1
|
Park JH, Lee J, Kim KH, Shin YH, Mun SK. Expansion of medical school admission quotas in Korea, is it really necessary? BMC Public Health 2025; 25:322. [PMID: 39863891 PMCID: PMC11763114 DOI: 10.1186/s12889-025-21558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND In 2024, the Korean Ministry of Health and Welfare enforced a policy to increase the number of medical school students by 2,000 over the next 5 years, despite opposition from doctors. This study aims to predict the trend of excess or shortage of medical personnel in Korea due to the policy of increasing the number of medical school students by 2035. METHODS Data from multiple sources, including the Ministry of Health and Welfare, National Health Insurance Corporation, and the Korean Medical Association, were used to estimate supply and demand. The inflow-outflow method was used for supply estimation, and assumptions were made regarding national medical examination pass rates, clinical physician consultation rates, mortality rates, and overseas emigration rates. Per capita medical use by gender and age group in 2022 was calculated for demand estimation of future medical use, and the results of future population projections were applied. The numbers of working days examined were 265, 275, 285, and 289.5 days. RESULTS The Korean government's prediction that there will be a shortage of 10,000 doctors in 2035 can be confirmed by the underestimation of the number of working days (265 days). However, if the actual number of working days, 289.5 days, is applied, not only will there be no shortage of doctors in 2035, but there could also be an oversupply of 3,000 doctors. If the number of medical school students has increased for five years and the public's medical use behavior and the number of working days for doctors are maintained at the current level, there is a possibility that there will be an oversupply of as many as 11,000 doctors by 2035. CONCLUSIONS Medical experts expressed concerns that the rapid increase in medical school enrollment would exacerbate the phenomenon of concentration, increase the cost of medical care, and collapse the medical system. In order to establish a reasonable plan for the supply and demand of medical personnel in the mid- to long-term, it is necessary to consider the future medical environment through discussions with medical providers and related organizations.
Collapse
Affiliation(s)
- Jeong Hun Park
- Research Institute for Healthcare Policy, Korean Medical Association, Yongsan-gu, Seoul, South Korea
| | - Jungchan Lee
- Research Institute for Healthcare Policy, Korean Medical Association, Yongsan-gu, Seoul, South Korea
| | - Kye-Hyun Kim
- Research Institute for Healthcare Policy, Korean Medical Association, Yongsan-gu, Seoul, South Korea
| | - Yo Han Shin
- Research Institute for Healthcare Policy, Korean Medical Association, Yongsan-gu, Seoul, South Korea
| | - Seog-Kyun Mun
- Research Institute for Healthcare Policy, Korean Medical Association, Yongsan-gu, Seoul, South Korea.
- Department of Otorhinolaryngology-Head Neck Surgery, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, South Korea.
| |
Collapse
|
2
|
Ye H. Address health inequities among human beings is an ethical matter of urgency, whether or not to develop more powerful AI. JOURNAL OF MEDICAL ETHICS 2024; 50:820-821. [PMID: 39209377 DOI: 10.1136/jme-2024-110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Hongnan Ye
- Beijing Alumni Association of China Medical University, Beijing, China
| |
Collapse
|
3
|
Wang B, Shi X, Han X, Xiao G. The digital transformation of nursing practice: an analysis of advanced IoT technologies and smart nursing systems. Front Med (Lausanne) 2024; 11:1471527. [PMID: 39678028 PMCID: PMC11638746 DOI: 10.3389/fmed.2024.1471527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
Facing unprecedented challenges due to global population aging and the prevalence of chronic diseases, the healthcare sector is increasingly relying on innovative solutions. Internet of Things (IoT) technology, by integrating sensing, network communication, data processing, and security technologies, offers promising approaches to address issues such as nursing personnel shortages and rising healthcare costs. This paper reviews the current state of IoT applications in healthcare, including key technologies, frameworks for smart nursing platforms, and case studies. Findings indicate that IoT significantly enhances the efficiency and quality of care, particularly in real-time health monitoring, disease management, and remote patient supervision. However, challenges related to data quality, user acceptance, and economic viability also arise. Future trends in IoT development will likely focus on increased intelligence, precision, and personalization, while international cooperation and policy support are critical for the global adoption of IoT in healthcare. This review provides valuable insights for policymakers, researchers, and practitioners in healthcare and suggests directions for future research and technological advancements.
