1
|
Mondal S, Rahimi FA, Das TN, Nath S, Maji TK. Co II-organic 'soft' metallo-supramolecular polymer nanofibers for efficient photoreduction of CO 2. Chem Sci 2025:d4sc08814j. [PMID: 39877814 PMCID: PMC11771370 DOI: 10.1039/d4sc08814j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO2 reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-b:4,5-b']dithiophene core with terpyridine (TPY) units via alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO2 reduction. The self-assembly of TPY-BDT with CoII ions yields a Co-TPY-BDT coordination polymer gel (CPG) with a 3D interconnected fibrous morphology, facilitating rapid electron transfer and efficient substrate diffusion. The Co-TPY-BDT CPG achieves an outstanding CO2 to CO conversion, producing 33.74 mmol g-1 of CO in 18 hours with ∼99% selectivity under visible light irradiation, using triethylamine (TEA) as a sacrificial electron donor. Remarkably, the Co-TPY-BDT CPG demonstrates significant catalytic activity even under low-concentration CO2 atmospheres (5% CO2, 95% Ar), producing 1.9 mmol g-1 of CO in 10 hours with a selectivity of 94.6%. Moreover, In situ diffuse reflectance Fourier transform (DRIFT) study, femtosecond transient absorption spectroscopy, and DFT calculations were employed to elucidate the CO2 to CO reaction mechanism.
Collapse
Affiliation(s)
- Souvik Mondal
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji
| | - Tarak Nath Das
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| | - Sukhendu Nath
- Radiation and Photochemistry Division, Bhabha Atomic Research Center Mumbai 400085 India
- Homi Bhabha National Institute Anushaktinagar Mumbai 400094 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji
- New Chemistry Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India
| |
Collapse
|
2
|
Ma X, Zhang Y, Zhou A, Jia Y, Xie Z, Ding L, Li JR. Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction. J Colloid Interface Sci 2025; 685:696-705. [PMID: 39862848 DOI: 10.1016/j.jcis.2025.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO2) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions. A series of core-shell UiO-66 (Zr-MOF)-loaded MIL-125 (Ti-MOF) heterojunctions with exposed specific facets were prepared to enhance the separation efficiency of photogenerated electrons-holes in CO2 photoreduction. Impressively, MIL-125to@UiO-66 with exposed {1 1 1} facet exhibits an excellent CO production rate (56.4 μmol g-1 h-1) and selectivity (99 %) under visible light irradiation without any photosensitizers/sacrificial agents, being 1.4 and 11.3 times higher than individual MIL-125to and UiO-66, respectively. The type-II heterojunction significantly enhances the separation of photogenerated electrons-holes in physical space. The photogenerated electrons migrate from Zr in UiO-66 to Ti in MIL-125to, promoting a spatial synergy between CO2 reduction on MIL-125to and H2O oxidation on UiO-66. Compared with MIL-125rd@UiO-66 with exposed {1 1 0} facet and MIL-125ds@UiO-66 with exposed {0 0 1} facet, MIL-125to@UiO-66 with exposed {1 1 1} facet improves the exposure of surface-active Ti sites, thereby enhancing the adsorption/activation of CO2 to generate the *COOH intermediate. This work provides an effective strategy for designing MOF-based heterojunction photocatalysts to improve photocatalytic performance.
Collapse
Affiliation(s)
- Xiaoyu Ma
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Awu Zhou
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yutong Jia
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhenghe Xie
- Beijing Energy Holding Co., Ltd., Beijing 100124, China
| | - Lifeng Ding
- Beijing Energy Holding Co., Ltd., Beijing 100124, China
| | - Jian-Rong Li
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Fathabadi M, Vafadar MF, Ni S, Zhao Y, Song J, Li CJ, Zhao S. Scandium-III-nitrides: A New Material Platform for Semiconductor Photocatalysts with High Reducing Power. NANO LETTERS 2025; 25:786-792. [PMID: 39812149 DOI: 10.1021/acs.nanolett.4c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Semiconductor nanowires have become emerging photocatalysts in artificial photosynthesis processes for solar fuel production. For reduction reactions, semiconductor photocatalysts with high reducing powers are highly desirable, especially for chemicals that are extremely difficult to reduce. This study introduces a new semiconductor photocatalyst, scandium (Sc)-III-nitrides, which have higher reducing powers than all conventional semiconductor photocatalysts. In specific, we focus on ScxGa1-xN (ScGaN) nanowires. The detailed material synthesis and characterization of such nanowires are explored, and the photocatalytic reduction of carbon dioxide (CO2), as an example of chemicals that are difficult to reduce, is also performed. The photocatalytic CO2 reduction using GaN, a well-known high-performance semiconductor photocatalyst, is conducted as well as a reference. It is found that compared to using GaN nanowires, using ScGaN nanowires can significantly increase the production rate of formic acid (HCOOH). Moreover, ScGaN nanowires can further reduce HCOOH to methanol (CH3OH).
Collapse
Affiliation(s)
- Milad Fathabadi
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Mohammad Fazel Vafadar
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Siting Ni
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ying Zhao
- Department of Mining and Materials Engineering, McGill University, 3610 University, Montreal, Quebec H3A 0C5, Canada
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, 3610 University, Montreal, Quebec H3A 0C5, Canada
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Songrui Zhao
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
4
|
Fu P, Zhang Y, Wang S, Ye X, Wu Y, Yu M, Zhu S, Lee HJ, Zhang D. INSPIRE: Single-beam probed complementary vibrational bioimaging. SCIENCE ADVANCES 2024; 10:eadm7687. [PMID: 39661668 PMCID: PMC11633736 DOI: 10.1126/sciadv.adm7687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/19/2024] [Indexed: 12/13/2024]
Abstract
Molecular spectroscopy provides intrinsic contrast for in situ chemical imaging, linking the physiochemical properties of biomolecules to the functions of living systems. While stimulated Raman imaging has found successes in deciphering biological machinery, many vibrational modes are Raman inactive or weak, limiting the broader impact of the technique. It can potentially be mitigated by the spectral complementarity from infrared (IR) spectroscopy. However, the vastly different optical windows make it challenging to develop such a platform. Here, we introduce in situ pump-probe IR and Raman excitation (INSPIRE) microscopy, a nascent cross-modality spectroscopic imaging approach by encoding the ultrafast Raman and the IR photothermal relaxation into a single probe beam for simultaneous detection. INSPIRE inherits the merits of complementary modalities and demonstrates high-content molecular imaging of chemicals, cells, tissues, and organisms. Furthermore, INSPIRE applies to label-free and molecular tag imaging, offering possibilities for optical sensing and imaging in biomedicine and materials science.
Collapse
Affiliation(s)
- Pengcheng Fu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yongqing Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Siming Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Yunhong Wu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Shiyao Zhu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310027, China
- Hefei National Laboratory, Hefei 230088, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Wang L, Shao M, Xie ZL, Mulfort KL. Recent Advances in Immobilizing and Benchmarking Molecular Catalysts for Artificial Photosynthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24195-24215. [PMID: 39495742 DOI: 10.1021/acs.langmuir.4c03249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Transition metal complexes have been widely used as catalysts or chromophores in artificial photosynthesis. Traditionally, they are employed in homogeneous settings. Despite their functional versatility and structural tunability, broad industrial applications of these catalysts are impeded by the limitations of homogeneous catalysis such as poor catalyst recyclability, solvent constraints (mostly organic solvents), and catalyst durability. Over the past few decades, researchers have developed various methods for molecular catalyst heterogenization to overcome these limitations. In this review, we summarize recent developments in heterogenization strategies, with a focus on describing methods employed in the heterogenization process and their effects on catalytic performances. Alongside the in-depth discussion of heterogenization strategies, this review aims to provide a concise overview of the key metrics associated with heterogenized systems. We hope this review will aid researchers who are new to this research field in gaining a better understanding.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Mengjiao Shao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
| | - Zhu-Lin Xie
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
6
|
Jiao Z, Li G, Guo S, Wang W, Hou Q, Li Y, Ma W, He G, Fei Q. A De Novo Auto-Activated Solar-Driven Biohybrid System for Hydrogen Production in Methanotrophic Cells. Angew Chem Int Ed Engl 2024:e202419973. [PMID: 39510972 DOI: 10.1002/anie.202419973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Climate change driving by greenhouse gas emissions from petroleum-based energy has garnered significant attention. Renewable energy production via a sustainable system that integrates the cell factory and visible-light-driven photocatalysts offers a novel approach for upcycling methane and addressing global energy challenges. Here, an auto-activated biohybrid system driven by solar energy is developed for converting methane into hydrogen fuel, which incorporated thienoviologen (S-MV2+) and genetically engineered methanotrophic bacteria. In this system, S-MV2+ functioned as photosensitizer and electron mediator, capturing solar energy and supplying electrons for an enzyme-catalyzed bioprocess. The genetically modified Methylomicrobium buryatense 5GB1 mutant, lacking methanol dehydrogenase but overexpressing hydrogenase, is able to convert methane into methanol that maintains the electron flow cycle by quenching photogenerated holes for both hydrogen biosynthesis and methane oxidation. Finally, the highest H2 production of 272.96 μM from this biohybrid system was achieved with methanol as a sacrificial agent generated by the H2-producing mutant, resulting in a 140-fold enhancement. This innovative method showcases the potential of coupling photocatalysis with methanotrophic biocatalysis for sustainable energy production. Additionally, the system introduces a new strategy for self-regeneration of sacrificial agents, offering a promising avenue for hydrogen production using greenhouse gases in an eco-friendly manner.
