1
|
Sun Z, Kong X, Liu J, Ding S, Su Y. Synergistic effect of Fe-Ru alloy and Fe-N-C sites on oxygen reduction reaction. J Colloid Interface Sci 2025; 678:1104-1111. [PMID: 39276518 DOI: 10.1016/j.jcis.2024.09.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
In the pursuit of optimizing Fe-N-C catalysts for the oxygen reduction reaction (ORR), the incorporation of alloy nanoparticles has emerged as a prominent strategy. In this work, we effectively synthesized the FeRu-NC catalyst by anchoring Fe-Ru alloy nanoparticles and FeN4 single atom sites onto carbon nanotubes. The FeRu-NC catalyst exhibits significantly enhanced ORR activity and long-term stability, with a high half-wave potential of 0.89 V (vs. RHE) in alkaline conditions, and the half-wave potential remains nearly unchanged after 5000 cycles. The zinc-air battery (ZAB) assembled with FeRu-NC demonstrates a power density of 169.1 mW cm-2, surpassing that of commercial Pt/C. Density functional theory (DFT) calculations reveal that the synergistic interaction between the Fe-Ru alloy and FeN4 single atoms alters the electronic structure and facilitates charge transfer at the FeN4 sites, thereby modulating the adsorption and desorption of ORR intermediates. This enhancement in catalytic activity for the ORR process underscores the potential of this approach for refining M-N-C catalysts, providing novel insights into their optimization strategies.
Collapse
Affiliation(s)
- Zhuangzhi Sun
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangpeng Kong
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China; Hunan Desay Battery Co., Ltd., No. 688, Chigang Road, Wangcheng Economy & Technology Development Zone, Changsha, Hunan, China
| | - Jia Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China; Instrument Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Chen J, Zhou T, He C, Luo Z, Shi C, Zhang L, Zhang Q, He C, Ren X. p-Block metal atom-induced spin state transition of Fe-N-C catalysts for efficient oxygen reduction. NANOSCALE 2024. [PMID: 39485106 DOI: 10.1039/d4nr03663h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A deep understanding of the role of spin configurations of Fe-N-C catalysts in the adsorption and desorption of oxygen intermediates during ORRs is critical for the development of new catalysts for the ORR. Herein, we successfully implanted p-block metal single sites (SnN4, SbN4) into the Fe-N-C system to vary the spin states of Fe species and investigated the ORR performance of active metal centers with varying effective magnetic moments. Through a combination of zero-field cooling (ZFC) temperature-dependent magnetic susceptibility measurements and DFT calculations, we successfully established correlations between the spin state and ORR activity. Magnetic analysis reveals that the p-block metal catalytic sites can effectively induce a low-to-high (or medium) spin state transition of Fe centers. Consequently, the 3d orbital electrons in Fe,M-N-C catalysts penetrate the antibonding π-orbitals of oxygen more easily, thus optimizing the adsorption/desorption of key oxygen intermediates on Fe-N-C catalysts. As a result, the optimized Fe,M-N-C catalyst exhibits a half-wave potential of 0.97 V in a 0.1 M KOH electrolyte, as well as higher durability than conventional Pt/C catalysts. Moreover, the Fe,M-N-C catalysts show encouraging performance in a rechargeable Zn-air battery with high power density and long-term cyclability, indicating the practical applicability of these Fe,M-N-C catalysts.
Collapse
Affiliation(s)
- Jiana Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Tingyi Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Changjie He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Zhaoyan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuan Shi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China.
| |
Collapse
|
3
|
Song YJ, Gallenkamp C, Lleopart G, Krewald V, Valentí R. Influence of graphene on the electronic and magnetic properties of an iron(III) porphyrin chloride complex. Phys Chem Chem Phys 2024; 26:26370-26376. [PMID: 39387114 DOI: 10.1039/d4cp01551g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although iron-based single atom catalysts are regarded as a promising alternative to precious metal catalysts, their precise electronic structures during catalysis still pose challenges for computational descriptions. A particularly urgent issue to be addressed is the influence of the environment on the electronic structure, and how to describe this accurately using computational methods. Here, we study an iron porphyrin chloride complex adsorbed on a graphene sheet using density functional theory calculations to probe how much the electronic structure is influenced by the presence of a graphene layer. Our results indicate that weak interactions due to van der Waals forces dominate between the porphyrin complex and graphene, and only a small amount of charge is transferred between the two entities. Furthermore, the interplay of the ligand field environment, strong p-d hybridization, and correlation effects within the complex are strongly involved in determining the spin state of the iron ion. By bridging molecular chemistry and solid state physics, this study provides first steps towards a joint analysis of the properties of iron-based catalysts from first principles.
Collapse
Affiliation(s)
- Young-Joon Song
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | - Charlotte Gallenkamp
- Quantum Chemistry, Department of Chemistry, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
| | - Genís Lleopart
- Departament de Ciéncia de Materials i Química Física and Institut de Química Teórica i Computacional (IQTC), Universitat de Barcelona, c/Martí i Franqués 1-11, 08028 Barcelona, Spain
| | - Vera Krewald
- Quantum Chemistry, Department of Chemistry, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.
| | - Roser Valentí
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Pang Y, Wan X, Li Y, Song M, Liu X, Shang J, Zheng L, Shui J. Evolution of Nitrogen-Coordinated Metal Single Atoms Toward Single-Atom Alloys on MgH₂ as Efficient and Stable Hydrogen Spillover Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412942. [PMID: 39439139 DOI: 10.1002/adma.202412942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Indexed: 10/25/2024]
Abstract
M-N-C catalysts with nitrogen-coordinated metal single-atom active sites have demonstrated high activity for hydrogen storage materials, but their stability in this application remains uncertain. This study addresses this issue by using nickel phthalocyanine (NiPc) molecules on MgH₂ particles as a model system. It is found that the N-coordinated high-valence Ni single atoms in the NiN₄ active site are unstable in the reducing environment of hydrogen storage, spontaneously evolving into zero-valence Ni, forming a Ni₁-Mg single-atom alloy (SAA). The Ni₁-Mg SAA exhibits remarkable stability in catalyzing Mg hydrogen storage reactions. Furthermore, it demonstrates comprehensive catalytic activity for each step of hydrogen absorption and desorption from Mg, surpassing the efficiency of the NiN₄ active site, especially in the critical steps of hydrogenation and dehydrogenation. Overall, the catalytic performance of Ni₁-Mg SAA is superior to most known nickel-based catalysts. This evolutionary process is also observed in FePc, CoPc, and tetraphenylporphyrin nickel (Ni-TPP), suggesting that this reducing transformation is a universal phenomenon for MN₄-type active sites in hydrogen storage catalysis.
Collapse
Affiliation(s)
- Yao Pang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yongcheng Li
- Qinghai Provincial Key Laboratory of New Light Alloys, Qinghai University, Xining, 810016, China
| | - Mengchen Song
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jiaxiang Shang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Lirong Zheng
- Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Hangzhou, 310023, China
| |
Collapse
|
5
|
Liu T, Huang H, Xu A, Sun Z, Liu D, Jiang S, Xu L, Chen Y, Liu X, Luo Q, Ding T, Yao T. Manipulation of d-Orbital Electron Configurations in Nonplanar Fe-Based Electrocatalysts for Efficient Oxygen Reduction. ACS NANO 2024; 18:28433-28443. [PMID: 39365637 DOI: 10.1021/acsnano.4c11356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Manipulation of the spin state holds great promise to improve the electrochemical activity of transition metal-based catalysts. However, the underlying relationship between the nonplanar metal coordination environment and spin states remains to be explored. Herein, we report the precise regulation of nonplanar Fe atomic d-orbital energy level into an irregular tetrahedral crystal field configuration by introducing P atoms. With the increase of P coordination number, the spin magnetic moment decreases linearly from 3.8 μB to 0.2 μB, and the high spin content decreases linearly from 31% to 5%. Significantly, a volcanic curve between the spin states of Fe-based catalysts (Fe-NxPy) and oxygen reduction reaction (ORR) activity has been unequivocally established based on the thermodynamic results. Thus, the Fe-N3P1 catalyst with a 19% medium spin state experimentally exhibits the optimal reaction activity with a high half-wave potential of 0.92 V. These findings indicate that regulating electron spin moments through coordination engineering is a promising catalyst design strategy, providing important insights into spin catalysis.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Airong Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiguo Sun
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dong Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuaiwei Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yudan Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaokang Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tao Ding
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tao Yao
- Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Chen S, Huang F, Mao L, Zhang Z, Lin H, Yan Q, Lu X, Shi J. High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy. NANO-MICRO LETTERS 2024; 17:32. [PMID: 39363132 PMCID: PMC11450126 DOI: 10.1007/s40820-024-01522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 10/05/2024]
Abstract
The current single-atom catalysts (SACs) for medicine still suffer from the limited active site density. Here, we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron. The constructed iron SACs (h3-FNC) with a high metal loading of 6.27 wt% and an optimized adjacent Fe distance of ~ 4 Å exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects. Attractively, a "density effect" has been found at a high-enough metal doping amount, at which individual active sites become close enough to interact with each other and alter the electronic structure, resulting in significantly boosted intrinsic activity of single-atomic iron sites in h3-FNCs by 2.3 times compared to low- and medium-loading SACs. Consequently, the overall catalytic activity of h3-FNC is highly improved, with mass activity and metal mass-specific activity that are, respectively, 66 and 315 times higher than those of commercial Pt/C. In addition, h3-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion (O2·-) and glutathione (GSH) depletion. Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h3-FNCs in promoting wound healing. This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.
Collapse
Affiliation(s)
- Si Chen
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Fang Huang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Lijie Mao
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Zhimin Zhang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Han Lin
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Qixin Yan
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xiangyu Lu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China.