Collapse
Affiliation(s)
- Boyuan Wang
- Beijing Xiaotangshan Hospital, Beijing, China
| | - Xiali Shi
- University of Shanghai for Science and Technology, Shanghai, China
| | - Xihao Han
- National Institute of Hospital Administration, Beijing, China
| | - Gexin Xiao
- National Institute of Hospital Administration, Beijing, China
| |
Collapse
|
4
|
Preti LM, Ardito V, Compagni A, Petracca F, Cappellaro G. Implementation of Machine Learning Applications in Health Care Organizations: Systematic Review of Empirical Studies. J Med Internet Res 2024; 26:e55897. [PMID: 39586084 PMCID: PMC11629039 DOI: 10.2196/55897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/07/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND There is a growing enthusiasm for machine learning (ML) among academics and health care practitioners. Despite the transformative potential of ML-based applications for patient care, their uptake and implementation in health care organizations are sporadic. Numerous challenges currently impede or delay the widespread implementation of ML in clinical practice, and limited knowledge is available regarding how these challenges have been addressed. OBJECTIVE This work aimed to (1) examine the characteristics of ML-based applications and the implementation process in clinical practice, using the Consolidated Framework for Implementation Research (CFIR) for theoretical guidance and (2) synthesize the strategies adopted by health care organizations to foster successful implementation of ML. METHODS A systematic literature review was conducted based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The search was conducted in PubMed, Scopus, and Web of Science over a 10-year period (2013-2023). The search strategy was built around 4 blocks of keywords (artificial intelligence, implementation, health care, and study type). Only empirical studies documenting the implementation of ML applications in clinical settings were considered. The implementation process was investigated using a thematic analysis and coding procedure. RESULTS Thirty-four studies were selected for data synthesis. Selected papers were relatively recent, with only 9% (3/34) of records published before 2019. ML-based applications were implemented mostly within hospitals (29/34, 85%). In terms of clinical workflow, ML-based applications supported mostly prognosis (20/34, 59%) and diagnosis (10/34, 29%). The implementation efforts were analyzed using CFIR domains. As for the inner setting domain, access to knowledge and information (12/34, 35%), information technology infrastructure (11/34, 32%), and organizational culture (9/34, 26%) were among the most observed dimensions influencing the success of implementation. As for the ML innovation itself, factors deemed relevant were its design (15/34, 44%), the relative advantage with respect to existing clinical practice (14/34, 41%), and perceived complexity (14/34, 41%). As for the other domains (ie, processes, roles, and outer setting), stakeholder engagement (12/34, 35%), reflecting and evaluating practices (11/34, 32%), and the presence of implementation leaders (9/34, 26%) were the main factors identified as important. CONCLUSIONS This review sheds some light on the factors that are relevant and that should be accounted for in the implementation process of ML-based applications in health care. While the relevance of ML-specific dimensions, like trust, emerges clearly across several implementation domains, the evidence from this review highlighted that relevant implementation factors are not necessarily specific for ML but rather transversal for digital health technologies. More research is needed to further clarify the factors that are relevant to implementing ML-based applications at the organizational level and to support their uptake within health care organizations. TRIAL REGISTRATION PROSPERO 403873; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=403873. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.2196/47971.
Collapse
Affiliation(s)
- Luigi M Preti
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Vittoria Ardito
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Amelia Compagni
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
- Department of Social and Political Sciences, Bocconi University, Milan, Italy
| | - Francesco Petracca
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
| | - Giulia Cappellaro
- Center for Research on Health and Social Care Management (CERGAS), SDA Bocconi School of Management, Milan, Italy
- Department of Social and Political Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
5
|
Hatherley J, Kinderlerer A, Bjerring JC, Munch LA, Threlfall L. The FHJ debate: Will artificial intelligence replace clinical decision making within our lifetimes? Future Healthc J 2024; 11:100178. [PMID: 39371529 PMCID: PMC11452837 DOI: 10.1016/j.fhj.2024.100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Joshua Hatherley
- Aarhus University, Department of Philosophy and History of Ideas, Denmark
| | | | | | | | - Lynsey Threlfall
- Royal Victoria Infirmary Newcastle, Newcastle University - BRC, England
| |
Collapse
|
6
|
Barea Mendoza JA, Valiente Fernandez M, Pardo Fernandez A, Gómez Álvarez J. Current perspectives on the use of artificial intelligence in critical patient safety. Med Intensiva 2024:S2173-5727(24)00080-8. [PMID: 38677902 DOI: 10.1016/j.medine.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/29/2024]
Abstract
Intensive Care Units (ICUs) have undergone enhancements in patient safety, and artificial intelligence (AI) emerges as a disruptive technology offering novel opportunities. While the published evidence is limited and presents methodological issues, certain areas show promise, such as decision support systems, detection of adverse events, and prescription error identification. The application of AI in safety may pursue predictive or diagnostic objectives. Implementing AI-based systems necessitates procedures to ensure secure assistance, addressing challenges including trust in such systems, biases, data quality, scalability, and ethical and confidentiality considerations. The development and application of AI demand thorough testing, encompassing retrospective data assessments, real-time validation with prospective cohorts, and efficacy demonstration in clinical trials. Algorithmic transparency and explainability are essential, with active involvement of clinical professionals being crucial in the implementation process.