Collapse
Affiliation(s)
- Ziyue Jiao
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shuqi Guo
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Weiting Wang
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qianzi Hou
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yawen Li
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Engineering Research Center of Key Materials for Efficient Utilization of Clean Energy of Shaanxi Province, Xi'an Photoelectromagnetic Functional Materials International Science and Technology Cooperation Center, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Key Laboratory of C1 Compound Bioconversion Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
McKee M, Kutter M, Wu Y, Williams H, Vaudreuil MA, Carta M, Yadav AK, Singh H, Masson JF, Lentz D, Kühnel MF, Kornienko N. Hydrophobic assembly of molecular catalysts at the gas-liquid-solid interface drives highly selective CO 2 electromethanation. Nat Chem 2024:10.1038/s41557-024-01650-6. [PMID: 39367063 DOI: 10.1038/s41557-024-01650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2024] [Indexed: 10/06/2024]
Abstract
Molecular catalysts offer tunable active and peripheral sites, rendering them ideal model systems to explore fundamental concepts in catalysis. However, hydrophobic designs are often regarded as detrimental for dissolution in aqueous electrolytes. Here we show that established cobalt terpyridine catalysts modified with hydrophobic perfluorinated alkyl side chains can assemble at the gas-liquid-solid interfaces on a gas diffusion electrode. We find that the self-assembly of these perfluorinated units on the electrode surface results in a catalytic system selective for electrochemical CO2 reduction to CH4, whereas every other cobalt terpyridine catalyst reported previously was only selective for CO or formate. Mechanistic investigations suggest that the pyridine units function as proton shuttles that deliver protons to the dynamic hydrophobic pocket in which CO2 reduction takes place. Finally, integration with fluorinated carbon nanotubes as a hydrophobic conductive scaffold leads to a Faradaic efficiency for CH4 production above 80% at rates above 10 mA cm-2-impressive activities for a molecular electrocatalytic system.
Collapse
Affiliation(s)
- Morgan McKee
- Institute of Inorganic Chemistry, University of Bonn, Bonn, Germany
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Maximilian Kutter
- Department of Chemistry, Swansea University, Swansea, UK
- Electrochemical Process Engineering, Universität Bayreuth, Bayreuth, Germany
| | - Yue Wu
- Department of Chemistry, Swansea University, Swansea, UK
| | - Hannah Williams
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
- Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
- 2-Amity Institute of Applied Sciences, Amity University, Uttar Pradesh, India
| | - Jean-François Masson
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
- Quebec Center for Advanced Materials, Regroupement Québécois sur les Matériaux de Pointe, Centre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage, Université de Montréal, Montréal, Québec, Canada
| | - Dieter Lentz
- Freie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Berlin, Germany
| | - Moritz F Kühnel
- Department of Chemistry, Swansea University, Swansea, UK.
- Institute of Chemistry, University of Hohenheim, Stuttgart, Germany.
| | - Nikolay Kornienko
- Institute of Inorganic Chemistry, University of Bonn, Bonn, Germany.
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Kim D, Bhattacharjee S, Lam E, Casadevall C, Rodríguez-Jiménez S, Reisner E. Photocatalytic CO 2 Reduction Using Homogeneous Carbon Dots with a Molecular Cobalt Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400057. [PMID: 38519846 DOI: 10.1002/smll.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/07/2024] [Indexed: 03/25/2024]
Abstract
A simple and precious-metal free photosystem for the reduction of aqueous CO2 to syngas (CO and H2) is reported consisting of carbon dots (CDs) as the sole light harvester together with a molecular cobalt bis(terpyridine) CO2 reduction co-catalyst. This homogeneous photocatalytic system operates in the presence of a sacrificial electron donor (triethanolamine) in DMSO/H2O solution at ambient temperature. The photocatalytic system exhibits an activity of 7.7 ± 0.2 mmolsyngas gCDs -1 (3.6 ± 0.2 mmolCO gCDs -1 and 4.1 ± 0.1 mmolH2 gCDs -1) after 24 hours of full solar spectrum irradiation (AM 1.5G). Spectroscopic and electrochemical characterization supports that this photocatalytic performance is attributed to a favorable association between CDs and the molecular cobalt catalyst, which results in improved interfacial photoelectron transfer and catalytic mechanism. This work provides a scalable and inexpensive platform for the development of CO2 photoreduction systems using CDs.
Collapse
Affiliation(s)
- Dongseok Kim
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Subhajit Bhattacharjee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
9
|
Teitsworth TS, Fang H, Harvey AK, Orr AD, Donley CL, Fakhraai Z, Atkin JM, Lockett MR. Diazonium-Functionalized Silicon Hybrid Photoelectrodes: Film Thickness and Composition Effects on Photoelectrochemical Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39151025 DOI: 10.1021/acs.langmuir.4c01787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Aryl diazonium electrografting is a powerful method for imparting molecular functionality onto various substrates by forming a stable carbon-surface covalent bond. While the high reactivity of the aryl radical intermediate makes this method fast and reliable, it can also lead to the formation of an insulating and disordered multilayer film. These thick films affect electrochemical performance, especially for semiconductor substrates used in photoelectrochemical applications. We studied the effects of film thickness and composition by electrografting in situ-generated aminobenzene diazonium salts onto both n-type and p-type silicon electrodes at fixed potentials. Next, we attached ferrocene to the amine-terminated films and probed their (photo)electrochemical behavior. Cyclic voltammetry measurements showed decreased electrochemical reversibility with increasing diazonium film thickness; this reversibility was restored when ferrocene was incorporated throughout the film with a layer-by-layer deposition process. Finally, we compared the behavior of dark p-type electrodes to n-type photoelectrodes and observed differences in the electrochemical reversibility that we attribute to the change in potential drop across the two interfaces.
Collapse
Affiliation(s)
- Taylor S Teitsworth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hui Fang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexis K Harvey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andre D Orr
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrie L Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joanna M Atkin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Pahar S, Maayan G. An intramolecular cobalt-peptoid complex as an efficient electrocatalyst for water oxidation at low overpotential. Chem Sci 2024; 15:12928-12938. [PMID: 39148784 PMCID: PMC11323339 DOI: 10.1039/d4sc01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Water electrolysis is the simplest way to produce hydrogen, as a clean renewable fuel. However, the high overpotential and slow kinetics hamper its applicability. Designing efficient and stable electrocatalysts for water oxidation (WO), which is the first and limiting step of the water splitting process, can overcome this limitation. However, the development of such catalysts based on non-precious metal ions is still challenging. Herein we describe a bio-inspired Co(iii)-based complex i.e., a stable and efficient molecular electrocatalyst for WO, constructed from a peptidomimetic oligomer called peptoid - N-substituted glycine oligomer - bearing two binding ligands, terpyridine and bipyridine, and one ethanolic group as a proton shuttler. Upon binding of a cobalt ion, this peptoid forms an intramolecular Co(iii) complex, that acts as an efficient electrocatalyst for homogeneous WO in aqueous phosphate buffer at pH 7 with a high faradaic efficiency of up to 92% at an overpotential of about 430 mV, which is the lowest reported for Co-based homogeneous WO electrocatalysts to date. We demonstrated the high stability of the complex during electrocatalytic WO and that the ethanolic side chain plays a key role in the stability and activity of the complex and also in facilitating water binding, thus mimicking an enzymatic second coordination sphere.
Collapse
Affiliation(s)
- Suraj Pahar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
11
|
Zhou S, Zhang LJ, Li J, Tung CH, Wu LZ. Engineering Ultrathin Cu xS Layer on Planar Sb 2S 3 Photocathode to Enhance Photoelectrochemical Transformation. Angew Chem Int Ed Engl 2024; 63:e202407836. [PMID: 38752620 DOI: 10.1002/anie.202407836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/28/2024]
Abstract
Sb2S3 has been extensively used as light absorber for photoelectrochemical cell. However, its p-type nature may result in the formation of Schottky junction with substrates, thus hindering the collection of photogenerated holes. Herein, an ultrathin CuxS layer is successfully engineered as the bottom junction for Sb2S3 for the first time. Capitalizing on its impressive electrical properties and superior optical properties, the CuxS layer exhibits a high work function of 4.90 eV, which causes the upward band bending of p-type Sb2S3, forming a hole-transparent structure with ohmic contact. The transparency of the ultrathin CuxS layer enables back-illumination of the Sb2S3/CuxS platform, facilitating the integration of intricate catalyst layers for photoelectrochemical transformation. When modified with Pt nanoparticles, the photocurrent density reaches -5.38 mA cm-2 at 0 V vs. RHE, marking a fourfold increase compared to the photocathode without CuxS layer. When introducing a molecular hybrid TC-CoPc@carbon black, a remarkable average photocurrent density of -0.44 mA cm-2 at the overpotential of 0 V is obtained for CO2 reduction reaction, while the photocurrent density is less than -0.03 mA cm-2 without CuxS.