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
7
|
Wang Z, Yang L, Chen Q, Liu P, Yang Z, Li H, Huang X, Huang W. Anisotropic Superprotonic Conduction in a Layered Single-Component Hydrogen-Bonded Organic Framework with Multiple In-Plane Open Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409202. [PMID: 39180256 DOI: 10.1002/adma.202409202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are promising proton conductive materials because of their inherent and abundant hydrogen-bonding sites. However, most superprotonic-conductive HOFs are constructed from multiple components to enable favorable framework architectures and structural integrity. In this contribution, layered HOF-TPB-A3 with a single component is synthesized and exfoliated. The exfoliated nanoplates exhibited anisotropic superprotonic conduction, with in-plane proton conductivities reaching 1.34 × 10-2 S cm-1 at 296 K and 98% relative humidity (RH). This outperforms the previously reported single-component HOFs and is comparable with the state-of-the-art multiple-component HOFs. The high and anisotropic proton conductive properties can be attributed to the efficient proton transport along multiple open channels parallel to their basal planes. Moreover, an all-solid-state (ASS) proton rectifier device is demonstrated by combining HOF-TPB-A3 and a hydroxide ion-conducting layered double hydroxide (LDH). This work suggests that single-component HOFs with multiple open channels offer more opportunities as versatile platforms for proton conductors, making them promising candidates for conducting media in protonic devices.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Materials Science and Chemical Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 23900, China
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lijuan Yang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Peiyuan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhiwei Yang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hai Li
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
8
|
Arman TA, Komini Babu S, Sabharwal M, Weber AZ, Pasaogullari U, Spendelow JS. Asymmetric gas diffusion layers for improved water management in PGM-free electrodes. Heliyon 2024; 10:e37222. [PMID: 39315227 PMCID: PMC11417255 DOI: 10.1016/j.heliyon.2024.e37222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Proton-exchange-membrane fuel cells (PEMFCs) offer a long-term, carbon-emission free solution to the energy needs of the transportation sector. However, high cost continues to limit PEMFC commercialization. Replacing expensive platinum group metal (PGM) catalysts with PGM-free catalysts could reduce cost, but the low active site density of PGM-free catalysts necessitates the use of thick electrodes that suffer from substantial mass transport losses. In these thick PGM-free electrodes, effective water management and oxygen transport are crucial to achieve high performance. In this work, we investigate the role of anode and cathode gas diffusion layer (GDL) configurations in controlling water management. Asymmetric GDL configurations, in which the anode GDL exhibits higher permeability than the cathode GDL, showed higher performance compared to conventional symmetric configurations. Computational modeling showed that the improved performance is mainly due to improved water management, resulting in lower liquid water saturation and faster oxygen transport in the cathode.
Collapse
Affiliation(s)
- Tanvir Alam Arman
- Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
- Department of Mechanical Engineering and Center for Clean Energy Engineering, University of Connecticut, Storrs, Connecticut, 06269, USA
| | | | - Mayank Sabharwal
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Adam Z. Weber
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Ugur Pasaogullari
- Department of Mechanical Engineering and Center for Clean Energy Engineering, University of Connecticut, Storrs, Connecticut, 06269, USA
| | | |
Collapse
|
9
|
Mostoni S, Mirizzi L, Frigerio A, Zuccante G, Ferrara C, Muhyuddin M, D'Arienzo M, Fernanda Orsini S, Scotti R, Cosenza A, Atanassov P, Santoro C. In-Situ HF Forming Agents for Sustainable Manufacturing of Iron-Based Oxygen Reduction Reaction Electrocatalysis Synthesized Through Sacrificial Support Method. CHEMSUSCHEM 2024:e202401185. [PMID: 39325923 DOI: 10.1002/cssc.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 09/28/2024]
Abstract
Fe-Nx-Cs being suitable to replace scarce and overpriced platinum group metals (PGMs) for cathodic oxygen reduction reaction (ORR) are gaining significant importance in the fuel cell arena. Although the typical sacrificial support method (SSM) ensures the superior electrocatalytic activity of derived Fe-Nx-C, removing silica hard templates always remains a great challenge due to the hazardous use of highly toxic and not environmentally friendly hydrofluoric acid. Herein, strategic insight was given to modified SSM by exploiting the in-situ formation of HF, deriving from the decomposition of NH4HF2 and NaF, to dissolve silica templates, thus avoiding the direct use of HF. First, the suitable molar ratio between the etching agent and the silica was analyzed, revealing that NH4HF2 efficiently dissolved silica even in a stoichiometric amount, whereas an excess of NaF was required. However, both etching agents exhibited conformal removal of silica while dispersed active moieties within the highly porous architecture of derived electrocatalysts were left behind. Moreover, NH4HF2-washed counterparts demonstrated relatively higher performance both in acidic and alkaline media. Notably, with NH4HF2-washed Fe-Nx-C electrocatalyst, a remarkable onset potential of 970 mV (vs RHE) was achieved with nearly tetra-electronic ORR as the peroxide yield remained less than 10 % in the alkaline medium.
Collapse
Affiliation(s)
- Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Lorenzo Mirizzi
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Alessandra Frigerio
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Giovanni Zuccante
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, Padova, 35131, Italy
| | - Chiara Ferrara
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Mohsin Muhyuddin
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Alessio Cosenza
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, United States
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, United States
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy
| |
Collapse
|
10
|
Huang Z, Li M, Yang X, Zhang T, Wang X, Song W, Zhang J, Wang H, Chen Y, Ding J, Hu W. Diatomic Iron with a Pseudo-Phthalocyanine Coordination Environment for Highly Efficient Oxygen Reduction over 150,000 Cycles. J Am Chem Soc 2024; 146:24842-24854. [PMID: 39186017 DOI: 10.1021/jacs.4c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Atomically dispersed Fe-N-C catalysts emerged as promising alternatives to commercial Pt/C for the oxygen reduction reaction. However, the majority of Fe-N-C catalysts showed unsatisfactory activity and durability due to their inferior O-O bond-breaking capability and rapid Fe demetallization. Herein, we create a pseudo-phthalocyanine environment coordinated diatomic iron (Fe2-pPc) catalyst by grafting the core domain of iron phthalocyanine (Fe-Nα-Cα-Nβ) onto defective carbon. In situ characterizations and theoretical calculation confirm that Fe2-pPc follows the fast-kinetic dissociative pathway, whereby Fe2-pPc triggers bridge-mode oxygen adsorption and catalyzes direct O-O radical cleavage. Compared to traditional Fe-N-C and FePc-based catalysts exhibiting superoxo-like oxygen adsorption and an *OOH-involved pathway, Fe2-pPc delivers a superior half-wave potential of 0.92 V. Furthermore, the ultrastrong Nα-Cα bonds in the pPc environment endow the diatomic iron active center with high tolerance for reaction-induced geometric stress, leading to significantly promoted resistance to demetallization. Upon an unprecedented harsh accelerated degradation test of 150,000 cycles, Fe2-pPc experiences negligible Fe loss and an extremely small activity decay of 17 mV, being the most robust candidate among previously reported Fe-N-C catalysts. Zinc-air batteries employing Fe2-pPc exhibit a power density of 255 mW cm-2 and excellent operation stability beyond 440 h. This work brings new insights into the design of atomically precise metallic catalysts.
Collapse
Affiliation(s)
- Zechuan Huang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Mianfeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Tao Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wanqing Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
11
|
Yan T, Lang S, Liu S, Wang S, Lin S, Cai Q, Zhao J. Strong interactions through the highly polar "Early-Late" metal-metal bonds enable single-atom catalysts good durability and superior bifunctional ORR/OER activity. J Colloid Interface Sci 2024; 669:32-42. [PMID: 38703580 DOI: 10.1016/j.jcis.2024.04.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Simultaneously enhancing the durability and catalytic performance of metal-nitrogen-carbon (M-Nx-C) single-atom catalysts is critical to boost oxygen electrocatalysis for energy conversion and storage, yet it remains a grand challenge. Herein, through the combination of early and late metals, we proposed to enhance the stability and tune the catalytic activity of M-Nx-C SACs in oxygen electrocatalysis by their strong interaction with the M2'C-type MXene substrate. Our density functional theory (DFT) computations revealed that the strong interaction between "early-late" metal-metal bonds significantly improves thermal and electrochemical stability. Due to considerable charge transfer and shift of the d-band center, the electronic properties of these SACs can be extensively modified, thereby optimizing their adsorption strength with oxygenated intermediates and achieving eight promising bifunctional catalysts for ORR/OER with low overpotentials. More importantly, the constant-potential analysis demonstrated the excellent bifunctional activity of SACs supported on MXene substrate across a broad pH range, especially in strongly alkaline media with record-low overpotentials. Further machine learning analysis shows that the d-band center, the charge of the active site, and the work function of the formed heterojunctions are critical to revealing the ORR/OER activity origin. Our results underscore the vast potential of strong interactions between different metal species in enhancing the durability and catalytic performance of SACs.
Collapse
Affiliation(s)
- Tingyu Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Simone Lang
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, USA
| | - Song Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Siyao Wang
- School of Physics and Electronic Engineering, Harbin Normal University Harbin, 150025 PR China
| | - Shiru Lin
- Division of Chemistry and Biochemistry, Texas Woman's University, Denton, TX 76204, USA.
| | - Qinghai Cai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| | - Jingxiang Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
12
|
Pedersen A, Kumar K, Ku YP, Martin V, Dubau L, Santos KT, Barrio J, Saveleva VA, Glatzel P, Paidi VK, Li X, Hutzler A, Titirici MM, Bonnefont A, Cherevko S, Stephens IEL, Maillard F. Operando Fe dissolution in Fe-N-C electrocatalysts during acidic oxygen reduction: impact of local pH change. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:6323-6337. [PMID: 39205876 PMCID: PMC11348952 DOI: 10.1039/d4ee01995d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Atomic Fe in N-doped C (Fe-N-C) catalysts provide the most promising non-precious metal O2 reduction activity at the cathodes of proton exchange membrane fuel cells. However, one of the biggest remaining challenges to address towards their implementation in fuel cells is their limited durability. Fe demetallation has been suggested as the primary initial degradation mechanism. However, the fate of Fe under different operating conditions varies. Here, we monitor operando Fe dissolution of a highly porous and >50% FeN x electrochemical utilization Fe-N-C catalyst in 0.1 M HClO4, under O2 and Ar at different temperatures, in both flow cell and gas diffusion electrode (GDE) half-cell coupled to inductively coupled plasma mass spectrometry (ICP-MS). By combining these results with pre- and post-mortem analyses, we demonstrate that in the absence of oxygen, Fe cations diffuse away within the liquid phase. Conversely, at -15 mA cm-2 geo and more negative O2 reduction currents, the Fe cations reprecipitate as Fe-oxides. We support our conclusions with a microkinetic model, revealing that the local pH in the catalyst layer predominantly accounts for the observed trend. Even at a moderate O2 reduction current density of -15 mA cm-2 geo at 25 °C, a significant H+ consumption and therefore pH increase (pH = 8-9) within the bulk Fe-N-C layer facilitate precipitation of Fe cations. This work provides a unified view on the Fe dissolution degradation mechanism for a model Fe-N-C in both high-throughput flow cell and practical operating GDE conditions, underscoring the crucial role of local pH in regulating the stability of the active sites.
