1
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
2
|
Ali MF, He M, Rizwan M, Song Y, Zhou X, Asif Nawaz M, Sun H, Zhou M, Jiang P. Enhancing the selectivity for light olefins through catalytic cracking of n-hexane by phosphorus doping on lanthanum-modified ZSM-5. Front Chem 2024; 12:1368595. [PMID: 38835725 PMCID: PMC11148451 DOI: 10.3389/fchem.2024.1368595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
Naphtha, as the primary raw material in the production of light olefins, could well accommodate their increasing demand through the energy-efficient process of catalytic cracking with ZSM-5. In the current work, different amounts of lanthanum and phosphorous were loaded on ZSM-5 using the wet impregnation method to tune the acidic properties of ZSM-5 for selective catalytic cracking of n-hexane to produce light olefins. Various characterization techniques such as X-ray diffraction (XRD), Al nuclear magnetic resonance (NMR), temperature-programmed desorption of NH3 (NH3-TPD), Py-Fourier transform infra-red (Py-FTIR), inductively coupled plasma optical emission spectroscopy (ICP-OES), N2 adsorption-desorption, X-ray photoelectron spectra (XPS), and scanning electron microscopy were adopted to investigate the modified zeolites. It was found that adding La to ZSM-5 (0.25 wt% to 1 wt%) improved the catalytic life and increased the n-hexane conversion (to 99.7%), while the further addition had a negative impact, reducing the conversion rate and deviating the product selectivity towards a substantial, undesired benzene, toluene, and xylene (BTX) fraction (33%). On the other hand, a 64% selectivity for light olefins was achieved on phosphorous-doped ZSM-5 (at a loading amount of 1 wt%) while reducing the BTX fraction (2.3%) and converting 69% of the n-hexane. A dual metal-modified ZSM-5 with optimal loading amount, 1P0.25LaZ5 (phosphorus 1 wt% and La 0.25 wt%), helped boost the light olefin selectivity to 62% in the tuned Lewis acid sites at an n-hexane conversion of about 77% while decreasing the undesired BTX selectivity to 3% by reducing the number of Brønsted sites. Thus, the current study reveals that tuning the acidic sites of ZMS-5 by dual metal augmentation with P.La is an effective way of controlling the amount of undesirable BTX produced at a stable n-hexane conversion rate and substantial olefin selectivity.
Collapse
Affiliation(s)
- Muhammad Faryad Ali
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Mu He
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Rizwan
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yueqin Song
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaolong Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Asif Nawaz
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Sun
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengke Zhou
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Peng Jiang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Wan J, Dan Y, Huang Y, Jiang L. Achieving high molecular weight alternating copolymers of 1-octene with methyl acrylate via Lewis acid catalyzed copolymerization. RSC Adv 2024; 14:6374-6384. [PMID: 38380238 PMCID: PMC10877320 DOI: 10.1039/d4ra00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
The radical (co)polymerization of long-chain α-olefins (C4+) to produce high molecular weight (Mw) polymers is of great importance. However, this process is currently faced with significant challenges due to the presence of less reactive allylic radicals during radical (co)polymerization, leading to oligomers or polymers with extremely low Mw (less than 1 × 104 g mol-1). Using copolymerization of 1-octene with methyl acrylate (MA) as a proof-of-concept for addressing this challenge, we present a feasible method for synthesizing high Mw α-olefin copolymers via scandium trifluoromethanesulfonate (Sc(OTf)3)-mediated radical copolymerization. In this case, copolymers of 1-octene and MA (poly(1-octene-alt-MA)) with a Mw exceeding 3 × 104 g mol-1 were successfully synthesized in the presence of Sc(OTf)3. Meanwhile, the presence of alternating 1-octene-MA sequential structures was observed. To further enhance the Mw of poly(1-octene-alt-MA), a difunctional comonomer, 1,7-octadiene, was introduced to copolymerize with 1-octene and MA. The results indicate that the incorporation of difunctional comonomer leads to a significant increase in the Mw of the copolymers synthesized. The addition of 1 mol% of 1,7-octadiene resulted in a copolymer with a remarkably high Mw of up to 13.45 × 104 g mol-1 while still maintaining a high degree of the alternating 1-octene-MA sequence (41%). The influence of polymerization parameters on the molecular weight were also investigated. Increasing the monomer concentration, reducing the dosage of initiator, and lowering the polymerization temperature have been found to be advantageous in enhancing the molecular weight. This approach has also been successfully applied to the synthesis of high molecular weight alternating copolymers of other long-chain α-olefins, including 1-hexene, 1-decene and 1-tetradecane, with methyl acrylate. In summary, this study provides a feasible method for converting "less activated" α-olefins into high Mw olefin copolymers. This approach holds significant potential for the production of value-added polyolefins, thus offering promising prospects for future applications.