Collapse
Affiliation(s)
- Shuai Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Li-Jun Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
12
|
Li XY, Zhu ZL, Dagnaw FW, Yu JR, Wu ZX, Chen YJ, Zhou MH, Wang T, Tong QX, Jian JX. Silicon photocathode functionalized with osmium complex catalyst for selective catalytic conversion of CO 2 to methane. Nat Commun 2024; 15:5882. [PMID: 39003268 PMCID: PMC11246507 DOI: 10.1038/s41467-024-50244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Solar-driven CO2 reduction to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving selective production of specific products remains a significant challenge. We showcase two osmium complexes, przpOs, and trzpOs, as CO2 reduction catalysts for selective CO2-to-methane conversion. Kinetically, the przpOs and trzpOs exhibit high CO2 reduction catalytic rate constants of 0.544 and 6.41 s-1, respectively. Under AM1.5 G irradiation, the optimal Si/TiO2/trzpOs have CH4 as the main product and >90% Faradaic efficiency, reaching -14.11 mA cm-2 photocurrent density at 0.0 VRHE. Density functional theory calculations reveal that the N atoms on the bipyrazole and triazole ligands effectively stabilize the CO2-adduct intermediates, which tend to be further hydrogenated to produce CH4, leading to their ultrahigh CO2-to-CH4 selectivity. These results are comparable to cutting-edge Si-based photocathodes for CO2 reduction, revealing a vast research potential in employing molecular catalysts for the photoelectrochemical conversion of CO2 to methane.
Collapse
Affiliation(s)
- Xing-Yi Li
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, PR China
| | - Ze-Lin Zhu
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | | | - Jie-Rong Yu
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
| | - Zhi-Xing Wu
- Laboratory of Organic Electronics, Department of Science and Technology (ITN), Linköping University, Norrköping, SE, 60174, Sweden
| | - Yi-Jing Chen
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
| | - Mu-Han Zhou
- Department of Chemistry, Shantou University, Shantou, 515063, PR China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, PR China
| | - Qing-Xiao Tong
- Department of Chemistry, Shantou University, Shantou, 515063, PR China.
- Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Shantou, 515063, PR China.
| | - Jing-Xin Jian
- Department of Chemistry, Shantou University, Shantou, 515063, PR China.
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, PR China.
| |
Collapse
|
13
|
Kainat SF, Hawsawi MB, Mughal EU, Naeem N, Almohyawi AM, Altass HM, Hussein EM, Sadiq A, Moussa Z, Abd-El-Aziz AS, Ahmed SA. Recent developments in the synthesis and applications of terpyridine-based metal complexes: a systematic review. RSC Adv 2024; 14:21464-21537. [PMID: 38979466 PMCID: PMC11228761 DOI: 10.1039/d4ra04119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Terpyridine-based metal complexes have emerged as versatile and indispensable building blocks in the realm of modern chemistry, offering a plethora of applications spanning from materials science to catalysis and beyond. This comprehensive review article delves into the multifaceted world of terpyridine complexes, presenting an overview of their synthesis, structural diversity, and coordination chemistry principles. Focusing on their diverse functionalities, we explore their pivotal roles in catalysis, supramolecular chemistry, luminescent materials, and nanoscience. Furthermore, we highlight the burgeoning applications of terpyridine complexes in sustainable energy technologies, biomimetic systems, and medicinal chemistry, underscoring their remarkable adaptability to address pressing challenges in these fields. By elucidating the pivotal role of terpyridine complexes as versatile building blocks, this review provides valuable insights into their current state-of-the-art applications and future potential, thus inspiring continued innovation and exploration in this exciting area of research.
Collapse
Affiliation(s)
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Abdulaziz M Almohyawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Hatem M Altass
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Essam M Hussein
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Alaa S Abd-El-Aziz
- Qingdao Innovation and Development Centre, Harbin Engineering University Qingdao 266400 China
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| |
Collapse
|
14
|
He X, Wen Y, Fang Y, Li M, Shan B. Charge Photoaccumulation in Covalent Polymer Networks for Boosting Photocatalytic Nitrate Reduction to Ammonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401878. [PMID: 38582515 PMCID: PMC11187893 DOI: 10.1002/advs.202401878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In the design of photoelectrocatalytic cells, a key element is effective photogeneration of electron-hole pairs to drive redox activation of catalysts. Despite recent progress in photoelectrocatalysis, experimental realization of a high-performance photocathode for multi-electron reduction of chemicals, such as nitrate reduction to ammonia, has remained a challenge due to difficulty in obtaining efficient electrode configurations for extraction of high-throughput electrons from absorbed photons. This work describes a new design for catalytic photoelectrodes using chromophore assembly-functionalized covalent networks for boosting eight-electron reduction of nitrate to ammonia. Upon sunlight irradiation, the photoelectrode stores a mass of reducing equivalents at the photoexcited chromophore assembly for multielectron reduction of a copper catalyst, enabling efficient nitrate reduction to ammonia. By introducing the new photoelectrode structure, it is demonstrated that the electronic interplay between charge photo-accumulating assembly and multi-electron redox catalysts can be optimized to achieve proper balance between electron transfer dynamics and thermodynamic output of photoelectrocatalytic systems.
Collapse
Affiliation(s)
- Xinjia He
- Department of ChemistryKey Laboratory of Excited‐State Materials of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Yingke Wen
- Department of ChemistryKey Laboratory of Excited‐State Materials of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Yanjie Fang
- Department of ChemistryKey Laboratory of Excited‐State Materials of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Mengjie Li
- Department of ChemistryKey Laboratory of Excited‐State Materials of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| | - Bing Shan
- Department of ChemistryKey Laboratory of Excited‐State Materials of Zhejiang ProvinceZhejiang UniversityHangzhou310058China
| |
Collapse
|
15
|
Seif-Eddine M, Cobb SJ, Dang Y, Abdiaziz K, Bajada MA, Reisner E, Roessler MM. Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts. Nat Chem 2024; 16:1015-1023. [PMID: 38355827 PMCID: PMC11636982 DOI: 10.1038/s41557-024-01450-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The development of surface-immobilized molecular redox catalysts is an emerging research field with promising applications in sustainable chemistry. In electrocatalysis, paramagnetic species are often key intermediates in the mechanistic cycle but are inherently difficult to detect and follow by conventional in situ techniques. We report a new method, operando film-electrochemical electron paramagnetic resonance spectroscopy (FE-EPR), which enables mechanistic studies of surface-immobilized electrocatalysts. This technique enables radicals formed during redox reactions to be followed in real time under flow conditions, at room temperature and in aqueous solution. Detailed insight into surface-immobilized catalysts, as exemplified here through alcohol oxidation catalysis by a surface-immobilized nitroxide, is possible by detecting active-site paramagnetic species sensitively and quantitatively operando, thereby enabling resolution of the reaction kinetics. Our finding that the surface electron-transfer rate, which is of the same order of magnitude as the rate of catalysis (accessible from operando FE-EPR), limits catalytic efficiency has implications for the future design of better surface-immobilized catalysts.
Collapse
Affiliation(s)
- Maryam Seif-Eddine
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Yunfei Dang
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Kaltum Abdiaziz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Mark A Bajada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| |
Collapse
|
16
|
Wu Y, Fan N, Wei Z, Shen J, Chen C, Xu B, Peng Y, Shen M, Fan R. Sulfidation-Induced Surface Local Electronic and Atomic Structures in a Silver Catalyst Enables Silicon Photocathode for Selective and Efficient Photoelectrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21868-21876. [PMID: 38637014 DOI: 10.1021/acsami.4c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Converting CO2 to value-added chemicals through a photoelectrochemical (PEC) system is a creative approach toward renewable energy utilization and storage. However, the rational design of appropriate catalysts while being effectively integrated with semiconductor photoelectrodes remains a considerable challenge for achieving single-carbon products with high efficiency. Herein, we demonstrate a novel sulfidation-induced strategy for in situ grown sulfide-derived Ag nanowires on a Si photocathode (denoted as SD-Ag/Si) based on the standard crystalline Si solar cells. Such an exquisite design of the SD-Ag/Si photocathode not only provides a large electrochemically active surface area but also endows abundant active sites of Ag2S/Ag interfaces and high-index Ag facets for PEC CO production. The optimized SD-Ag/Si photocathode displays an ideal CO Faradic efficiency of 95.2% and an onset potential of +0.26 V versus the reversible hydrogen electrode, ascribed to the sulfidation-induced synergistic effect of the surface atomic arrangement and electronic structure in Ag catalysts that promote charge transfer, facilitate CO2 adsorption and activation, and suppress hydrogen evolution reaction. This sulfidation-induced strategy represents a scalable approach for designing high-performance catalysts for electrochemical and PEC devices with efficient CO2 utilization.
Collapse
Affiliation(s)
- Yuquan Wu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Ningbo Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Zhihe Wei
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
| | - Junxia Shen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Cong Chen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Bin Xu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Yang Peng
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow University, Suzhou 215006, China
| | - Mingrong Shen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Ronglei Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Wang G, Zhang ZX, Chen H, Fu Y, Xiang K, Han E, Wu T, Bai Q, Su PY, Wang Z, Liu D, Shen F, Liu H, Jiang Z, Yuan J, Li Y, Wang P. Synthesis of a Triangle-Fused Six-Pointed Star and Its Electrocatalytic CO 2 Reduction Activity. Inorg Chem 2024; 63:7442-7454. [PMID: 38606439 DOI: 10.1021/acs.inorgchem.4c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.