Collapse
Affiliation(s)
- Angus Pedersen
- Imperial College London, Department of Materials, Royal School of Mines London SW7 2AZ UK
- Imperial College London, Department of Chemical Engineering London SW7 2AZ UK
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Kavita Kumar
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
| | - Yu-Ping Ku
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemical and Biological Engineering Cauerstraße 1 91058 Erlangen Germany
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Laetitia Dubau
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Keyla Teixeira Santos
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Jesús Barrio
- Imperial College London, Department of Materials, Royal School of Mines London SW7 2AZ UK
- Imperial College London, Department of Chemical Engineering London SW7 2AZ UK
| | - Viktoriia A Saveleva
- ESRF, The European Synchrotron 71 Avenue des Martyrs, CS40220 38043 Grenoble Cedex 9 France
| | - Pieter Glatzel
- ESRF, The European Synchrotron 71 Avenue des Martyrs, CS40220 38043 Grenoble Cedex 9 France
| | - Vinod K Paidi
- ESRF, The European Synchrotron 71 Avenue des Martyrs, CS40220 38043 Grenoble Cedex 9 France
| | - Xiaoyan Li
- Laboratoire de Physique des Solides CNRS, Université Paris Sud 91405 Orsay France
| | - Andreas Hutzler
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
| | | | - Antoine Bonnefont
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN) Cauerstraße 1 91058 Erlangen Germany
| | - Ifan E L Stephens
- Imperial College London, Department of Materials, Royal School of Mines London SW7 2AZ UK
| | - Frédéric Maillard
- Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI 38000 Grenoble France
| |
Collapse
|
13
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
14
|
Zhang Y, Wu Q, Seow JZY, Jia Y, Ren X, Xu ZJ. Spin states of metal centers in electrocatalysis. Chem Soc Rev 2024; 53:8123-8136. [PMID: 39005214 DOI: 10.1039/d3cs00913k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Understanding the electronic structure of active sites is crucial in efficient catalyst design. The spin state, spin configurations of d-electrons, has been frequently discussed recently. However, its systematic depiction in electrocatalysis is lacking. In this tutorial review, a comprehensive interpretation of the spin state of metal centers in electrocatalysts and its role in electrocatalysis is provided. This review starts with the basics of spin states, including molecular field theory, crystal field theory, and ligand field theory. It further introduces the differences in low spin, intermediate spin, and high spin, and intrinsic factors affecting the spin state. Popular characterization techniques and modeling approaches that can reveal the spin state, such as X-ray absorption microscopy, electron spin resonance spectroscopy, Mössbauer spectroscopy, and density functional theory (DFT) calculations, are introduced as well with examples from the literature. The examples include the most recent progress in tuning the spin state of metal centers for various reactions, e.g., the oxygen evolution reaction, oxygen reduction reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and urea oxidation reaction. Challenges and potential implications for future research related to the spin state are discussed at the end.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Justin Zhu Yeow Seow
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, 639798, Singapore
| | - Yingjie Jia
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, 100871, China.
| | - Xiao Ren
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, 100871, China.
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Energy Research Institute@NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
15
|
Hu C, Xing G, Han W, Hao Y, Zhang C, Zhang Y, Kuo CH, Chen HY, Hu F, Li L, Peng S. Inhibiting Demetalation of Fe─N─C via Mn Sites for Efficient Oxygen Reduction Reaction in Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405763. [PMID: 38809945 DOI: 10.1002/adma.202405763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Demetalation caused by the electrochemical dissolution of metallic Fe atoms is a major challenge for the practical application of Fe─N─C catalysts. Herein, an efficient single metallic Mn active site is constructed to improve the strength of the Fe─N bond, inhibiting the demetalation effect of Fe─N─C. Mn acts as an electron donor inducing more delocalized electrons to reduce the oxidation state of Fe by increasing the electron density, thereby enhancing the Fe─N bond and inhibiting the electrochemical dissolution of Fe. The oxygen reduction reaction pathway for the dissociation of Fe─Mn dual sites can overcome the high energy barriers to direct O─O bond dissociation and modulate the electronic states of Fe─N4 sites. The resulting FeMn─N─C exhibits excellent ORR activity with a high half-wave potential of 0.92 V in alkaline electrolytes. FeMn─N─C as a cathode catalyst for Zn-air batteries has a cycle stability of 700 h at 25 °C and a long cycle stability of more than 210 h under extremely cold conditions at -40 °C. These findings contribute to the development of efficient and stable metal-nitrogen-carbon catalysts for various energy devices.
Collapse
Affiliation(s)
- Chuan Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Gengyu Xing
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Wentao Han
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
16
|
Xu T, Liu T, Jing Y. Bifunctional oxygen reduction/evolution reaction electrocatalysts achieved by axial ligand modulation on two-dimensional porphyrin frameworks. Phys Chem Chem Phys 2024; 26:18707-18714. [PMID: 38932574 DOI: 10.1039/d4cp01235f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Exploring efficient and low-cost oxygen reduction and oxygen evolution reaction (ORR/OER) bifunctional catalysts is essential for the development of energy storage and conversion devices. Herein, enlightened by the experimentally synthesized cobalt(II) meso-tetraethynylporphyrins (Co-TEP) molecule, we designed a novel 2D covalent organic framework (COF), namely a 2D Co-TEP monolayer, by dimensional expansion. The 2D Co-TEP monolayer, with Co atoms distributed separately and stabilized by uniform pyrrolic-N coordination, features metal-nitrogen-carbon single-atom catalyst activity and shows tunable catalytic activity for the electrochemical ORR/OER by axial ligand (O, OH, Cl, CN, CH3, NO, F) modulation. By means of the state-of-the-art constant-potential first-principles computations and microkinetic simulations, we demonstrated that 2D Co-TEP-CN exhibits good ORR/OER performance in both acidic and alkaline conditions. The difference between the onset-potential for the OER and the half-wave potential for the ORR is only 0.85 V at pH = 1, smaller than that of Pt/IrO2 electrocatalysts. The good electrocatalytic performance is maintained by replacing the center metal atoms with Mn, Fe and/or Ni. Our investigation highlights the role of the pyrrolic-N coordination and the ligands in improving the catalytic activity of 2D COFs and provides new insights into the rational design of efficient bifunctional ORR/OER catalysts.
Collapse
Affiliation(s)
- Tianze Xu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Tianyang Liu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
17
|
Bai J, Lin Y, Xu J, Zhou W, Zhou P, Deng Y, Lian Y. PGM-free single atom catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Chem Commun (Camb) 2024; 60:7113-7123. [PMID: 38912537 DOI: 10.1039/d4cc02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The progress of proton exchange membrane fuel cells (PEMFCs) in the clean energy sector is notable for its efficiency and eco-friendliness, although challenges remain in terms of durability, cost and power density. The oxygen reduction reaction (ORR) is a key sluggish process and although current platinum-based catalysts are effective, their high cost and instability is a significant barrier. Single-atom catalysts (SACs) offer an economically viable alternative with comparable catalytic activity for ORR. The primary concern regarding SACs is their operational stability under PEMFCs conditions. In this article, we review current strategies for increasing the catalytic activity of SACs, including increasing active site density, optimizing metal center coordination through heteroatom doping, and engineering porous substrates. To enhance durability, we discuss methods to stabilize metal centers, mitigate the effects of the Fenton reaction, and improve graphitization of the carbon matrix. Future research should apply computational chemistry to predict catalyst properties, develop in situ characterization for real-time active site analysis, explore novel catalysts without the use of platinum-based catalysts to reduce dependence on rare and noble metal, and investigate the long-term stability of catalyst under operating conditions. The aim is to engineer SACs that meet and surpass the performance benchmarks of PEMFCs, contributing to a sustainable energy future.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Jinnan Xu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Wangkai Zhou
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Pin Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213022, China.
| | - Yuebin Lian
- School of Optoelectronics, Changzhou Institute of Technology, Changzhou, 213022, China.
| |
Collapse
|
18
|
Putnam ST, Rodríguez-López J. Real-time investigation of reactive oxygen species and radicals evolved from operating Fe-N-C electrocatalysts during the ORR: potential dependence, impact on degradation, and structural comparisons. Chem Sci 2024; 15:10036-10045. [PMID: 38966386 PMCID: PMC11220586 DOI: 10.1039/d4sc01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024] Open
Abstract
Improving the stability of platinum-group-metal-free (PGM-free) catalysts is a critical roadblock to the development of economically feasible energy storage and conversion technologies. Fe-N-C catalysts, the most promising class of PGM-free catalysts, suffer from rapid degradation. The generation of reactive oxygen species (ROS) during the oxygen reduction reaction (ORR) has been proposed as a central cause of this loss of activity. However, there is insufficient understanding of the generation and dynamics of ROS under catalytic conditions due to the difficulty of detecting and quantifying short-lived ROS such as the hydroxyl radical, OH˙. To accomplish this, we use operando scanning electrochemical microscopy (SECM) to probe the production of radicals by a commercial pyrolyzed Fe-N-C catalyst in real-time using a redox-active spin trap methodology. SECM showed the monotonic production of OH˙ which followed the ORR activity. Our results were thoroughly backed using electron spin resonance confirmation to show that the hydroxyl radical is the dominant radical species produced. Furthermore, OH˙ and H2O2 production followed distinct trends. ROS studied as a function of catalyst degradation also showed a decreased production, suggesting its relation to the catalytic activity of the sample. The structural origins of ROS production were also probed using model systems such as iron phthalocyanine (FePc) and Fe3O4 nanoparticles, both of which showed significant generation of OH˙ during the ORR. These results provide a comprehensive insight into the critical, yet under-studied, aspects of the production and effects of ROS on electrocatalytic systems and open the door for further mechanistic and kinetic investigation using SECM.