Collapse
Affiliation(s)
- Jesús Abelardo Barea Mendoza
- UCI de Trauma y Emergencias. Servicio de Medicina Intensiva. Hospital Universitario 12 de Octubre. Instituto de Investigación Hospital 12 de Octubre, Spain.
| | - Marcos Valiente Fernandez
- UCI de Trauma y Emergencias. Servicio de Medicina Intensiva. Hospital Universitario 12 de Octubre. Instituto de Investigación Hospital 12 de Octubre, Spain
| | | | - Josep Gómez Álvarez
- Hospital Universitari de Tarragona Joan XXIII. Universitat Rovira i Virgili. Institut d'Investigació Sanitària Pere i Virgili, Tarragona, Spain
| |
Collapse
|
7
|
Elhaddad M, Hamam S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus 2024; 16:e57728. [PMID: 38711724 PMCID: PMC11073764 DOI: 10.7759/cureus.57728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Clinical Decision Support Systems (CDSS) are essential tools in contemporary healthcare, enhancing clinicians' decisions and patient outcomes. The integration of artificial intelligence (AI) is now revolutionizing CDSS even further. This review delves into AI technologies transforming CDSS, their applications in healthcare decision-making, associated challenges, and the potential trajectory toward fully realizing AI-CDSS's potential. The review begins by laying the groundwork with a definition of CDSS and its function within the healthcare field. It then highlights the increasingly significant role that AI is playing in enhancing CDSS effectiveness and efficiency, underlining its evolving prominence in shaping healthcare practices. It examines the integration of AI technologies into CDSS, including machine learning algorithms like neural networks and decision trees, natural language processing, and deep learning. It also addresses the challenges associated with AI integration, such as interpretability and bias. We then shift to AI applications within CDSS, with real-life examples of AI-driven diagnostics, personalized treatment recommendations, risk prediction, early intervention, and AI-assisted clinical documentation. The review emphasizes user-centered design in AI-CDSS integration, addressing usability, trust, workflow, and ethical and legal considerations. It acknowledges prevailing obstacles and suggests strategies for successful AI-CDSS adoption, highlighting the need for workflow alignment and interdisciplinary collaboration. The review concludes by summarizing key findings, underscoring AI's transformative potential in CDSS, and advocating for continued research and innovation. It emphasizes the need for collaborative efforts to realize a future where AI-powered CDSS optimizes healthcare delivery and improves patient outcomes.