Collapse
Affiliation(s)
- Guotao Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Zi-Xi Zhang
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hao Chen
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Yingxue Fu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Kaisong Xiang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Ermeng Han
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Pei-Yang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Zhujiang Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Die Liu
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Fenghua Shen
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Xinxiang, Henan 453007, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry and Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha, Hunan 410083, China
| |
Collapse
|
18
|
Nedzbala HS, Westbroek D, Margavio HRM, Yang H, Noh H, Magpantay SV, Donley CL, Kumbhar AS, Parsons GN, Mayer JM. Photoelectrochemical Proton-Coupled Electron Transfer of TiO 2 Thin Films on Silicon. J Am Chem Soc 2024; 146:10559-10572. [PMID: 38564642 DOI: 10.1021/jacs.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
TiO2 thin films are often used as protective layers on semiconductors for applications in photovoltaics, molecule-semiconductor hybrid photoelectrodes, and more. Experiments reported here show that TiO2 thin films on silicon are electrochemically and photoelectrochemically reduced in buffered acetonitrile at potentials relevant to photoelectrocatalysis of CO2 reduction, N2 reduction, and H2 evolution. On both n-type Si and irradiated p-type Si, TiO2 reduction is proton-coupled with a 1e-:1H+ stoichiometry, as demonstrated by the Nernstian dependence of the Ti4+/3+ E1/2 on the buffer pKa. Experiments were conducted with and without illumination, and a photovoltage of ∼0.6 V was observed across 20 orders of magnitude in proton activity. The 4 nm films are almost stoichiometrically reduced under mild conditions. The reduced films catalytically transfer protons and electrons to hydrogen atom acceptors, based on cyclic voltammogram, bulk electrolysis, and other mechanistic evidence. TiO2/Si thus has the potential to photoelectrochemically generate high-energy H atom carriers. Characterization of the TiO2 films after reduction reveals restructuring with the formation of islands, rendering TiO2 films as a potentially poor choice as protecting films or catalyst supports under reducing and protic conditions. Overall, this work demonstrates that atomic layer deposition TiO2 films on silicon photoelectrodes undergo both chemical and morphological changes upon application of potentials only modestly negative of RHE in these media. While the results should serve as a cautionary tale for researchers aiming to immobilize molecular monolayers on "protective" metal oxides, the robust proton-coupled electron transfer reactivity of the films introduces opportunities for the photoelectrochemical generation of reactive charge-carrying mediators.
Collapse
Affiliation(s)
- Hannah S Nedzbala
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Dalaney Westbroek
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Hannah R M Margavio
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Hyuenwoo Yang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - Hyunho Noh
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Samantha V Magpantay
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Carrie L Donley
- Department of Chemistry, Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Amar S Kumbhar
- Department of Chemistry, Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gregory N Parsons
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27603, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
19
|
Yu J, Hao X, Mu L, Shi W, She G. Photoelectrocatalytic Utilization of CO 2 : A Big Show of Si-based Photoelectrodes. Chemistry 2024; 30:e202303552. [PMID: 38158581 DOI: 10.1002/chem.202303552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
CO2 is a greenhouse gas that contributes to environmental deterioration; however, it can also be utilized as an abundant C1 resource for the production of valuable chemicals. Solar-driven photoelectrocatalytic (PEC) CO2 utilization represents an advanced technology for the resourcing of CO2 . The key to achieving PEC CO2 utilization lies in high-performance semiconductor photoelectrodes. Si-based photoelectrodes have attracted increasing attention in the field of PEC CO2 utilization due to their suitable band gap (1.1 eV), high carrier mobility, low cost, and abundance on Earth. There are two pathways to PEC CO2 utilization using Si-based photoelectrodes: direct reduction of CO2 into small molecule fuels and chemicals, and fixation of CO2 with organic substrates to generate high-value chemicals. The efficiency and product selectivity of PEC CO2 utilization depends on the structures of the photoelectrodes as well as the composition, morphology, and size of the catalysts. In recent years, significant and influential progress has been made in utilizing Si-based photoelectrodes for PEC CO2 utilization. This review summarizes the latest research achievements in Si-based PEC CO2 utilization, with a particular emphasis on the mechanistic understanding of CO2 reduction and fixation, which will inspire future developments in this field.
Collapse
Affiliation(s)
- Jiacheng Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xue Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
20
|
Cobb SJ, Rodríguez‐Jiménez S, Reisner E. Connecting Biological and Synthetic Approaches for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202310547. [PMID: 37983571 PMCID: PMC11497245 DOI: 10.1002/anie.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.
Collapse
Affiliation(s)
- Samuel J. Cobb
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
21
|
Bhattacharjee S, Linley S, Reisner E. Solar reforming as an emerging technology for circular chemical industries. Nat Rev Chem 2024:10.1038/s41570-023-00567-x. [PMID: 38291132 DOI: 10.1038/s41570-023-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 02/01/2024]
Abstract
The adverse environmental impacts of greenhouse gas emissions and persistent waste accumulation are driving the demand for sustainable approaches to clean-energy production and waste recycling. By coupling the thermodynamically favourable oxidation of waste-derived organic carbon streams with fuel-forming reduction reactions suitable for producing clean hydrogen or converting CO2 to fuels, solar reforming simultaneously valorizes waste and generates useful chemical products. With appropriate light harvesting, catalyst design, device configurations and waste pre-treatment strategies, a range of sustainable fuels and value-added chemicals can already be selectively produced from diverse waste feedstocks, including biomass and plastics, demonstrating the potential of solar-powered upcycling plants. This Review highlights solar reforming as an emerging technology that is currently transitioning from fundamental research towards practical application. We investigate the chemistry and compatibility of waste pre-treatment, introduce process classifications, explore the mechanisms of different solar reforming technologies, and suggest appropriate concepts, metrics and pathways for various deployment scenarios in a net-zero-carbon future.
Collapse
Affiliation(s)
| | - Stuart Linley
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Shang B, Zhao F, Suo S, Gao Y, Sheehan C, Jeon S, Li J, Rooney CL, Leitner O, Xiao L, Fan H, Elimelech M, Wang L, Meyer GJ, Stach EA, Mallouk TE, Lian T, Wang H. Tailoring Interfaces for Enhanced Methanol Production from Photoelectrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:2267-2274. [PMID: 38207288 DOI: 10.1021/jacs.3c13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Efficient and stable photoelectrochemical reduction of CO2 into highly reduced liquid fuels remains a formidable challenge, which requires an innovative semiconductor/catalyst interface to tackle. In this study, we introduce a strategy involving the fabrication of a silicon micropillar array structure coated with a superhydrophobic fluorinated carbon layer for the photoelectrochemical conversion of CO2 into methanol. The pillars increase the electrode surface area, improve catalyst loading and adhesion without compromising light absorption, and help confine gaseous intermediates near the catalyst surface. The superhydrophobic coating passivates parasitic side reactions and further enhances local accumulation of reaction intermediates. Upon one-electron reduction of the molecular catalyst, the semiconductor-catalyst interface changes from adaptive to buried junctions, providing a sufficient thermodynamic driving force for CO2 reduction. These structures together create a unique microenvironment for effective reduction of CO2 to methanol, leading to a remarkable Faradaic efficiency reaching 20% together with a partial current density of 3.4 mA cm-2, surpassing the previous record based on planar silicon photoelectrodes by a notable factor of 17. This work demonstrates a new pathway for enhancing photoelectrocatalytic CO2 reduction through meticulous interface and microenvironment tailoring and sets a benchmark for both Faradaic efficiency and current density in solar liquid fuel production.
Collapse
Affiliation(s)
- Bo Shang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Fengyi Zhao
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Sa Suo
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Yuanzuo Gao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Colton Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sungho Jeon
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jing Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Oliver Leitner
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hanqing Fan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Leizhi Wang
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
23
|
Zhao J, Ziarati A, Rosspeintner A, Bürgi T. Anchoring of Metal Complexes on Au 25 Nanocluster for Enhanced Photocoupled Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202316649. [PMID: 37988181 DOI: 10.1002/anie.202316649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Atomically precise Au nanoclusters (NCs) with discrete energy levels can be used as photosensitizers for CO2 reduction. However, tight ligand capping of Au NCs hinders CO2 adsorption on its active sites. Here, a new hybrid material is obtained by anchoring of thiol functionalized terpyridine metal complexes (metal=Ru, Ni, Fe, Co) on Au NCs by ligand exchange reactions (LERs). The anchoring of Ru and Ni complexes on Au25 NC (Au25 -Ru and Au25 -Ni) leads to adequate CO2 to CO conversion for photocoupled electrocatalytic CO2 reduction (PECR) in terms of high selectivity, with Faradaic efficiency of CO (FECO ) exceeding 90 % in a wide potential range, remarkable activity (CO production rate up to two times higher than that for pristine Au25 PET18 ) and extremely large turnover frequencies (TOFs, 63012 h-1 at -0.97 V for Au25 -Ru and 69989 h-1 at -1.07 V vs. RHE for Au25 -Ni). Moreover, PECR stability test indicates the excellent long-term stability of the modified NCs in contrast with pristine Au NCs. The present approach offers a novel strategy to enhance PECR activity and selectivity, as well as to improve the stability of Au NCs under light illumination, which paves the way for highly active and stable Au NCs catalysts.