Collapse
Affiliation(s)
- Seth T Putnam
- Department of Chemistry, University of Illinois Urbana-Champaign 600 S. Matthews Ave. Urbana IL 61801 USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign 600 S. Matthews Ave. Urbana IL 61801 USA
| |
Collapse
|
19
|
Wang XY, Pan YZ, Yang J, Li WH, Gan T, Pan YM, Tang HT, Wang D. Single-Atom Iron Catalyst as an Advanced Redox Mediator for Anodic Oxidation of Organic Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202404295. [PMID: 38649323 DOI: 10.1002/anie.202404295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Homogeneous electrocatalysts can indirect oxidate the high overpotential substrates through single-electron transfer on the electrode surface, enabling efficient operation of organic electrosynthesis catalytic cycles. However, the problems of this chemistry still exist such as high dosage, difficult recovery, and low catalytic efficiency. Single-atom catalysts (SACs) exhibit high atom utilization and excellent catalytic activity, hold great promise in addressing the limitations of homogeneous catalysts. In view of this, we have employed Fe-SA@NC as an advanced redox mediator to try to change this situation. Fe-SA@NC was synthesized using an encapsulation-pyrolysis method, and it demonstrated remarkable performance as a redox mediator in a range of reported organic electrosynthesis reactions, and enabling the construction of various C-C/C-X bonds. Moreover, Fe-SA@NC demonstrated a great potential in exploring new synthetic method for organic electrosynthesis. We employed it to develop a new electro-oxidative ring-opening transformation of cyclopropyl amides. In this new reaction system, Fe-SA@NC showed good tolerance to drug molecules with complex structures, as well as enabling flow electrochemical syntheses and gram-scale transformations. This work highlights the great potential of SACs in organic electrosynthesis, thereby opening a new avenue in synthetic chemistry.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yong-Zhou Pan
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Xue N, Xue X, Aihemaiti A, Zhu H, Yin J. Atomically Dispersed Ce Sites Augmenting Activity and Durability of Fe-Based Oxygen Reduction Catalyst in PEMFC. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311034. [PMID: 38415298 DOI: 10.1002/smll.202311034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Indexed: 02/29/2024]
Abstract
In the cathode of proton exchange membrane fuel cells (PEMFCs), Fe and N co-doped carbon (Fe-N-C) materials with atomically dispersed active sites are one of the satisfactory candidates to replace Pt-based catalysts. However, Fe-N-C catalysts are vulnerable to attack from reactive oxygen species, resulting in inferior durability, and current strategies failing to balance the activity and stability. Here, this study reports Fe and Ce single atoms coupled catalysts anchored on ZIF-8-derived nitrogen-doped carbon (Fe/Ce-N-C) as an efficient ORR electrocatalyst for PEMFCs. In PEMFC tests, the maximum power density of Fe/Ce-N-C catalyst reached up to 0.82 W cm-2, which is 41% larger than that of Fe-N-C. More importantly, the activity of Fe/Ce-N-C catalyst only decreased by 21% after 30 000 cycles under H2/air condition. Density functional theory reveals that the strong coupling between the Fe and Ce sites result in the redistribution of electrons in the active sites, which optimizes the adsorption of OH* intermediates on the catalyst and increases the intrinsic activity. Additionally, the admirable radical scavenging ability of the Ce sites ensured that the catalysts gained long-term stability. Therefore, the addition of Ce single atoms provides a new strategy for improving the activity and durability of oxygen reduction catalysts.
Collapse
Affiliation(s)
- Nan Xue
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyan Xue
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aikelaimu Aihemaiti
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| |
Collapse
|
21
|
Fang SY, Chen YJ, Chen WX, Zhuang GL. Magnetic Order Transition of a Two-Dimensional Square-Lattice Electrocatalyst Assembled by Fe-N 4 Units: Crucial Role on Oxygen Reduction. J Phys Chem Lett 2024; 15:5887-5895. [PMID: 38804881 DOI: 10.1021/acs.jpclett.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Herein, we theoretically investigate the effect of magnetic orders on electrocatalytic oxygen reduction reaction (ORR) properties on the Fe-N4 site-embedded two-dimensional (2D) covalent organic framework (Fe-N4@COF-C3N2) under realistic environments. The Fe-N4@COF-C3N2 shows a 2D square-lattice (sql) topology with three magnetic order states: one ferromagnetic state (FM) and two antiferromagnetic states (AFM1 and AFM2). Specially, the electrocatalyst in the AFM2 state shows a remarkable onset potential of 0.80 V/reversible hydrogen electrode (RHE) at pH 1, superior to the existing most excellent noble-metal catalysts. Thermodynamically, the onset potential for the 4e- ORR is 0.64 V/RHE at pH 1, with a magnetic state transition process of FM → AFM1 → FM → FM → FM, while at pH 13, the onset potential for the 4e- ORR is 0.54 V/RHE, with the magnetic transition process of FM → FM → AFM1 → FM → FM. Generally, this finding will provide new avenues to rationally design the Fe-N4 electrocatalyst.
Collapse
Affiliation(s)
- Shui-Yang Fang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Yi-Jie Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Wen-Xian Chen
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
| | - Gui-Lin Zhuang
- H-PSI Computational Chemistry Lab, Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, People's Republic of China
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
22
|
Zhong W, Jiang J. The Rational Design of Atomically Dispersed Catalysts via Spin Manipulation. J Phys Chem Lett 2024; 15:5445-5451. [PMID: 38747537 DOI: 10.1021/acs.jpclett.4c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The catalytic activity of transition-metal-based atomically dispersed catalysts is closely related to the spin states. Manipulating the spin state of metal active centers could directly adjust the d orbital occupancy and optimize the adsorption behavior and electron transfer of the intermediates and transition metals, which would enhance the catalytic activity. We summarize the means of manipulating spin states and the spin-related catalytic descriptors. In future work, we will build a quantifiable and accurate prediction intelligent model through artificial intelligence (AI) and machine learning tools. Furthermore, we will develop new spin regulation methods to carry out the directional regulation of atomically dispersed catalysts through this model, providing new insight into the rational design of transition-metal-based atomically dispersed catalysts through spin manipulation.
Collapse
Affiliation(s)
- Wenhui Zhong
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Bai J, Zhao T, Xu M, Mei B, Yang L, Shi Z, Zhu S, Wang Y, Jiang Z, Zhao J, Ge J, Xiao M, Liu C, Xing W. Monosymmetric Fe-N 4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification. Nat Commun 2024; 15:4219. [PMID: 38760340 PMCID: PMC11101623 DOI: 10.1038/s41467-024-47817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
The limited durability of metal-nitrogen-carbon electrocatalysts severely restricts their applicability for the oxygen reduction reaction in proton exchange membrane fuel cells. In this study, we employ the chemical vapor modification method to alter the configuration of active sites from FeN4 to the stable monosymmetric FeN2+N'2, along with enhancing the degree of graphitization in the carbon substrate. This improvement effectively addresses the challenges associated with Fe active center leaching caused by N-group protonation and free radicals attack due to the 2-electron oxygen reduction reaction. The electrocatalyst with neoteric active site exhibited excellent durability. During accelerated aging test, the electrocatalyst exhibited negligible decline in its half-wave potential even after undergoing 200,000 potential cycles. Furthermore, when subjected to operational conditions representative of fuel cell systems, the electrocatalyst displayed remarkable durability, sustaining stable performance for a duration exceeding 248 h. The significant improvement in durability provides highly valuable insights for the practical application of metal-nitrogen-carbon electrocatalysts.
Collapse
Affiliation(s)
- Jingsen Bai
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tuo Zhao
- Commercial Vehicle Development Institute, FAW Jiefang Automotive CO.LTD., Changchun, 130011, China
| | - Mingjun Xu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Liting Yang
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Siyuan Zhu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230026, China
| | - Jin Zhao
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Meiling Xiao
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Xing
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
24
|
Ma W, Ren X, Li J, Wang S, Wei X, Wang N, Du Y. Advances in Atomically Dispersed Metal and Nitrogen Co-Doped Carbon Catalysts for Advanced Oxidation Technologies and Water Remediation: From Microenvironment Modulation to Non-Radical Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308957. [PMID: 38111984 DOI: 10.1002/smll.202308957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Indexed: 12/20/2023]
Abstract
Atomically dispersed metal and nitrogen co-doped carbon catalysts (M-N-C) have been attracting tremendous attentions thanks to their unique MNx active sites and fantastic catalytic activities in advanced oxidation technologies (AOTs) for water remediation. However, precisely tailoring the microenvironment of active sites at atomic level is still an intricate challenge so far, and understanding of the non-radical mechanisms in persulfate activation exists many uncertainties. In this review, latest developments on the microenvironment modulation strategies of atomically dispersed M-N-C catalysts including regulation of central metal atoms, regulation of coordination numbers, regulation of coordination heteroatoms, and synergy between single-atom catalysts (SACs) with metal species are systematically highlighted and discussed. Afterwards, progress and underlying limitations about the typical non-radical pathways from production of singlet oxygen, electron transfer mechanism to generation of high-valent metal species are well demonstrated to inspire intrinsic insights about the mechanisms of M-N-C/persulfate systems. Lastly, perspectives for the remaining challenges and opportunities about the further development of carbon-based SACs in environment remediation are also pointed out. It is believed that this review will be much valuable for the further design of active sites in M-N-C/persulfate catalytic systems and promote the wide application of SACs in various fields.
