell therapy. J Immunother Cancer 2024; 12:e007329. [PMID: 38350684 PMCID: PMC10862257 DOI: 10.1136/jitc-2023-007329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells are approved for use in the treatment of hematological malignancies. Axicabtagene ciloleucel (YESCARTA) and brexucabtagene autoleucel (TECARTUS) genetically modified autologous T cells expressing an anti-CD19 scFv based on the FMC63 clone have shown impressive response rates for the treatment of CD19+B cell malignancies, but there remain challenges in monitoring long-term persistence as well as the functional characterization of low-level persisting CAR-T cells in patients. Furthermore, due to CD19-negative driven relapse, having the capability to monitor patients with simultaneous detection of the B cell malignancy and persisting CAR-T cells in patient peripheral blood is important for ensuring timely treatment optionality and understanding relapse. METHODS This study demonstrates the development and technical validation of a comprehensive liquid biopsy, high-definition single cell assay (HDSCA)-HemeCAR for (1) KTE-X19 CAR-T cell identification and analysis and (2) simultaneously monitoring the CD19-epitope landscape on neoplastic B cells in cryopreserved or fresh peripheral blood. Proprietary anti-CD19 CAR reagents, healthy donor transduced CAR-T cells, and patient samples consisting of malignant B cell fractions from manufacturing were used for assay development. RESULTS The CAR-T assay showed an approximate limit of detection at 1 cell in 3 million with a sensitivity of 91%. Genomic analysis was additionally used to confirm the presence of the CAR transgene. This study additionally reports the successful completion of two B cell assays with multiple CD19 variants (FMC63 and LE-CD19) and a unique fourth channel biomarker (CD20 or CD22). In patient samples, we observed that CD19 isoforms were highly heterogeneous both intrapatient and interpatient. CONCLUSIONS With the simultaneous detection of the CAR-T cells and the B cell malignancy in patient peripheral blood, the HDSCA-HemeCAR workflow may be considered for risk monitoring and patient management.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Olivia Hart
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Sujin Jeong
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Aidan Moriarty
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
| | - Darren Heeke
- Kite A Gilead Company, Santa Monica, California, USA
| | - John Rossi
- Kite A Gilead Company, Santa Monica, California, USA
| | - Adrian Bot
- Kite A Gilead Company, Santa Monica, California, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California, USA
- Department of Biological Sciences Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
15
|
Zhan Q, Liu B, Situ X, Luo Y, Fu T, Wang Y, Xie Z, Ren L, Zhu Y, He W, Ke Z. New insights into the correlations between circulating tumor cells and target organ metastasis. Signal Transduct Target Ther 2023; 8:465. [PMID: 38129401 PMCID: PMC10739776 DOI: 10.1038/s41392-023-01725-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Organ-specific metastasis is the primary cause of cancer patient death. The distant metastasis of tumor cells to specific organs depends on both the intrinsic characteristics of the tumor cells and extrinsic factors in their microenvironment. During an intermediate stage of metastasis, circulating tumor cells (CTCs) are released into the bloodstream from primary and metastatic tumors. CTCs harboring aggressive or metastatic features can extravasate to remote sites for continuous colonizing growth, leading to further lesions. In the past decade, numerous studies demonstrated that CTCs exhibited huge clinical value including predicting distant metastasis, assessing prognosis and monitoring treatment response et al. Furthermore, increasingly numerous experiments are dedicated to identifying the key molecules on or inside CTCs and exploring how they mediate CTC-related organ-specific metastasis. Based on the above molecules, more and more inhibitors are being developed to target CTCs and being utilized to completely clean CTCs, which should provide promising prospects to administer advanced tumor. Recently, the application of various nanomaterials and microfluidic technologies in CTCs enrichment technology has assisted to improve our deep insights into the phenotypic characteristics and biological functions of CTCs as a potential therapy target, which may pave the way for us to make practical clinical strategies. In the present review, we mainly focus on the role of CTCs being involved in targeted organ metastasis, especially the latest molecular mechanism research and clinical intervention strategies related to CTCs.
Collapse
Affiliation(s)
- Qinru Zhan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Bixia Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Xiaohua Situ
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yuting Luo
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Tongze Fu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Yanxia Wang
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Zhongpeng Xie
- Zhongshan School of Medicine, Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Lijuan Ren
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China
| | - Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| | - Weiling He
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
- School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, 361000, Xiamen, Fujian, P.R. China.
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
16
|
Ogut MG, Ma P, Gupta R, Hoerner CR, Fan AC, El-Kaffas AN, Durmus NG. Automated Image Analysis for Characterization of Circulating Tumor Cells and Clusters Sorted by Magnetic Levitation. Adv Biol (Weinh) 2023; 7:e2300109. [PMID: 37462226 DOI: 10.1002/adbi.202300109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Indexed: 10/24/2023]
Abstract
Magnetic levitation-based sorting technologies have revolutionized the detection and isolation of rare cells, including circulating tumor cells (CTCs) and circulating tumor cell clusters (CTCCs). Manual counting and quantification of these cells are prone to time-consuming processes, human error, and inter-observer variability, particularly challenging when heterogeneous cell types in 3D clusters are present. To overcome these challenges, we developed "Fastcount," an in-house MATLAB-based algorithm for precise, automated quantification and phenotypic characterization of CTCs and CTCCs, in both 2D and 3D. Fastcount is 120 times faster than manual counting and produces reliable results with a ±7.3% deviation compared to a trained laboratory technician. By analyzing 400 GB of fluorescence imaging data, we showed that Fastcount outperforms manual counting and commercial software when cells are aggregated in 3D or staining artifacts are present, delivering more accurate results. We further employed Fastcount for automated analysis of 3D image stacks obtained from CTCCs isolated from colorectal adenocarcinoma and renal cell carcinoma blood samples. Interestingly, we observed a highly heterogeneous spatial cellular composition within CTCCs, even among clusters from the same patient. Overall, Fastcount can be employed for various applications with lab-chip devices, such as CTC detection, CTCC analysis in 3D and cell detection in biosensors.