Collapse
Affiliation(s)
- Jiangtao Zhao
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Abolfazl Ziarati
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
24
|
Xia M, Pan L, Liu Y, Gao J, Li J, Mensi M, Sivula K, Zakeeruddin SM, Ren D, Grätzel M. Efficient Cu 2O Photocathodes for Aqueous Photoelectrochemical CO 2 Reduction to Formate and Syngas. J Am Chem Soc 2023; 145:27939-27949. [PMID: 38090815 DOI: 10.1021/jacs.3c06146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Photoelectrochemical carbon dioxide reduction (PEC-CO2R) represents a promising approach for producing renewable fuels and chemicals using solar energy. However, attaining even modest solar-to-fuel (STF) conversion efficiency often necessitates the use of costly semiconductors and noble-metal catalysts. Herein, we present a Cu2O/Ga2O3/TiO2 photocathode modified with Sn/SnOx catalysts through a simple photoelectrodeposition method. It achieves a remarkable half-cell STF efficiency of ∼0.31% for the CO2R in aqueous KHCO3 electrolyte, under AM 1.5 G illumination. The system enables efficient production of syngas (FE: ∼62%, CO/H2 ≈ 1:2) and formate (FE: ∼38%) with a consistent selectivity over a wide potential range, from +0.34 to -0.16 V vs the reversible hydrogen electrode. We ascribe the observed performance to the favorable optoelectronic characteristics of our Cu2O heterostructure and the efficient Sn/SnOx catalysts incorporated in the PEC-CO2R reactions. Through comprehensive experimental investigations, we elucidate the indispensable role of Cu2O buried p-n junctions in generating a high photovoltage (∼1 V) and enabling efficient bulk charge separation (up to ∼70% efficiency). Meanwhile, we discover that the deposited Sn/SnOx catalysts have critical dual effects on the overall performance of the PEC devices, serving as active CO2R catalysts as well as the semiconductor front contact. It could facilitate interfacial electron transfer between the catalysts and the semiconductor device for CO2R by establishing a barrier-free ohmic contact.
Collapse
Affiliation(s)
- Meng Xia
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Linfeng Pan
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yongpeng Liu
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jing Gao
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jun Li
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mounir Mensi
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Dan Ren
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, 710049 Xi'an, China
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Rodríguez-Jiménez S, Lam E, Bhattacharjee S, Reisner E. Valorisation of lignocellulose and low concentration CO 2 using a fractionation-photocatalysis-electrolysis process. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:10611-10621. [PMID: 38089755 PMCID: PMC10711734 DOI: 10.1039/d3gc03258b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 06/07/2024]
Abstract
The simultaneous upcycling of all components in lignocellulosic biomass and the greenhouse gas CO2 presents an attractive opportunity to synthesise sustainable and valuable chemicals. However, this approach is challenging to realise due to the difficulty of implementing a solution process to convert a robust and complex solid (lignocellulose) together with a barely soluble and stable gas (CO2). Herein, we present the complete oxidative valorisation of lignocellulose coupled to the reduction of low concentration CO2 through a three-stage fractionation-photocatalysis-electrolysis process. Lignocellulose from white birch wood was first pre-treated using an acidic solution to generate predominantly cellulosic- and lignin-based fractions. The solid cellulosic-based fraction was solubilised using cellulase (a cellulose depolymerising enzyme), followed by photocatalytic oxidation to formate with concomitant reduction of CO2 to syngas (a gas mixture of CO and H2) using a phosphonate-containing cobalt(ii) bis(terpyridine) catalyst immobilised onto TiO2 nanoparticles. Photocatalysis generated 27.9 ± 2.0 μmolCO gTiO2-1 (TONCO = 2.8 ± 0.2; 16% CO selectivity) and 147.7 ± 12.0 μmolformate gTiO2-1 after 24 h solar light irradiation under 20 vol% CO2 in N2. The soluble lignin-based fraction was oxidised in an electrolyser to the value-added chemicals vanillin (0.62 g kglignin-1) and syringaldehyde (1.65 g kglignin-1) at the anode, while diluted CO2 (20 vol%) was converted to CO (20.5 ± 0.2 μmolCO cm-2 in 4 h) at a Co(ii) porphyrin catalyst modified cathode (TONCO = 707 ± 7; 78% CO selectivity) at an applied voltage of -3 V. We thus demonstrate the complete valorisation of solid and a gaseous waste stream in a liquid phase process by combining fractioning, photo- and electrocatalysis using molecular hybrid nanomaterials assembled from earth abundant elements.
Collapse
Affiliation(s)
| | - Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Subhajit Bhattacharjee
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road CB2 1EW Cambridge UK
| |
Collapse
|
26
|
Bhattacharjee S, Guo C, Lam E, Holstein JM, Rangel Pereira M, Pichler CM, Pornrungroj C, Rahaman M, Uekert T, Hollfelder F, Reisner E. Chemoenzymatic Photoreforming: A Sustainable Approach for Solar Fuel Generation from Plastic Feedstocks. J Am Chem Soc 2023; 145:20355-20364. [PMID: 37671930 PMCID: PMC10515630 DOI: 10.1021/jacs.3c05486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 09/07/2023]
Abstract
Plastic upcycling through catalytic transformations is an attractive concept to valorize waste, but the clean and energy-efficient production of high-value products from plastics remains challenging. Here, we introduce chemoenzymatic photoreforming as a process coupling enzymatic pretreatment and solar-driven reforming of polyester plastics under mild temperatures and pH to produce clean H2 and value-added chemicals. Chemoenzymatic photoreforming demonstrates versatility in upcycling polyester films and nanoplastics to produce H2 at high yields reaching ∼103-104 μmol gsub-1 and activities at >500 μmol gcat-1 h-1. Enzyme-treated plastics were also used as electron donors for photocatalytic CO2-to-syngas conversion with a phosphonated cobalt bis(terpyridine) catalyst immobilized on TiO2 nanoparticles (TiO2|CotpyP). Finally, techno-economic analyses reveal that the chemoenzymatic photoreforming approach has the potential to drastically reduce H2 production costs to levels comparable to market prices of H2 produced from fossil fuels while maintaining low CO2-equivalent emissions.
Collapse
Affiliation(s)
- Subhajit Bhattacharjee
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chengzhi Guo
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Erwin Lam
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | | | - Christian M. Pichler
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chanon Pornrungroj
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Motiar Rahaman
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Taylor Uekert
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1GA, U.K.
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
27
|
Awal A, Islam S, Islam T, Hasan MM, Nayem SMA, James MMH, Hossain MD, Ahammad AJS. Facile Chemical Synthesis of Co-Ru-Based Heterometallic Supramolecular Polymer for Electrochemical Oxidation of Bisphenol A: Kinetics Study at the Electrode/Electrolyte Interface. ACS OMEGA 2023; 8:28355-28366. [PMID: 37576688 PMCID: PMC10413823 DOI: 10.1021/acsomega.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Regardless of the adverse effects of Bisphenol A (BPA), its use in industry and in day-to-day life is increasing at a higher rate every year. In the present study, a simple and reliable chemical approach was used to develop an efficient BPA sensor based on a Co-Ru-based heterometallic supramolecular polymer (polyCoRu). Surface morphology and elemental analysis were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, functional group analysis was accomplished by Fourier transform infrared spectroscopy (FT-IR). UV-vis spectroscopy was used to confirm the complexation in the ratio of 0.5:0.5:1 (metal 1/metal 2/ligand). Electrochemical characterization of the synthesized polyCoRu was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The study identified two distinct linear dynamic ranges for the detection of BPA, 0.197-2.94 and 3.5-17.72 μM. The regression equation was utilized to determine the sensitivity and limit of detection (LOD), resulting in values of 0.6 μA cm-2 μM-1 and 0.02 μM (S/N = 3), respectively. The kinetics of BPA oxidation at the polyCoRu/GCE were investigated to evaluate the heterogeneous rate constant (k), charge transfer coefficient (α), and the number of electrons transferred during the oxidation and rate-determining step. A probable electrochemical reaction mechanism has been presented for further comprehending the phenomena occurring at the electrode surface. The practical applicability of the fabricated electrode was analyzed using tap water, resulting in a high percentage of recovery ranging from 96 to 105%. Furthermore, the reproducibility and stability data demonstrated the excellent performance of polyCoRu/GCE.
Collapse
Affiliation(s)
- Abdul Awal
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Santa Islam
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Tamanna Islam
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md. Mahedi Hasan
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - S. M. Abu Nayem
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | | |
Collapse
|
28
|
Wang Q, Liu J, Li Q, Yang J. Stability of Photocathodes: A Review on Principles, Design, and Strategies. CHEMSUSCHEM 2023; 16:e202202186. [PMID: 36789473 DOI: 10.1002/cssc.202202186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 05/06/2023]
Abstract
Photoelectrochemical devices based on semiconductor photoelectrode can directly convert and store solar energy into chemical fuels. Although the efficient photoelectrodes with commercially valuable solar-to-fuel energy conversion efficiency have been reported over past decades, one of the most enormous challenges is the stability of the photoelectrode due to corrosion during operation. Thus, it is of paramount importance for developing a stable photoelectrode to deploy solar-fuel production. This Review commences with a fundamental understanding of thermodynamics for photoelectrochemical reactions and the fundamentals of photocathodes. Then, the commercial application of photoelectrochemical technology is prospected. We specifically focus on recent strategies for designing photocathodes with long-term stability, including energy band alignment, hole transport/storage/blocking layer, spatial decoupling, grafting molecular catalysts, protective/passivation layer, surface element reconstruction, and solvent effects. Based on the insights gained from these effective strategies, we propose an outlook of key aspects that address the challenges for development of stable photoelectrodes in future work.