Collapse
Affiliation(s)
- Wenjie Ma
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xiaohui Ren
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Jiahao Li
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Shuai Wang
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Xinyu Wei
- College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Na Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
25
|
Sun Z, Gao R, Liu F, Li H, Shi C, Pan L, Huang ZF, Zhang X, Zou JJ. Fe-Co heteronuclear atom pairs as catalytic sites for efficient oxygen electroreduction. NANOSCALE 2024. [PMID: 38644794 DOI: 10.1039/d4nr00077c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Single-site Fe-N-C catalysts are the most promising Pt-group catalyst alternatives for the oxygen reduction reaction, but their application is impeded by their relatively low activity and unsatisfactory stability as well as production costs. Here, cobalt atoms are introduced into an Fe-N-C catalyst to enhance its catalytic activity by utilizing the synergistic effect between Fe and Co atoms. Meanwhile, phenanthroline is employed as the ligand, which favours stable pyridinic N-coordinated Fe-Co sites. The obtained catalysts exhibit excellent ORR performance with a half-wave potential of 0.892 V and good stability under alkaline conditions. In addition, the excellent ORR activity and durability of FeCo-N-C enabled the constructed zinc-air battery to exhibit a high power density of 247.93 mW cm-2 and a high capacity of 768.59 mA h gZn-1. Moreover, the AEMFC based on FeCo-N-C also achieved a high open circuit voltage (0.95 V) and rated power density (444.7 mW cm-2), surpassing those of many currently reported transition metal-based cathodes. This work emphasizes the feasibility of this non-precious metal catalyst preparation strategy and its practical applicability in fuel cells and metal-air batteries.
Collapse
Affiliation(s)
- Zhen Sun
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Ruijie Gao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Fan Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Hao Li
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
26
|
Zhang Y, Wang D, Wei G, Li B, Mao Z, Xu SM, Tang S, Jiang J, Li Z, Wang X, Xu X. Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS 2 Bilayer for Enhanced Nitrogen Reduction. JACS AU 2024; 4:1509-1520. [PMID: 38665658 PMCID: PMC11040660 DOI: 10.1021/jacsau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The precise control of spin states in transition metal (TM)-based single-atom catalysts (SACs) is crucial for advancing the functionality of electrocatalysts, yet it presents significant scientific challenges. Using density functional theory (DFT) calculations, we propose a novel mechanism to precisely modulate the spin state of the surface-adsorbed Fe atom on the MoS2 bilayer. This is achieved by strategically intercalating a TM atom into the interlayer space of the MoS2 bilayer. Our results show that these strategically intercalated TM atoms can induce a substantial interfacial charge polarization, thereby effectively controlling the charge transfer and spin polarization on the surface Fe site. In particular, by varying the identity of the intercalated TM atoms and their vacancy filling site, a continuous modulation of the spin states of the surface Fe site from low to medium to high can be achieved, which can be accurately described using descriptors composed of readily accessible intrinsic properties of materials. Using the electrochemical dinitrogen reduction reaction (eNRR) as a prototypical reaction, we discovered a universal volcano-like relation between the tuned spin and the catalytic activity of Fe-based SACs. This finding contrasts with the linear scaling relationships commonly seen in traditional studies and offers a robust new approach to modulating the activity of SACs through interfacial engineering.
Collapse
Affiliation(s)
- Yuqin Zhang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Da Wang
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Guanping Wei
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Baolei Li
- School
of Mathematics and Computer Science, Gannan
Normal University, Ganzhou 341000, China
| | - Zongchang Mao
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Si-Min Xu
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaobin Tang
- Key
Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyu Li
- Key
Laboratory of Precision and Intelligent Chemistry, School of Chemistry
and Materials Science, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Xijun Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
27
|
Xu X, Li X, Lu W, Sun X, Huang H, Cui X, Li L, Zou X, Zheng W, Zhao X. Collective Effect in a Multicomponent Ensemble Combining Single Atoms and Nanoparticles for Efficient and Durable Oxygen Reduction. Angew Chem Int Ed Engl 2024; 63:e202400765. [PMID: 38349119 DOI: 10.1002/anie.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 03/01/2024]
Abstract
Metal single-atom catalysts represent one of the most promising non-noble metal catalysts for the oxygen reduction reaction (ORR). However, they still suffer from insufficient activity and, particularly, durability for practical applications. Leveraging density functional theory (DFT) and machine learning (ML), we unravel an unexpected collective effect between FeN4OH sites, CeN4OH motifs, Fe nanoparticles (NPs), and Fe-CeO2 NPs. The collective effect comprises differently-weighted electronic and geometric interactions, whitch results in significantly enhanced ORR activity for FeN4OH active sites with a half-wave potential (E1/2) of 0.948 V versus the reversible hydrogen electrode (VRHE) in alkaline, relative to a commercial Pt/C (E1/2, 0.851 VRHE). Meanwhile, this collective effect endows the shortened Fe-N bonds and the remarkable durability with negligible activity loss after 50,000 potential cycles. The ML was used to understand the intricate geometric and electronic interactions in collective effect and reveal the intrinsic descriptors to account for the enhanced ORR performance. The universality of collective effect was demonstrated effective for the Co, Ni, Cu, Cr, and Mn-based multicomponent ensembles. These results confirm the importance of collective effect to simultaneously improve catalytic activity and durability.
Collapse
Affiliation(s)
- Xiaochun Xu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xinyi Li
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenting Lu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiaoyuan Sun
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hong Huang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
28
|
Li H, Wu D, Wu J, Lv W, Duan Z, Ma D. Graphene-based iron single-atom catalysts for electrocatalytic nitric oxide reduction: a first-principles study. NANOSCALE 2024; 16:7058-7067. [PMID: 38445992 DOI: 10.1039/d4nr00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The electrocatalytic NO reduction reaction (NORR) emerges as an intriguing strategy to convert harmful NO into valuable NH3. Due to their unique intrinsic properties, graphene-based Fe single-atom catalysts (SACs) have gained considerable attention in electrocatalysis, while their potential for NORR and the underlying mechanism remain to be explored. Herein, using constant-potential density functional theory calculations, we systematically investigated the electrocatalytic NORR on the graphene-based Fe SACs. By changing the local coordination environment of Fe single atoms, 26 systems were constructed. Theoretical results show that, among these systems, the Fe SAC coordinated with four pyrrole N atoms and that co-coordinated with three pyridine N atoms and one O atom exhibit excellent NORR activity with low limiting potentials of -0.26 and -0.33 V, respectively, as well as have high selectivity toward NH3 by inhibiting the formation of byproducts, especially under applied potential. Furthermore, electronic structure analyses indicate that NO molecules can be effectively adsorbed and activated via the electron "donation-backdonation" mechanism. In particular, the d-band center of the Fe SACs was identified as an efficient catalytic activity descriptor for NORR. Our work could stimulate and guide the experimental exploration of graphene-based Fe SACs for efficient NORR toward NH3 under ambient conditions.
Collapse
Affiliation(s)
- Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
29
|
Gallenkamp C, Kramm UI, Krewald V. FeN 4 Environments upon Reduction: A Computational Analysis of Spin States, Spectroscopic Properties, and Active Species. JACS AU 2024; 4:940-950. [PMID: 38559729 PMCID: PMC10976608 DOI: 10.1021/jacsau.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 04/04/2024]
Abstract
FeN4 motifs, found, for instance, in bioinorganic chemistry as heme-type cofactors, play a crucial role in man-made FeNC catalysts for the oxygen reduction reaction. Such single-atom catalysts are a potential alternative to platinum-based catalysts in fuel cells. Since FeNC catalysts are prepared via pyrolysis, the resulting materials are amorphous and contain side phases and impurities. Therefore, the geometric and electronic nature of the catalytically active FeN4 site remains to be clarified. To further understand the behavior of FeN4 centers in electrochemistry and their expected spectroscopic behavior upon reduction, we investigate two FeN4 environments (pyrrolic and pyridinic). These are represented by the model complexes [Fe(TPP)Cl] and [Fe(phen2N2)Cl], where TPP = tetraphenylporphyrin and phen = 1,10-phenanthroline. We predict their Mössbauer, UV-vis, and NRV spectral data using density functional theory as windows into their electronic structure differences. By varying the axial ligand, we further show how well small chemical changes in both complexes can be discerned. We find that the differences in ligand field strength in pyrrolic and pyridinic coordination result in different spin ground states, which in turn leads to distinct Mössbauer spectroscopic properties. As a result, pyrrolic nitrogen donors with a weaker ligand field are predicted to show more pronounced spectroscopic differences under in situ and operando conditions, while pyridinic nitrogen donors are expected to show less pronounced spectroscopic changes upon reduction and/or ligand loss. We therefore suggest that a weaker ligand field leads to better detectability of catalytic intermediates in in situ and operando experiments.
Collapse
Affiliation(s)
- Charlotte Gallenkamp
- Theoretische
Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Ulrike I. Kramm
- Anorganische
Chemie, Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany
| | - Vera Krewald
- Theoretische
Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| |
Collapse
|
30
|
Đukić T, Moriau L, Klofutar I, Šala M, Pavko L, González López FJ, Ruiz-Zepeda F, Pavlišič A, Hotko M, Gatalo M, Hodnik N. Adjusting the Operational Potential Window as a Tool for Prolonging the Durability of Carbon-Supported Pt-Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. ACS Catal 2024; 14:4303-4317. [PMID: 38510667 PMCID: PMC10949198 DOI: 10.1021/acscatal.3c06251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
A current trend in the investigation of state-of-the-art Pt-alloys as proton exchange membrane fuel cell (PEMFC) electrocatalysts is to study their long-term stability as a bottleneck for their full commercialization. Although many parameters have been appropriately addressed, there are still certain issues that must be considered. Here, the stability of an experimental Pt-Co/C electrocatalyst is investigated by high-temperature accelerated degradation tests (HT-ADTs) in a high-temperature disk electrode (HT-DE) setup, allowing the imitation of close-to-real operational conditions in terms of temperature (60 °C). Although the US Department of Energy (DoE) protocol has been chosen as the basis of the study (30,000 trapezoidal wave cycling steps between 0.6 and 0.95 VRHE with a 3 s hold time at both the lower potential limit (LPL) and the upper potential limit (UPL)), this works demonstrates that limiting both the LPL and UPL (from 0.6-0.95 to 0.7-0.85 VRHE) can dramatically reduce the degradation rate of state-of-the-art Pt-alloy electrocatalysts. This has been additionally confirmed with the use of an electrochemical flow cell coupled to inductively coupled plasma mass spectrometry (EFC-ICP-MS), which enables real-time monitoring of the dissolution mechanisms of Pt and Co. In line with the HT-DE methodology observations, a dramatic decrease in the total dissolution of Pt and Co has once again been observed upon narrowing the potential window to 0.7-0.85 VRHE rather than 0.6-0.95 VRHE. Additionally, the effect of the potential hold time at both LPL and UPL on metal dissolution has also been investigated. The findings demonstrate that the dissolution rate of both metals is proportional to the hold time at UPL regardless of the applied potential window, whereas the hold time at the LPL does not appear to be as detrimental to the stability of metals.