Collapse
Affiliation(s)
- Mehmet Giray Ogut
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- School of Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Peng Ma
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Rakhi Gupta
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Christian R Hoerner
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alice C Fan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
- Department of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ahmed Nagy El-Kaffas
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Palo Alto, CA, 94305, USA
| |
Collapse
|
17
|
Mallin MM, Kim N, Choudhury MI, Lee SJ, An SS, Sun SX, Konstantopoulos K, Pienta KJ, Amend SR. Cells in the polyaneuploid cancer cell (PACC) state have increased metastatic potential. Clin Exp Metastasis 2023:10.1007/s10585-023-10216-8. [PMID: 37326720 DOI: 10.1007/s10585-023-10216-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Although metastasis is the leading cause of cancer deaths, it is quite rare at the cellular level. Only a rare subset of cancer cells (~ 1 in 1.5 billion) can complete the entire metastatic cascade: invasion, intravasation, survival in the circulation, extravasation, and colonization (i.e. are metastasis competent). We propose that cells engaging a Polyaneuploid Cancer Cell (PACC) phenotype are metastasis competent. Cells in the PACC state are enlarged, endocycling (i.e. non-dividing) cells with increased genomic content that form in response to stress. Single-cell tracking using time lapse microscopy reveals that PACC state cells have increased motility. Additionally, cells in the PACC state exhibit increased capacity for environment-sensing and directional migration in chemotactic environments, predicting successful invasion. Magnetic Twisting Cytometry and Atomic Force Microscopy reveal that cells in the PACC state display hyper-elastic properties like increased peripheral deformability and maintained peri-nuclear cortical integrity that predict successful intravasation and extravasation. Furthermore, four orthogonal methods reveal that cells in the PACC state have increased expression of vimentin, a hyper-elastic biomolecule known to modulate biomechanical properties and induce mesenchymal-like motility. Taken together, these data indicate that cells in the PACC state have increased metastatic potential and are worthy of further in vivo analysis.
Collapse
Affiliation(s)
- Mikaela M Mallin
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA.
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | | | - Se Jong Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Steven S An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, NJ, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | - Kenneth J Pienta
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Sarah R Amend
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| |
Collapse
|
18
|
Qi E, Courcoubetis G, Liljegren E, Herrera E, Nguyen N, Nadri M, Ghandehari S, Kazemian E, Reckamp KL, Merin NM, Merchant A, Mason J, Figueiredo JC, Shishido SN, Kuhn P. Investigation of liquid biopsy analytes in peripheral blood of individuals after SARS-CoV-2 infection. EBioMedicine 2023; 90:104519. [PMID: 36921564 PMCID: PMC10008671 DOI: 10.1016/j.ebiom.2023.104519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Post-acute COVID-19 syndrome (PACS) is linked to severe organ damage. The identification and stratification of at-risk SARS-CoV-2 infected individuals is vital to providing appropriate care. This exploratory study looks for a potential liquid biopsy signal for PACS using both manual and machine learning approaches. METHODS Using a high definition single cell assay (HDSCA) workflow for liquid biopsy, we analysed 100 Post-COVID patients and 19 pre-pandemic normal donor (ND) controls. Within our patient cohort, 73 had received at least 1 dose of vaccination prior to SARS-CoV-2 infection. We stratified the COVID patients into 25 asymptomatic, 22 symptomatic COVID-19 but not suspected for PACS and 53 PACS suspected. All COVID-19 patients investigated in this study were diagnosed between April 2020 and January 2022 with a median 243 days (range 16-669) from diagnosis to their blood draw. We did a histopathological examination of rare events in the peripheral blood and used a machine learning model to evaluate predictors of PACS. FINDINGS The manual classification found rare cellular and acellular events consistent with features of endothelial cells and platelet structures in the PACS-suspected cohort. The three categories encompassing the hypothesised events were observed at a significantly higher incidence in the PACS-suspected cohort compared to the ND (p-value < 0.05). The machine learning classifier performed well when separating the NDs from Post-COVID with an accuracy of 90.1%, but poorly when separating the patients suspected and not suspected of PACS with an accuracy of 58.7%. INTERPRETATION Both the manual and the machine learning model found differences in the Post-COVID cohort and the NDs, suggesting the existence of a liquid biopsy signal after active SARS-CoV-2 infection. More research is needed to stratify PACS and its subsyndromes. FUNDING This work was funded in whole or in part by Fulgent Genetics, Kathy and Richard Leventhal and Vassiliadis Research Fund. This work was also supported by the National Cancer InstituteU54CA260591.
Collapse
Affiliation(s)
- Elizabeth Qi
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - George Courcoubetis
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Emmett Liljegren
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ergueen Herrera
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Nathalie Nguyen
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maimoona Nadri
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sara Ghandehari
- Cedars-Sinai Medical Center, Pulmonary Rehabilitation in the Women's Guild Lung Institute, Los Angeles, CA 90048, USA
| | - Elham Kazemian
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Karen L Reckamp
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Noah M Merin
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Akil Merchant
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite AC1072, Los Angeles, CA 90048, USA
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA; Catherine & Joseph Aresty Department of Urology, Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|