Collapse
Affiliation(s)
- Qinglong Wang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Jinfeng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Qiuye Li
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
29
|
Liu Y, Xia M, Ren D, Nussbaum S, Yum JH, Grätzel M, Guijarro N, Sivula K. Photoelectrochemical CO 2 Reduction at a Direct CuInGaS 2/Electrolyte Junction. ACS ENERGY LETTERS 2023; 8:1645-1651. [PMID: 37090168 PMCID: PMC10111408 DOI: 10.1021/acsenergylett.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Photoelectrochemical (PEC) CO2 reduction has received considerable attention given the inherent sustainability and simplicity of directly converting solar energy into carbon-based chemical fuels. However, complex photocathode architectures with protecting layers and cocatalysts are typically needed for selective and stable operation. We report herein that bare CuIn0.3Ga0.7S2 photocathodes can drive the PEC CO2 reduction with a benchmarking 1 Sun photocurrent density of over 2 mA/cm2 (at -2 V vs Fc+/Fc) and a product selectivity of up to 87% for CO (CO/all products) production while also displaying long-term stability for syngas production (over 44 h). Importantly, spectroelectrochemical analysis using PEC impedance spectroscopy (PEIS) and intensity-modulated photocurrent spectroscopy (IMPS) complements PEC data to reveal that tailoring the proton donor ability of the electrolyte is crucial for enhancing the performance, selectivity, and durability of the photocathode. When a moderate amount of protons is present, the density of photogenerated charges accumulated at the interface drops significantly, suggesting a faster charge transfer process. However, with a high concentration of proton donors, the H2 evolution reaction is preferred.
Collapse
Affiliation(s)
| | - Meng Xia
- Institute of Chemical Sciences and
Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Dan Ren
- Institute of Chemical Sciences and
Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Simon Nussbaum
- Institute of Chemical Sciences and
Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jun-Ho Yum
- Institute of Chemical Sciences and
Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Michael Grätzel
- Institute of Chemical Sciences and
Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | | | - Kevin Sivula
- Institute of Chemical Sciences and
Engineering, École Polytechnique Fédérale de
Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Suhr S, Schröter N, Kleoff M, Neuman N, Hunger D, Walter R, Lücke C, Stein F, Demeshko S, Liu H, Reissig HU, van Slageren J, Sarkar B. Spin State in Homoleptic Iron(II) Terpyridine Complexes Influences Mixed Valency and Electrocatalytic CO 2 Reduction. Inorg Chem 2023; 62:6375-6386. [PMID: 37043797 DOI: 10.1021/acs.inorgchem.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Two homoleptic Fe(II) complexes in different spin states bearing superbasic terpyridine derivatives as ligands are investigated to determine the relationship between spin state and electrochemical/spectroscopic behavior. Antiferromagnetic coupling between a ligand-centered radical and the high-spin metal center leads to an anodic shift of the first reduction potential and results in a species that shows mixed valency with a moderately intense intervalence-charge-transfer band. The differences afforded by the different spin states extend to the electrochemical reactivity of the complexes: while the low-spin species is a precatalyst for electrocatalytic CO2 reduction and leads to the preferential formation of CO with a Faradaic efficiency of 37%, the high-spin species only catalyzes proton reduction at a modest Faradaic efficiency of approximately 20%.
Collapse
Affiliation(s)
- Simon Suhr
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Nicolai Schröter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Merlin Kleoff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Nicolas Neuman
- Instituto de Desarrollo Tecnológico para la Industria Química - INTEC, UNL-CONICET, CCT-CONICET Santa Fe, S3000ZAA Santa Fe, Santa Fe, Argentina
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Robert Walter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Clemens Lücke
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Felix Stein
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Hang Liu
- Institut für Technische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
31
|
Falciani G, Bergamasco L, Bonke SA, Sen I, Chiavazzo E. A novel concept of photosynthetic soft membranes: a numerical study. NANOSCALE RESEARCH LETTERS 2023; 18:9. [PMID: 36757508 DOI: 10.1186/s11671-023-03772-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 05/24/2023]
Abstract
We focus on a novel concept of photosynthetic soft membranes, possibly able to allow the conversion of solar energy and carbon dioxide (CO[Formula: see text]) into green fuels. The considered membranes rely on self-assembled functional molecules in the form of soap films. We elaborate a multi-scale and multi-physics model to describe the relevant phenomena, investigating the expected performance of a single soft photosynthetic membrane. First, we present a macroscale continuum model, which accounts for the transport of gaseous and ionic species within the soap film, the chemical equilibria and the two involved photocatalytic half reactions of the CO[Formula: see text] reduction and water oxidation at the two gas-surfactant-water interfaces of the soap film. Second, we introduce a mesoscale discrete Monte Carlo model, to deepen the investigation of the structure of the functional monolayers. Finally, the morphological information obtained at the mesoscale is integrated into the continuum model in a multi-scale framework. The developed tools are then used to perform sensitivity studies in a wide range of possible experimental conditions, to provide scenarios on fuel production by such a novel approach.
Collapse
Affiliation(s)
| | | | - Shannon A Bonke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Indraneel Sen
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
32
|
Shang B, Rooney CL, Gallagher DJ, Wang BT, Krayev A, Shema H, Leitner O, Harmon NJ, Xiao L, Sheehan C, Bottum SR, Gross E, Cahoon JF, Mallouk TE, Wang H. Aqueous Photoelectrochemical CO 2 Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst. Angew Chem Int Ed Engl 2023; 62:e202215213. [PMID: 36445830 DOI: 10.1002/anie.202215213] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
We report a precious-metal-free molecular catalyst-based photocathode that is active for aqueous CO2 reduction to CO and methanol. The photoelectrode is composed of cobalt phthalocyanine molecules anchored on graphene oxide which is integrated via a (3-aminopropyl)triethoxysilane linker to p-type silicon protected by a thin film of titanium dioxide. The photocathode reduces CO2 to CO with high selectivity at potentials as mild as 0 V versus the reversible hydrogen electrode (vs RHE). Methanol production is observed at an onset potential of -0.36 V vs RHE, and reaches a peak turnover frequency of 0.18 s-1 . To date, this is the only molecular catalyst-based photoelectrode that is active for the six-electron reduction of CO2 to methanol. This work puts forth a strategy for interfacing molecular catalysts to p-type semiconductors and demonstrates state-of-the-art performance for photoelectrochemical CO2 reduction to CO and methanol.
Collapse
Affiliation(s)
- Bo Shang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Conor L Rooney
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - David J Gallagher
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Bernie T Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Andrey Krayev
- HORIBA Instruments Inc., 359 Bel Marin Keys Blvd, Suite 18, Novato, CA 94949, USA
| | - Hadar Shema
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Oliver Leitner
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Nia J Harmon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Colton Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel R Bottum
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Elad Gross
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - James F Cahoon
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
33
|
Merging molecular catalysts and metal–organic frameworks for photocatalytic fuel production. Nat Chem 2022; 14:1342-1356. [DOI: 10.1038/s41557-022-01093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
34
|
Si S, Shou H, Mao Y, Bao X, Zhai G, Song K, Wang Z, Wang P, Liu Y, Zheng Z, Dai Y, Song L, Huang B, Cheng H. Low‐Coordination Single Au Atoms on Ultrathin ZnIn
2
S
4
Nanosheets for Selective Photocatalytic CO
2
Reduction towards CH
4. Angew Chem Int Ed Engl 2022; 61:e202209446. [DOI: 10.1002/anie.202209446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Shenghe Si
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Hongwei Shou
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei 230029 China
| | - Yuyin Mao
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Xiaolei Bao
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Guangyao Zhai
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Peng Wang
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Ying Dai
- School of Physics Shandong University Jinan 250100 China
| | - Li Song
- National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience University of Science and Technology of China Hefei 230029 China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials Institute of Crystal Materials Shandong University Jinan 250100 China
| |
Collapse
|
35
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
36
|
Li J, Yu X, Xue W, Nie L, Huang H, Zhong C. Engineering the direct Z‐scheme systems over lattice intergrown of
MOF‐on‐MOF
for selective
CO
2
photoreduction to
CO. AIChE J 2022. [DOI: 10.1002/aic.17906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jian Li
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Xinmiao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Wenjuan Xue
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Lei Nie
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes Tiangong University Tianjin P.R. China
- School of Chemical Engineering and Technology Tiangong University Tianjin P.R. China
| |
Collapse
|
37
|
Das A, Mondal M. Photo‐Mediated Reduction of Carbon Dioxide to Formic and Other Carboxylic Acids by Ni‐Catalysis with Chelating Ligand. ChemistrySelect 2022. [DOI: 10.1002/slct.202201930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anjan Das
- Inorganic and Organometallic Chemistry Laboratory Department of Chemistry National Institute of Technology (NIT) Jamshedpur Jamshedpur 831005 India
| | - Moumita Mondal
- Inorganic and Organometallic Chemistry Laboratory Department of Chemistry National Institute of Technology (NIT) Jamshedpur Jamshedpur 831005 India
| |
Collapse
|
38
|
Liu Y, Wang F, Jiao Z, Bai S, Qiu H, Guo L. Photochemical Systems for Solar-to-Fuel Production. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
39
|
Si S, Shou H, Mao Y, Bao X, Zhai G, Song K, Wang Z, Wang P, Liu Y, Zheng Z, Dai Y, Song L, Huang B, Cheng H. Low‐Coordination Single Au Atoms on Ultrathin ZnIn2S4 Nanosheets for Selective Photocatalytic CO2 Reduction towards CH4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shenghe Si
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Hongwei Shou
- University of Science and Technology of China National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience CHINA
| | - Yuyin Mao
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Xiaolei Bao
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Guangyao Zhai
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Kepeng Song
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Zeyan Wang
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Peng Wang
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Yuanyuan Liu
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Zhaoke Zheng
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Ying Dai
- Shandong University School of Physics CHINA
| | - Li Song
- University of Science and Technology of China National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience CHINA
| | - Baibiao Huang
- Shandong University State Key Laboratory of Crystal Materials, Institute of Crystal Materials CHINA
| | - Hefeng Cheng
- Shandong University State Key Laboratory of Crystal Materials Shanda Nan Road 27#Shandong University 250100 Jinan CHINA
| |
Collapse
|
40
|
Wei Z, Mu Q, Fan R, Su Y, Lu Y, Deng Z, Shen M, Peng Y. Cupric porphyrin frameworks on multi-junction silicon photocathodes to expedite the kinetics of CO 2 turnover. NANOSCALE 2022; 14:8906-8913. [PMID: 35723269 DOI: 10.1039/d2nr01921c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photoelectrochemical CO2 reduction utilizing silicon-based photocathodes offers a promising route to directly store solar energy in chemical bonds, provoking the development of heterogeneous molecular catalysts with high turnover rates. Herein, an in situ surface transformation strategy is adopted to grow metal-organic frameworks (MOFs) on Si-based photocathodes, serving as catalytic scaffolds for boosting both the kinetics and selectivity of CO2 reduction. Benefitting from the multi-junctional configuration for enhanced charge separation and the porous MOF scaffold enriching redox-active metalloporphyrin sites, the Si photocathode demonstrates a high CO faradaic efficiency of 87% at a photocurrent density of 10.2 mA cm-2, which is among the best seen for heterogeneous molecular catalysts. This study highlights the exploitation of reticular chemistry and macrocycle complexes as Earth-abundant alternatives for catalyzing artificial photosynthesis.