Collapse
Affiliation(s)
- Tina Đukić
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, Ljubljana 1000, Slovenia
| | - Léonard
Jean Moriau
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Iva Klofutar
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Martin Šala
- Department
of Analytical Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Luka Pavko
- ReCatalyst
d.o.o., Hajdrihova Ulica
19, Ljubljana 1001, Slovenia
| | | | - Francisco Ruiz-Zepeda
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
| | - Andraž Pavlišič
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Miha Hotko
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| | - Matija Gatalo
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- ReCatalyst
d.o.o., Hajdrihova Ulica
19, Ljubljana 1001, Slovenia
| | - Nejc Hodnik
- Department
of Materials Chemistry, National Institute
of Chemistry, Hajdrihova
19, Ljubljana 1001, Slovenia
- University
of Nova Gorica, Vipavska
13, Nova Gorica 5000, Slovenia
| |
Collapse
|
31
|
Ogawa M, Usami S, Takahama R, Iwamoto K, Nabeta T, Kawashima S, Kojima R, Ohyama J, Hayakawa T, Nabae Y, Moriya M. One-pot gram-scale rapid synthesis of MN 4 complexes with 14-membered ring macrocyclic ligand as a precursor for carbon-based ORR and CO 2RR catalysts. Dalton Trans 2024; 53:4426-4431. [PMID: 38318980 DOI: 10.1039/d3dt04129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Herein, CoN4, CuN4, and NiN4 complexes with a 14-membered ring hexaazamacrocycle ligand H2HAM were synthesised as precursors for ORR and CO2RR catalysts via a one-pot, gram-scale synthesis procedure, which involved microwave heating for only 10 min. Detailed structures of the obtained 14MR-MN4 complex were revealed by single-crystal X-ray diffraction measurements.
Collapse
Affiliation(s)
- Mana Ogawa
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Sayaka Usami
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Ryo Takahama
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Kazuko Iwamoto
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tomomi Nabeta
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Shin Kawashima
- Corporate Research & Development, Asahi Kasei Corporation, 2767-11 Niihama, Shionasu, Kojima, Kurashiki, Okayama 711-8510, Japan
| | - Ryoichi Kojima
- Corporate Research & Development, Asahi Kasei Corporation, 2767-11 Niihama, Shionasu, Kojima, Kurashiki, Okayama 711-8510, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yuta Nabae
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Makoto Moriya
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- College of Science, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
32
|
Do VH, Lee JM. Surface engineering for stable electrocatalysis. Chem Soc Rev 2024; 53:2693-2737. [PMID: 38318782 DOI: 10.1039/d3cs00292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent decades, significant progress has been achieved in rational developments of electrocatalysts through constructing novel atomistic structures and modulating catalytic surface topography, realizing substantial enhancement in electrocatalytic activities. Numerous advanced catalysts were developed for electrochemical energy conversion, exhibiting low overpotential, high intrinsic activity, and selectivity. Yet, maintaining the high catalytic performance under working conditions with high polarization and vigorous microkinetics that induce intensive degradation of surface nanostructures presents a significant challenge for commercial applications. Recently, advanced operando and computational techniques have provided comprehensive mechanistic insights into the degradation of surficial functional structures. Additionally, various innovative strategies have been devised and proven effective in sustaining electrocatalytic activity under harsh operating conditions. This review aims to discuss the most recent understanding of the degradation microkinetics of catalysts across an entire range of anodic to cathodic polarizations, encompassing processes such as oxygen evolution and reduction, hydrogen reduction, and carbon dioxide reduction. Subsequently, innovative strategies adopted to stabilize the materials' structure and activity are highlighted with an in-depth discussion of the underlying rationale. Finally, we present conclusions and perspectives regarding future research and development. By identifying the research gaps, this review aims to inspire further exploration of surface degradation mechanisms and rational design of durable electrocatalysts, ultimately contributing to the large-scale utilization of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459.
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141
| |
Collapse
|
33
|
Wang Y, Yang T, Fan X, Bao Z, Tayal A, Tan H, Shi M, Liang Z, Zhang W, Lin H, Cao R, Huang Z, Zheng H. Anchoring Fe Species on the Highly Curved Surface of S and N Co-Doped Carbonaceous Nanosprings for Oxygen Electrocatalysis and a Flexible Zinc-Air Battery. Angew Chem Int Ed Engl 2024; 63:e202313034. [PMID: 38097503 DOI: 10.1002/anie.202313034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 01/03/2024]
Abstract
Oxygen reduction reaction (ORR) is of critical significance in the advancement of fuel cells and zinc-air batteries. The iron-nitrogen (Fe-Nx ) sites exhibited exceptional reactivity towards ORR. However, the task of designing and controlling the local structure of Fe species for high ORR activity and stability remains a challenge. Herein, we have achieved successful immobilization of Fe species onto the highly curved surface of S, N co-doped carbonaceous nanosprings (denoted as FeNS/Fe3 C@CNS). The induction of this twisted configuration within FeNS/Fe3 C@CNS arose from the assembly of chiral templates. For electrocatalytic ORR tests, FeNS/Fe3 C@CNS exhibits a half-wave potential (E1/2 ) of 0.91 V in alkaline medium and a E1/2 of 0.78 V in acidic medium. The Fe single atoms and Fe3 C nanoparticles are coexistent and play as active centers within FeNS/Fe3 C@CNS. The highly curved surface, coupled with S substitution in the coordination layer, served to reduce the energy barrier for ORR, thereby enhancing the intrinsic catalytic activity of the Fe single-atom sites. We also assembled a wearable flexible Zn-air battery using FeNS/Fe3 C@CNS as electrocatalysts. This work provides new insights into the construction of highly curved surfaces within carbon materials, offering high electrocatalytic efficacy and remarkable performance for flexible energy conversion devices.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Xing Fan
- Research Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, 100871, Beijing, China
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Akhil Tayal
- Deutsches Elektronon Synchrotron, 85 Notkestrasse, 22607, Hamburg, Germany
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China
| | - Mengke Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
- Electron Microscopy Center, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
34
|
Lian Y, Xu J, Zhou W, Lin Y, Bai J. Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction. Molecules 2024; 29:771. [PMID: 38398523 PMCID: PMC10892989 DOI: 10.3390/molecules29040771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The efficiency and performance of proton exchange membrane fuel cells (PEMFCs) are primarily influenced by ORR electrocatalysts. In recent years, atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have gained significant attention due to their high active center density, high atomic utilization, and high activity. These catalysts are now considered the preferred alternative to traditional noble metal electrocatalysts. The unique properties of M-N-C catalysts are anticipated to enhance the energy conversion efficiency and lower the manufacturing cost of the entire system, thereby facilitating the commercialization and widespread application of fuel cell technology. This article initially delves into the origin of performance and degradation mechanisms of Fe-N-C catalysts from both experimental and theoretical perspectives. Building on this foundation, the focus shifts to strategies aimed at enhancing the activity and durability of atomically dispersed Fe-N-C catalysts. These strategies encompass the use of bimetallic atoms, atomic clusters, heteroatoms (B, S, and P), and morphology regulation to optimize catalytic active sites. This article concludes by detailing the current challenges and future prospects of atomically dispersed Fe-N-C catalysts.
Collapse
Affiliation(s)
- Yuebin Lian
- School of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jinnan Xu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Wangkai Zhou
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.X.)
| | - Yao Lin
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| | - Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China;
| |
Collapse
|
35
|
Dan M, Zhang X, Yang Y, Yang J, Wu F, Zhao S, Liu ZQ. Dual-axial engineering on atomically dispersed catalysts for ultrastable oxygen reduction in acidic and alkaline solutions. Proc Natl Acad Sci U S A 2024; 121:e2318174121. [PMID: 38289955 PMCID: PMC10861853 DOI: 10.1073/pnas.2318174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.
Collapse
Affiliation(s)
- Meng Dan
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
- College of Materials Science & Engineering, Taiyuan University of Technology, Shanxi030024, People’s Republic of China
| | - Xiting Zhang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Yongchao Yang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW2006, Australia
| | - Jingfei Yang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Fengxiu Wu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW2006, Australia
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou510006, People’s Republic of China
| |
Collapse
|
36
|
Liu Y, An Y, Zhu J, Zhu L, Li X, Gao P, He G, Pang Q. Integrated energy storage and CO 2 conversion using an aqueous battery with tamed asymmetric reactions. Nat Commun 2024; 15:977. [PMID: 38302458 PMCID: PMC10834454 DOI: 10.1038/s41467-023-44283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
Developing a CO2-utilization and energy-storage integrated system possesses great advantages for carbon- and energy-intensive industries. Efforts have been made to developing the Zn-CO2 batteries, but access to long cycling life and low charging voltage remains a grand challenge. Here we unambiguously show such inefficiencies originate from the high-barrier oxygen evolution reaction on charge, and by recharging the battery via oxidation of reducing molecules, Faradaic efficiency-enhanced CO2 reduction and low-overpotential battery regeneration can be simultaneously achieved. Showcased by using hydrazine oxidation, our battery demonstrates a long life over 1000 hours with a charging voltage as low as 1.2 V. The low charging voltage and formation of gaseous product upon hydrazine oxidation are the key to stabilize the catalyst over cycling. Our findings suggest that by fundamentally taming the asymmetric reactions, aqueous batteries are viable tools to achieve integrated energy storage and CO2 conversion that is economical, highly energy efficient, and scalable.