Collapse
Affiliation(s)
- Malek Elhaddad
- Medicine, The Hospital for Sick Children, Toronto, CAN
- Medicine, Upper Canada College, Toronto, CAN
| | - Sara Hamam
- Ophthalmology, Queen Elizabeth University Hospital, Glasgow, GBR
| |
Collapse
|
8
|
Hu Z, Wang M, Zheng S, Xu X, Zhang Z, Ge Q, Li J, Yao Y. Clinical Decision Support Requirements for Ventricular Tachycardia Diagnosis Within the Frameworks of Knowledge and Practice: Survey Study. JMIR Hum Factors 2024; 11:e55802. [PMID: 38530337 PMCID: PMC11005434 DOI: 10.2196/55802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/15/2024] [Accepted: 03/02/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Ventricular tachycardia (VT) diagnosis is challenging due to the similarity between VT and some forms of supraventricular tachycardia, complexity of clinical manifestations, heterogeneity of underlying diseases, and potential for life-threatening hemodynamic instability. Clinical decision support systems (CDSSs) have emerged as promising tools to augment the diagnostic capabilities of cardiologists. However, a requirements analysis is acknowledged to be vital for the success of a CDSS, especially for complex clinical tasks such as VT diagnosis. OBJECTIVE The aims of this study were to analyze the requirements for a VT diagnosis CDSS within the frameworks of knowledge and practice and to determine the clinical decision support (CDS) needs. METHODS Our multidisciplinary team first conducted semistructured interviews with seven cardiologists related to the clinical challenges of VT and expected decision support. A questionnaire was designed by the multidisciplinary team based on the results of interviews. The questionnaire was divided into four sections: demographic information, knowledge assessment, practice assessment, and CDS needs. The practice section consisted of two simulated cases for a total score of 10 marks. Online questionnaires were disseminated to registered cardiologists across China from December 2022 to February 2023. The scores for the practice section were summarized as continuous variables, using the mean, median, and range. The knowledge and CDS needs sections were assessed using a 4-point Likert scale without a neutral option. Kruskal-Wallis tests were performed to investigate the relationship between scores and practice years or specialty. RESULTS Of the 687 cardiologists who completed the questionnaire, 567 responses were eligible for further analysis. The results of the knowledge assessment showed that 383 cardiologists (68%) lacked knowledge in diagnostic evaluation. The overall average score of the practice assessment was 6.11 (SD 0.55); the etiological diagnosis section had the highest overall scores (mean 6.74, SD 1.75), whereas the diagnostic evaluation section had the lowest scores (mean 5.78, SD 1.19). A majority of cardiologists (344/567, 60.7%) reported the need for a CDSS. There was a significant difference in practice competency scores between general cardiologists and arrhythmia specialists (P=.02). CONCLUSIONS There was a notable deficiency in the knowledge and practice of VT among Chinese cardiologists. Specific knowledge and practice support requirements were identified, which provide a foundation for further development and optimization of a CDSS. Moreover, it is important to consider clinicians' specialization levels and years of practice for effective and personalized support.
Collapse
Affiliation(s)
- Zhao Hu
- Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Min Wang
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Si Zheng
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaowei Xu
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhuxin Zhang
- Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Qiaoyue Ge
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Institute of Medical Information, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yan Yao
- Arrhythmia Center, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| |
Collapse
|
9
|
Vijayakumar S, Lee VV, Leong QY, Hong SJ, Blasiak A, Ho D. Physicians' Perspectives on AI in Clinical Decision Support Systems: Interview Study of the CURATE.AI Personalized Dose Optimization Platform. JMIR Hum Factors 2023; 10:e48476. [PMID: 37902825 PMCID: PMC10644191 DOI: 10.2196/48476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Physicians play a key role in integrating new clinical technology into care practices through user feedback and growth propositions to developers of the technology. As physicians are stakeholders involved through the technology iteration process, understanding their roles as users can provide nuanced insights into the workings of these technologies that are being explored. Therefore, understanding physicians' perceptions can be critical toward clinical validation, implementation, and downstream adoption. Given the increasing prevalence of clinical decision support systems (CDSSs), there remains a need to gain an in-depth understanding of physicians' perceptions and expectations toward their downstream implementation. This paper explores physicians' perceptions of integrating CURATE.AI, a novel artificial intelligence (AI)-based and clinical stage personalized dosing CDSSs, into clinical practice. OBJECTIVE This study aims to understand physicians' perspectives of integrating CURATE.AI for clinical work and to gather insights on considerations of the implementation of AI-based CDSS tools. METHODS A total of 12 participants completed semistructured interviews examining their knowledge, experience, attitudes, risks, and future course of the personalized combination therapy dosing platform, CURATE.AI. Interviews were audio recorded, transcribed verbatim, and coded manually. The data were thematically analyzed. RESULTS Overall, 3 broad themes and 9 subthemes were identified through thematic analysis. The themes covered considerations that physicians perceived as significant across various stages of new technology development, including trial, clinical implementation, and mass adoption. CONCLUSIONS The study laid out the various ways physicians interpreted an AI-based personalized dosing CDSS, CURATE.AI, for their clinical practice. The research pointed out that physicians' expectations during the different stages of technology exploration can be nuanced and layered with expectations of implementation that are relevant for technology developers and researchers.
Collapse
Affiliation(s)
- Smrithi Vijayakumar
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - V Vien Lee
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Qiao Ying Leong
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Soo Jung Hong
- Department of Communications and New Media, National University of Singapore, Singapore, Singapore
| | - Agata Blasiak
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dean Ho
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|