Collapse
Affiliation(s)
- Zhihe Wei
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow Municipal Laboratory for Lowe Carbon Technoliges and Industries, Soochow University, Suzhou 215006, China.
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
| | - Qiaoqiao Mu
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow Municipal Laboratory for Lowe Carbon Technoliges and Industries, Soochow University, Suzhou 215006, China.
| | - Ronglei Fan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yanhui Su
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow Municipal Laboratory for Lowe Carbon Technoliges and Industries, Soochow University, Suzhou 215006, China.
| | - Yongtao Lu
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow Municipal Laboratory for Lowe Carbon Technoliges and Industries, Soochow University, Suzhou 215006, China.
| | - Zhao Deng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow Municipal Laboratory for Lowe Carbon Technoliges and Industries, Soochow University, Suzhou 215006, China.
| | - Mingrong Shen
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yang Peng
- Soochow Institute of Energy and Material Innovations, College of Energy, Soochow Municipal Laboratory for Lowe Carbon Technoliges and Industries, Soochow University, Suzhou 215006, China.
| |
Collapse
|
41
|
Wang JW, Huang HH, Wang P, Yang G, Kupfer S, Huang Y, Li Z, Ke Z, Ouyang G. Co-facial π-π Interaction Expedites Sensitizer-to-Catalyst Electron Transfer for High-Performance CO 2 Photoreduction. JACS AU 2022; 2:1359-1374. [PMID: 35783182 PMCID: PMC9241016 DOI: 10.1021/jacsau.2c00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 05/29/2023]
Abstract
The sunlight-driven reduction of CO2 into carbonaceous fuels can lower the atmospheric CO2 concentration and provide renewable energy simultaneously, attracting scientists to design photocatalytic systems for facilitating this process. Significant progress has been made in designing high-performance photosensitizers and catalysts in this regard, and further improvement can be realized by installing additional interactions between the abovementioned two components, however, the design strategies and mechanistic investigations on such interactions remain challenging. Here, we present the construction of molecular models for intermolecular π-π interactions between the photosensitizer and the catalyst, via the introduction of pyrene groups into both molecular components. The presence, types, and strengths of diverse π-π interactions, as well as their roles in the photocatalytic mechanism, have been examined by 1H NMR titration, fluorescence quenching measurements, transient absorption spectroscopy, and quantum chemical simulations. We have also explored the rare dual emission behavior of the pyrene-appended iridium photosensitizer, of which the excited state can deliver the photo-excited electron to the pyrene-decorated cobalt catalyst at a fast rate of 2.60 × 106 s-1 via co-facial π-π interaction, enabling a remarkable apparent quantum efficiency of 14.3 ± 0.8% at 425 nm and a high selectivity of 98% for the photocatalytic CO2-to-CO conversion. This research demonstrates non-covalent interaction construction as an effective strategy to achieve rapid CO2 photoreduction besides a conventional photosensitizer/catalyst design.
Collapse
Affiliation(s)
- Jia-Wei Wang
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hai-Hua Huang
- School
of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Ping Wang
- Institute
of New Energy Materials and Low Carbon Technology, School of Material
Science and Engineering, Tianjin University
of Technology, Tianjin 300384, China
| | - Guangjun Yang
- Friedrich
Schiller University Jena, Institute of Physical
Chemistry, Helmholtzweg
4, Jena 07743, Germany
| | - Stephan Kupfer
- Friedrich
Schiller University Jena, Institute of Physical
Chemistry, Helmholtzweg
4, Jena 07743, Germany
| | - Yanjun Huang
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zizi Li
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuofeng Ke
- School
of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Friedrich
Schiller University Jena, Institute of Physical
Chemistry, Helmholtzweg
4, Jena 07743, Germany
- Instrumental
Analysis and Research Center, Sun Yat-sen
University, Guangzhou 510275, China
- Chemistry
College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong
Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical
Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
42
|
Wen Z, Xu S, Zhu Y, Liu G, Gao H, Sun L, Li F. Aqueous CO 2 Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202201086. [PMID: 35225405 DOI: 10.1002/anie.202201086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/11/2022]
Abstract
Photoelectrochemical reduction of CO2 is a promising approach for renewable fuel production. We herein report a novel strategy for preparation of hybrid photocathodes by immobilizing molecular cobalt catalysts on TiO2 -protected n+ -p Si electrodes (Si|TiO2 ) coated with multiwalled carbon nanotubes (CNTs) by π-π stacking. Upon loading a composite of CoII (BrqPy) (BrqPy=4',4''-bis(4-bromophenyl)-2,2' : 6',2'' : 6'',2'''-quaterpyridine) catalyst and CNT on Si|TiO2 , a stable 1-Sun photocurrent density of -1.5 mA cm-2 was sustained over 2 h in a neutral aqueous solution with unity Faradaic efficiency and selectivity for CO production at a bias of zero overpotential (-0.11 V vs. RHE), associated with a turnover frequency (TOFCO ) of 2.7 s-1 . Extending the photoelectrocatalysis to 10 h, a remarkable turnover number (TONCO ) of 57000 was obtained. The high performance shown here is substantially improved from the previously reported photocathodes relying on covalently anchored catalysts.
Collapse
Affiliation(s)
- Zhibing Wen
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Suxian Xu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Guoquan Liu
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Hua Gao
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China.,Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China.,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Fei Li
- State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
43
|
Chu S, Rashid RT, Pan Y, Wang X, Zhang H, Xiao R. The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Rodríguez-Jiménez S, Song H, Lam E, Wright D, Pannwitz A, Bonke SA, Baumberg JJ, Bonnet S, Hammarström L, Reisner E. Self-Assembled Liposomes Enhance Electron Transfer for Efficient Photocatalytic CO 2 Reduction. J Am Chem Soc 2022; 144:9399-9412. [PMID: 35594410 PMCID: PMC9164230 DOI: 10.1021/jacs.2c01725] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Light-driven conversion of CO2 to chemicals provides a sustainable alternative to fossil fuels, but homogeneous systems are typically limited by cross reactivity between different redox half reactions and inefficient charge separation. Herein, we present the bioinspired development of amphiphilic photosensitizer and catalyst pairs that self-assemble in lipid membranes to overcome some of these limitations and enable photocatalytic CO2 reduction in liposomes using precious metal-free catalysts. Using sodium ascorbate as a sacrificial electron source, a membrane-anchored alkylated cobalt porphyrin demonstrates higher catalytic CO production (1456 vs 312 turnovers) and selectivity (77 vs 11%) compared to its water-soluble nonalkylated counterpart. Time-resolved and steady-state spectroscopy revealed that self-assembly facilitates this performance enhancement by enabling a charge-separation state lifetime increase of up to two orders of magnitude in the dye while allowing for a ninefold faster electron transfer to the catalyst. Spectroelectrochemistry and density functional theory calculations of the alkylated Co porphyrin catalyst support a four-electron-charging mechanism that activates the catalyst prior to catalysis, together with key catalytic intermediates. Our molecular liposome system therefore benefits from membrane immobilization and provides a versatile and efficient platform for photocatalysis.