Collapse
Affiliation(s)
- Yumei Liu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Yun An
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Jiexin Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lujun Zhu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Xiaomei Li
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Peng Gao
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Quanquan Pang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
37
|
Liu ZH, Ma FX, Fan HS, Liu ZQ, Du Y, Zhen L, Xu CY. Formulating N-Doped Carbon Hollow Nanospheres with Highly Accessible Through-Pores to Isolate Fe Single-Atoms for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305700. [PMID: 37797186 DOI: 10.1002/smll.202305700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
It is challenging yet promising to design highly accessible N-doped carbon skeletons to fully expose the active sites inside single-atom catalysts. Herein, mesoporous N-doped carbon hollow spheres with regulatable through-pore size can be formulated by a simple sequential synthesis procedure, in which the condensed SiO2 is acted as removable dual-templates to produce both hollow interiors and through-pores, meanwhile, the co-condensed polydopamine shell is served as N-doped carbon precursor. After that, Fe─N─C hollow spheres (HSs) with highly accessible active sites can be obtained after rationally implanting Fe single-atoms. Microstructural analysis and X-ray absorption fine structure analysis reveal that high-density Fe─N4 active sites together with tiny Fe clusters are uniformly distributed on the mesoporous carbon skeleton with abundant through-pores. Benefitted from the highly accessible Fe─N4 active sites arising from the unique through-pore architecture, the Fe─N─C HSs demonstrate excellent oxygen reduction reaction (ORR) performance in alkaline media with a half-wave potential up to 0.90 V versus RHE and remarkable stability, both exceeding the commercial Pt/C. When employing Fe─N─C HSs as the air-cathode catalysts, the assembled Zn-air batteries deliver a high peak power density of 204 mW cm-2 and stable discharging voltage plateau over 140 h.
Collapse
Affiliation(s)
- Zi-Hao Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fei-Xiang Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hong-Shuang Fan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Zheng-Qi Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yue Du
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
38
|
Oguz IC, Jaouen F, Mineva T. Exploring Spin Distribution and Electronic Properties in FeN 4-Graphene Catalysts with Edge Terminations. Molecules 2024; 29:479. [PMID: 38257393 PMCID: PMC11154451 DOI: 10.3390/molecules29020479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding the spin distribution in FeN4-doped graphene nanoribbons with zigzag and armchair terminations is crucial for tuning the electronic properties of graphene-supported non-platinum catalysts. Since the spin-polarized carbon and iron electronic states may act together to change the electronic properties of the doped graphene, we provide in this work a systematic evaluation using a periodic density-functional theory-based method of the variation of spin-moment distribution and electronic properties with the position and orientation of the FeN4 defects, and the edge terminations of the graphene nanoribbons. Antiferromagnetic and ferromagnetic spin ordering of the zigzag edges were considered. We reveal that the electronic structures in both zigzag and armchair geometries are very sensitive to the location of FeN4 defects, changing from semi-conducting (in-plane defect location) to half-metallic (at-edge defect location). The introduction of FeN4 defects at edge positions cancels the known dependence of the magnetic and electronic proper-ties of undoped graphene nanoribbons on their edge geometries. The implications of the reported results for catalysis are also discussed in view of the presented electronic and magnetic properties.
Collapse
Affiliation(s)
| | | | - Tzonka Mineva
- ICGM, Univ. Montpellier, 34293 Montpellier, France; (I.C.O.); (F.J.)
| |
Collapse
|
39
|
Samala NR, Friedman A, Elbaz L, Grinberg I. Identification of a Durability Descriptor for Molecular Oxygen Reduction Reaction Catalysts. J Phys Chem Lett 2024; 15:481-489. [PMID: 38190330 DOI: 10.1021/acs.jpclett.3c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The development of durable platinum-group-metal-free oxygen reduction reaction (ORR) catalysts is a key research direction for enabling the wide use of fuel cells. Here, we use a combination of experimental measurements and density functional theory calculations to study the activity and durability of seven iron-based metallophthalocyanine (MPc) ORR catalysts that differ only in the identity of the substituent groups on the MPcs. While the MPcs show similar ORR activity, their durabilities as measured by the current decay half-life differ greatly. We find that the energy difference between the hydrogenated intermediate structure and the final demetalated structure (ΔEdemetalation) of the MPcs is linearly related to the degradation reaction barrier energy. Comparison to the degradation data for the previously studied metallocorrole systems suggested that ΔEdemetalation also serves as a descriptor for the corrole systems and that the high availability of protons at the active site due to the COOH group of the o-corrole decreases the durability.
Collapse
Affiliation(s)
| | - Ariel Friedman
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Lior Elbaz
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ilya Grinberg
- Department of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
40
|
Huang Z, Li F, Liu Y, Chen S, Wei Z, Tang Q. The role of nitrogen sources and hydrogen adsorption on the dynamic stability of Fe-N-C catalysts in oxygen reduction reaction. Chem Sci 2024; 15:1132-1142. [PMID: 38239677 PMCID: PMC10793592 DOI: 10.1039/d3sc05378d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Fe-N-C catalysts are promising alternatives to Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in various electrochemical applications. However, their practical implementation is impeded by their instability during prolonged operation. Various degradation mechanisms have been proposed, yet the real origin of the intrinsic instability of Fe-N-C structures under ORR operations is still disputed. Herein, we observed a new type of protonation mechanism based on advanced first-principles simulations and experimental characterizations. The results revealed strong evidence of pyrrolic-N protonation in pyrrolic-type FeN4, which plays a vital role for the low kinetic barrier of Fe leaching. Conversely, the pyridinic-type FeN4 prefers protonation at the Fe site, contributing to the higher barrier of Fe leaching and relatively higher stability. The facile pyrrolic-N protonation is verified by various spectroscopy characterizations in the Nafion-treated FePc molecule. Crucially, the presence of oxygen-containing intermediates at the Fe site can further work synergistically with N protonation to promote conversion of iron atoms (Fe-N4) into ferric oxide under working potentials, and the more positive the electrode potential, the lower the kinetic barrier of Fe leaching. These findings serve as a foundation for future research endeavors on the stability issues of Fe-N-C catalysts and advancing their application in sustainable energy conversion technologies.
Collapse
Affiliation(s)
- Zhou Huang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Fuhua Li
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Yongduo Liu
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Siguo Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| |
Collapse
|
41
|
Tang HT, Zhou HY, Pan YM, Zhang JL, Cui FH, Li WH, Wang D. Single-Atom Manganese-Catalyzed Oxygen Evolution Drives the Electrochemical Oxidation of Silane to Silanol. Angew Chem Int Ed Engl 2024; 63:e202315032. [PMID: 38057563 DOI: 10.1002/anie.202315032] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
The oxygen evolution reaction (OER), characterized by a four-electron transfer kinetic process, represents a significant bottleneck in improving the efficiency of hydrogen production from water electrolysis. Consequently, extensive research efforts have been directed towards identifying single-atom electrocatalysts with exceptional OER performance. Despite the comprehensive understanding of the OER mechanism, its application to other valuable synthetic reactions has been limited. Herein, we leverage the MOOH intermediate, a key species in the Mn-N-C single-atom catalyst (Mn-SA@NC), which can be cyclically delivered in the OER. We exploit this intermediate' s capability to facilitate electrophilic transfer with silane, enabling efficient silane oxidation under electrochemical conditions. The SAC electrocatalytic system exhibits remarkable performance with catalyst loadings as low as 600 ppm and an exceptional turnover number of 9132. Furthermore, the catalytic method demonstrates stability under a 10 mmol flow chemistry setup. By serving as an OER electrocatalyst, the Mn-SA@NC drives the entire reaction, establishing a practical Mn SAC-catalyzed organic electrosynthesis system. This synthesis approach not only presents a promising avenue for the utilization of electrocatalytic OER but also highlights the potential of SACs as an attractive platform for organic electrosynthesis investigations.
Collapse
Affiliation(s)
- Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - He-Yang Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jia-Lan Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fei-Hu Cui
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wen-Hao Li
- Department of Chemistry, Northeastern University, Shenyang, 110004, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Yin S, Yan YN, Chen L, Cheng N, Cheng X, Huang R, Huang H, Zhang B, Jiang YX, Sun SG. FeN 4 Active Sites Electronically Coupled with PtFe Alloys for Ultralow Pt Loading Hybrid Electrocatalysts in Proton Exchange Membrane Fuel Cells. ACS NANO 2024; 18:551-559. [PMID: 38112383 DOI: 10.1021/acsnano.3c08570] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The exorbitant cost of Pt-based electrocatalysts and the poor durability of non-noble metal electrocatalysts for proton exchange membrane fuel cells limited their practical application. Here, FeN4 active sites electronically coupled with PtFe alloys (PtFe-FeNC) were successfully prepared by a vapor deposition strategy as an ultralow Pt loading (0.64 wt %) hybrid electrocatalyst. The FeN4 sites on the FeNC matrix are able to effectively anchor the PtFe alloys, thus inhibiting their aggregation during long-life cycling. These PtFe alloys, in turn, can efficiently restrain the leaching of the FeN4 sites from the FeNC matrix. Thus, the PtFe-FeNC demonstrated an improved Pt mass activity of 2.33 A mgPt-1 at 0.9 V toward oxygen reduction reaction, which is 12.9 times higher than that of commercial Pt/C (0.18 A mgPt-1). It demonstrated great stability, with the Pt mass activity decreasing by only 9.4% after 70,000 cycles. Importantly, the fuel cell with an ultralow Pt loading in the cathode (0.012 mgPt cm-2) displays a high Pt mass activity of 1.75 A mgPt-1 at 0.9 ViR-free, which is significantly better than commercial MEA (0.25 A mgPt-1). Interestingly, PtFe-FeNC catalysts possess enhanced durability, exhibiting a 12.5% decrease in peak power density compared to the 51.7% decrease of FeNC.
Collapse
Affiliation(s)
- Shuhu Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| | - Ya-Ni Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| | - Long Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| | - Ningyan Cheng
- Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, P. R. China
| | - Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| | - Rui Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Binwei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing 400044, P. R. China
| | - Yan-Xia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
43
|
Wu HR, Chen MY, Li WD, Lu BA. Recent Progress on Durable Metal-N-C Catalysts for Proton Exchange Membrane Fuel Cells. Chem Asian J 2024; 19:e202300862. [PMID: 37966013 DOI: 10.1002/asia.202300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
It is essential for the widespread application of proton exchange membrane fuel cells (PEMFCs) to investigate low-cost, extremely active, and long-lasting oxygen reduction catalysts. Initial performance of PGM-free metal-nitrogen-carbon (M-N-C) catalysts for oxygen reduction reaction (ORR) has advanced significantly, particularly for Fe-N-C-based catalysts. However, the insufficient stability of M-N-C catalysts still impedes their use in practical fuel cells. In this review, we focus on the understanding of the structure-stability relationship of M-N-C ORR catalysts and summarize valuable guidance for the rational design of durable M-N-C catalysts. In the first section of this review, we discuss the inherent degrading mechanisms of M-N-C catalysts, such as carbon corrosion, demetallation, H2 O2 attack, etc. As we gain a thorough comprehension of these deterioration mechanisms, we shift our attention to the investigation of strategies that can mitigate catalyst deterioration and increase its stability. These strategies include enhancing the anti-oxidation of carbon, fortifying M-N bonds, and maximizing the effectiveness of free radical scavengers. This review offers a prospective view on the enhancement of the stability of non-noble metal catalysts.
Collapse
Affiliation(s)
- Hao-Ran Wu
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Miao-Ying Chen
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Wei-Dong Li
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Bang-An Lu
- College of Materials Science and Engineering, Zhengzhou University, 450001, Zhengzhou, P. R. China
| |
Collapse
|
44
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
45
|
Tong M, Sun F, Xing G, Tian C, Wang L, Fu H. Potential Dominates Structural Recombination of Single Atom Mn Sites for Promoting Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202314933. [PMID: 37955333 DOI: 10.1002/anie.202314933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Single atom sites (SAS) often undergo structural recombination in oxygen reduction reaction (ORR), while the effect of valence state and reconstruction on active centers needs to be investigated thoroughly. Herein, the Mn-SAS catalyst with uniform and precise Mn-N4 configuration is rationally designed. We utilize operando synchrotron radiation to track the dynamic evolution of active centers during ORR. Under the applied potential, the structural evolution of Mn-N4 into Mn-N3 C and further into Mn-N2 C2 configurations is clarified. Simultaneously, the valence states of Mn are increased from +3.0 to +3.8 and then decreased to +3.2. When the potential is removed, the catalyst returned to its initial Mn+3.0 -N4 configuration. Such successive evolutions optimize the electronic and geometric structures of active centers as evidenced by theory calculations. The evolved Mn+3.8 -N3 C and Mn+3.2 -N2 C2 configurations respectively adjust the O2 adsorption and reduce the energy barrier of rate-determining step. Thus, it can achieve an onset potential of 0.99 V, superior stability over 10,000 cycles, and a high turnover frequency of 1.59 s-1 at 0.85 VRHE. Our present work provides new insights into the construction of well-defined SAS catalysts by regulating the valence states and configurations of active centers.
Collapse
Affiliation(s)
- Miaomiao Tong
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Chinese Academy of Sciences, Shanghai, 201204, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Gengyu Xing
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Lei Wang
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
46
|
Zhao Y, Chen HC, Ma X, Li J, Yuan Q, Zhang P, Wang M, Li J, Li M, Wang S, Guo H, Hu R, Tu KH, Zhu W, Li X, Yang X, Pan Y. Vacancy Defects Inductive Effect of Asymmetrically Coordinated Single-Atom Fe─N 3 S 1 Active Sites for Robust Electrocatalytic Oxygen Reduction with High Turnover Frequency and Mass Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308243. [PMID: 38102967 DOI: 10.1002/adma.202308243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The development of facile, efficient synthesis method to construct low-cost and high-performance single-atom catalysts (SACs) for oxygen reduction reaction (ORR) is extremely important, yet still challenging. Herein, an atomically dispersed N, S co-doped carbon with abundant vacancy defects (NSC-vd) anchored Fe single atoms (SAs) is reported and a vacancy defects inductive effect is proposed for promoting electrocatalytic ORR. The optimized catalyst featured of stable Fe─N3 S1 active sites exhibits excellent ORR activity with high turnover frequency and mass activity. In situ Raman, attenuated total reflectance surface enhanced infrared absorption spectroscopy reveal the Fe─N3 S1 active sites exhibit different kinetic mechanisms in acidic and alkaline solutions. Operando X-ray absorption spectra reveal the ORR activity of Fe SAs/NSC-vd catalyst in different electrolyte is closely related to the coordination structure. Theoretical calculation reveals the upshifted d band center of Fe─N3 S1 active sites facilitates the adsorption of O2 and accelerates the kinetics process of *OH reduction. The abundant vacancy defects around the Fe─N3 S1 active sites balance the OOH* formation and *OH reduction, thus synergetically promoting the electrocatalytic ORR process.
Collapse
Affiliation(s)
- Yilin Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Center for Sustainability and Energy Tecnhologies, Chang Gung University, Taoyuan, 33302, Taiwan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Xuelu Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, P. R. China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Qing Yuan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shifu Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Han Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Ruanbo Hu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kun-Hua Tu
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Xuan Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
47
|
Yao X, Huang L, Halpren E, Chen L, Chen Z, Singh CV. Structural Self-Regulation-Promoted NO Electroreduction on Single Atoms. J Am Chem Soc 2023; 145:26249-26256. [PMID: 37983260 DOI: 10.1021/jacs.3c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Simultaneously elevating loading and activity of single atoms (SAs) is desirable for SA-containing catalysts, including single-atom catalysts (SACs). However, the fast self-nucleation of SAs limits the loading, and the activity is confined by the adsorption-energy scaling relationships on monotonous SAs. Here, we theoretically design a novel type of SA-containing catalyst generated by two-step structural self-regulation. In the thermodynamic self-regulation step, divacancies in graphene spontaneously pull up SAs from transition metal supports (dv-g/TM; TM = fcc Co, hcp Co, Ni, Cu), leading to the expectably high loading of SAs. The subsequent kinetic self-regulation step involving an adsorbate-assisted and reversible vacancy migration dynamically alters coordination environments of SAs, helping circumvent the scaling relationships, and consequently, the as-designed dv-g/Ni can catalyze NO-to-NH3 conversion at a low limiting potential of -0.25 V vs RHE.
Collapse
Affiliation(s)
- Xue Yao
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Linke Huang
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Ethan Halpren
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Lixin Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Zhiwen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
48
|
Bates JS, Martinez JJ, Hall MN, Al-Omari AA, Murphy E, Zeng Y, Luo F, Primbs M, Menga D, Bibent N, Sougrati MT, Wagner FE, Atanassov P, Wu G, Strasser P, Fellinger TP, Jaouen F, Root TW, Stahl SS. Chemical Kinetic Method for Active-Site Quantification in Fe-N-C Catalysts and Correlation with Molecular Probe and Spectroscopic Site-Counting Methods. J Am Chem Soc 2023; 145:26222-26237. [PMID: 37983387 PMCID: PMC10782517 DOI: 10.1021/jacs.3c08790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure-reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2- on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Jesse J. Martinez
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Melissa N. Hall
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Abdulhadi A. Al-Omari
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Eamonn Murphy
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Yachao Zeng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Fang Luo
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Mathias Primbs
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Davide Menga
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
| | - Nicolas Bibent
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | | | - Friedrich E. Wagner
- Department of Physics, Technische Universität München (TUM), 85748 Garching, Germany
| | - Plamen Atanassov
- Department of Chemical and Biomolecular Engineering, National Fuel Cell Research Center, University of California, Irvine, California 92697, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| | - Peter Strasser
- The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | - Tim-Patrick Fellinger
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12203 Berlin, Germany
| | - Frédéric Jaouen
- ICGM, Univ. Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Thatcher W. Root
- Department of Chemical and Biomolecular Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
49
|
Tang M, Yan H, Zhang X, Zheng Z, Chen S. Materials Strategies Tackling Interfacial Issues in Catalyst Layers of Proton Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306387. [PMID: 38018316 DOI: 10.1002/adma.202306387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Indexed: 11/30/2023]
Abstract
The most critical challenge for the large-scale commercialization of proton exchange membrane fuel cells (PEMFCs), one of the primary hydrogen energy technologies, is to achieve decent output performance with low usage of platinum (Pt). Currently, the performance of PEMFCs is largely limited by two issues at the catalyst/ionomer interface, specifically, the poisoning of active sites of Pt by sulfonate groups and the extremely sluggish local oxygen transport toward Pt. In the past few years, emerging strategies are derived to tackle these interface problems through materials optimization and innovation. This perspective summarizes the latest advances in this regard, and in the meantime unveils the molecule-level mechanisms behind the materials modulation of interfacial structures. This paper starts with a brief introduction of processes and structures of catalyst/ionomer interfaces, which is followed by a detailed review of progresses in key materials toward interface optimization, including catalysts, ionomers, and additives, with particular emphasis on the role of materials structure in regulating the intermolecular interactions. Finally, the challenges for the application of the established materials and research directions to broaden the material library are highlighted.
Collapse
Affiliation(s)
- Meihua Tang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Huangli Yan
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianming Zhang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhenying Zheng
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
50
|
Menga D, Wagner FE, Fellinger TP. Life cycle of single atom catalysts: a Mössbauer study on degradation and reactivation of tetrapyrrolic Fe-N-C powders. MATERIALS HORIZONS 2023; 10:5577-5583. [PMID: 37789691 DOI: 10.1039/d3mh00308f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The degradation of a single-site atomically dispersed, model Fe-N-C powder catalyst with high activity is investigated using cryo-Mössbauer spectroscopy. The results indicate a degradation initiated by an Fe2+ to Fe3+ oxidation due to coordination of oxygen to tetrapyrrolic Fe-N4 sites at atmospheric conditions (change between characteristic doublets) before iron(III) oxide is formed (sextet). Thermal reactivation can be used to restore substantial catalytic activity of aged Fe-N-C powders.
Collapse
Affiliation(s)
- Davide Menga
- Chair of Technical Electrochemistry, Department of Chemistry and Catalysis Research Center, Technische Universität München (TUM), 85748 Garching, Germany
| | - Friedrich E Wagner
- Department of Physics, Technische Universität München (TUM), 85748 Garching, Germany
| | - Tim-Patrick Fellinger
- Division 3.6 Electrochemical Energy Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), 12203, Berlin, Germany.
| |
Collapse
|