Collapse
Affiliation(s)
| | - Hongwei Song
- Department of Chemistry - Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Erwin Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Demelza Wright
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Andrea Pannwitz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Shannon A Bonke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jeremy J Baumberg
- Nanophotonics Centre, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Leif Hammarström
- Department of Chemistry - Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
45
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible-Light-Driven Photocatalytic CO 2 Reduction to CO/CH 4 Using a Metal-Organic "Soft" Coordination Polymer Gel. Angew Chem Int Ed Engl 2022; 61:e202116094. [PMID: 35129254 DOI: 10.1002/anie.202116094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/11/2022]
Abstract
The self-assembly of a well-defined and astutely designed, low-molecular weight gelator (LMWG) based linker with a suitable metal ion is a promising method for preparing photocatalytically active coordination polymer gels. Here, we report the design, synthesis, and gelation behaviour of a tetrapodal LMWG based on a porphyrin core connected to four terpyridine units (TPY-POR) through amide linkages. The self-assembly of TPY-POR LMWG with RuII ions results in a Ru-TPY-POR coordination polymer gel (CPG), with a nanoscroll morphology. Ru-TPY-POR CPG exhibits efficient CO2 photoreduction to CO (3.5 mmol g-1 h-1 ) with >99 % selectivity in the presence of triethylamine (TEA) as a sacrificial electron donor. Interestingly, in the presence of 1-benzyl-1,4-dihydronicotinamide (BNAH) with TEA as the sacrificial electron donor, the 8e- /8H+ photoreduction of CO2 to CH4 is realized with >95 % selectivity (6.7 mmol g-1 h-1 ). In CPG, porphyrin acts as a photosensitizer and covalently attached [Ru(TPY)2 ]2+ acts as a catalytic center as demonstrated by femtosecond transient absorption (TA) spectroscopy. Further, combining information from the in situ DRIFT spectroscopy and DFT calculation, a possible reaction mechanism for CO2 reduction to CO and CH4 was outlined.
Collapse
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Arup Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, 400005, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
46
|
Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T. Solar-Driven CO 2 Reduction Using a Semiconductor/Molecule Hybrid Photosystem: From Photocatalysts to a Monolithic Artificial Leaf. Acc Chem Res 2022; 55:933-943. [PMID: 34851099 DOI: 10.1021/acs.accounts.1c00564] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of organic chemicals from H2O and CO2 using solar energy is important for recycling CO2 through cyclical use of chemical ingredients produced from CO2 or molecular energy carriers based on CO2. Similar to photosynthesis in plants, the CO2 molecules are reduced by electrons and protons, which are extracted from H2O molecules, to produce O2. This reaction is uphill; therefore, the solar energy is stored as the chemical bonding energy in the organic molecules. This artificial photosynthetic technology mimicking green vegetation should be implemented as a self-standing system for on-site direct solar energy storage that supports CO2 recycling in a circular economy. Herein, we explain our interdisciplinary fusion methodology to develop hybrid photocatalysts and photoelectrodes for an artificial photosynthetic system for the CO2 reduction reaction (CO2RR) in aqueous solutions. The key factor for the system is the integration of uniquely different functions of molecular transition-metal complexes and solid semiconductors. A metal complex catalyst and a semiconductor appropriate for a CO2RR and visible-light absorption, respectively, are linked, and they function complementary way to catalyze CO2RR under visible-light irradiation as a particulate photocatalyst dispersion in solution. It has also been proven that Ru complexes with bipyridine ligands can catalyze a CO2RR as photocathodes when they are linked with various semiconductor surfaces, such as those of doped tantalum oxides, doped iron oxides, indium phosphides, copper-based sulfides, selenides, silicon, and others. These photocathodes can produce formate and carbon monoxide using electrons and protons extracted from water through potential-matched connections with photoanodes such as TiO2 or SrTiO3 for oxygen evolution reactions (OERs). Benefiting from the very low overpotential of an aqueous CO2RR at metal complexes approaching the theoretical lower limit, the semiconductor/molecule hybrid system demonstrates a single tablet-formed monolithic electrode called "artificial leaf." This single electrode device can generate formate (HCOO-) from H2O and CO2 in a water-filled single-compartment reactor without requiring a separation membrane under unassisted or bias-free conditions, either electrically or chemically. The reaction proceeds with a stoichiometric electron/hole ratio and stores solar energy with a solar-to-chemical energy conversion efficiency of 4.6%, which exceeds that of plants. In this Account, the key results that marked our milestones in technological progress of the semiconductor/molecule hybrid photosystem are concisely explained. These results include design, proof of the principle, and understanding of the phenomena by time-resolved spectroscopies, synchrotron radiation analyses, and DFT calculations. These results enable us to address challenges toward further scientific progress and the social implementation, including the use of earth-abundant elements and the scale-up of the solar-driven CO2RR system.
Collapse
Affiliation(s)
- Takeshi Morikawa
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Shunsuke Sato
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Keita Sekizawa
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Tomiko. M. Suzuki
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| | - Takeo Arai
- Toyota Central R&D Laboratories., Inc., Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
47
|
Wen Z, Xu S, Zhu Y, Liu G, Gao H, Sun L, Li F. Aqueous CO
2
Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhibing Wen
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology Dalian 116024 China
| | - Suxian Xu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology Dalian 116024 China
| | - Yong Zhu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology Dalian 116024 China
| | - Guoquan Liu
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology Dalian 116024 China
| | - Hua Gao
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology Dalian 116024 China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology Dalian 116024 China
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University Hangzhou 310024 China
- Department of Chemistry School of Engineering Sciences in Chemistry Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Fei Li
- State Key Laboratory of Fine Chemicals DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology Dalian 116024 China
| |
Collapse
|
48
|
Verma P, Rahimi FA, Samanta D, Kundu A, Dasgupta J, Maji TK. Visible‐Light‐Driven Photocatalytic CO
2
Reduction to CO/CH
4
Using a Metal–Organic “Soft” Coordination Polymer Gel. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Parul Verma
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Debabrata Samanta
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| | - Arup Kundu
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences Tata Institute of Fundamental Research (TIFR) Mumbai 400005 India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory School of Advanced Materials (SAMat) Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India
| |
Collapse
|
49
|
Ding X, Yu B, Han B, Wang H, Zheng T, Chen B, Wang J, Yu Z, Sun T, Fu X, Qi D, Jiang J. Porphyrin Coordination Polymer with Dual Photocatalytic Sites for Efficient Carbon Dioxide Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8048-8057. [PMID: 35119827 DOI: 10.1021/acsami.1c23941] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The resurgence of visible light photocatalysis for carbon dioxide reduction reaction (CO2RR) has resulted in the generation of various homogeneous and heterogeneous paradigms. Herein, a new system has been established by incorporating dual catalytic sites into porous coordination polymer toward the photocatalysis of CO2RR. A functional ligand, 5,10,15,20-tetrakis[4'-(terpyridinyl)phenyl]porphyrin (TTPP), has been used to assemble discrete divalent nickel ions into the coordination polymer (TTPP-Ni) through metal bis(terpyridine) nodes. Both the porphyrin and terpyridine moieties prefer to bind with nickel ions, giving rise to TTPP-Ni with dual active catalytic sites. By controlling different molar ratios of ligand and metal and the reaction temperature, four samples including TTPP-Ni-n (n = 1, 2, 3, and 4) with different molar ratios of nickel porphyrin and nickel bis(terpyridine) subunits have been fabricated. The predesigned two-dimensional chemical structures of TTPP-Ni samples have been fully characterized using powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and IR and UV-vis spectroscopies. The photocatalytic activities of these coordination polymers have been screened using [Ru(bpy)3]Cl2·6H2O as a photosensitizer together with triisopropanolamine as the sacrificial electron donor in CH3CN and H2O. Among these photocatalysts, TTPP-Ni-3 and TTPP-Ni-4 with almost saturated metal sites are able to display extraordinary photocatalytic performance including a CO generation rate of ca. 3900 μmol g-1 h-1 and 98% selectivity. The mechanism associated with dual active sites has been rationalized on the basis of theoretical simulations.
Collapse
Affiliation(s)
- Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baotong Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zonghua Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tingting Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianzhang Fu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
50
|
Fang Y, Hou Y, Fu X, Wang X. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chem Rev 2022; 122:4204-4256. [PMID: 35025505 DOI: 10.1021/acs.chemrev.1c00686] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sunlight-driven water splitting to produce hydrogen fuel has stimulated intensive scientific interest, as this technology has the potential to revolutionize fossil fuel-based energy systems in modern society. The oxygen evolution reaction (OER) determines the performance of overall water splitting owing to its sluggish kinetics with multielectron transfer processing. Polymeric photocatalysts have recently been developed for the OER, and substantial progress has been realized in this emerging research field. In this Review, the focus is on the photocatalytic technologies and materials of polymeric photocatalysts for the OER. Two practical systems, namely, particle suspension systems and film-based photoelectrochemical systems, form two main sections. The concept is reviewed in terms of thermodynamics and kinetics, and polymeric photocatalysts are discussed based on three key characteristics, namely, light absorption, charge separation and transfer, and surface oxidation reactions. A satisfactory OER performance by polymeric photocatalysts will eventually offer a platform to achieve overall water splitting and other advanced applications in a cost-effective, sustainable, and renewable manner using solar energy.
Collapse
Affiliation(s)
- Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|