Collapse
Affiliation(s)
- Jiefan Wan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| |
Collapse
|
4
|
Usman AG, Tanimu A, Abba SI, Isik S, Aitani A, Alasiri H. Feasibility of the Optimal Design of AI-Based Models Integrated with Ensemble Machine Learning Paradigms for Modeling the Yields of Light Olefins in Crude-to-Chemical Conversions. ACS OMEGA 2023; 8:40517-40531. [PMID: 37929092 PMCID: PMC10620777 DOI: 10.1021/acsomega.3c05227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The prediction of the yields of light olefins in the direct conversion of crude oil to chemicals requires the development of a robust model that represents the crude-to-chemical conversion processes. This study utilizes artificial intelligence (AI) and machine learning algorithms to develop single and ensemble learning models that predict the yields of ethylene and propylene. Four single-model AI techniques and four ensemble paradigms were developed using experimental data derived from the catalytic cracking experiments of various crude oil fractions in the advanced catalyst evaluation reactor unit. The temperature, feed type, feed conversion, total gas, dry gas, and coke were used as independent variables. Correlation matrix analyses were conducted to filter the input combinations into three different classes (M1, M2, and M3) based on the relationship between dependent and independent variables, and three performance metrics comprising the coefficient of determination (R2), Pearson correlation coefficient (PCC), and mean square error (MSE) were used to evaluate the prediction performance of the developed models in both calibration and validations stages. All four single models have very low R2 and PCC values (as low as 0.07) and very high MSE values (up to 4.92 wt %) for M1 and M2 in both calibration and validation phases. However, the ensemble ML models show R2 and PCC values of 0.99-1 and an MSE value of 0.01 wt % for M1, M2, and M3 input combinations. Therefore, ensemble paradigms improve the performance accuracy of single models by up to 58 and 62% in the calibration and validation phases, respectively. The ensemble paradigms predict with high accuracy the yield of ethylene and propylene in the catalytic cracking of crude oil and its fractions.
Collapse
Affiliation(s)
- A. G. Usman
- Department
of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138 Nicosia, Turkey
- Operational
Research Centre in Healthcare, Near East
University, 99138 Nicosia, Turkish Republic of
Northern Cyprus
| | - Abdulkadir Tanimu
- Center
for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - S. I. Abba
- Interdisciplinary
Research Center for Membrane and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Selin Isik
- Department
of Analytical Chemistry, Faculty of Pharmacy, Near East University, TRNC, Mersin 10, 99138 Nicosia, Turkey
| | - Abdullah Aitani
- Center
for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hassan Alasiri
- Center
for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- Department
of Chemical Engineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
5
|
Du L, Han Y, Zhu Y, Xu Y, Bai X, Ouyang Y, Luo Y, Shu X. Reaction Pathway of 1-Decene Cracking to Produce Light Olefins over H-ZSM-5 at Ultrahigh Temperature. ACS OMEGA 2023; 8:7093-7101. [PMID: 36844522 PMCID: PMC9948201 DOI: 10.1021/acsomega.2c08012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The effect of reaction temperature and weight hourly space velocity (WHSV) on the reaction of 1-decene cracking to ethylene and propylene over H-ZSM-5 zeolite was investigated. Also, the thermal cracking reaction of 1-decene was studied by cracking over quartz sand as blank. It was observed that 1-decene undergoes a significant thermal cracking reaction above 600 °C over quartz sand. In the range of 500-750 °C, the conversion remained above 99% for 1-decene cracking over H-ZSM-5, and the catalytic cracking dominated even at 750 °C. With the increase in temperature, the yields of ethylene and propylene gradually increased, and the yields of alkanes and aromatics also increased. The low WHSV was favorable for the yield of light olefins. With the increase of the WHSV, the yields of ethylene and propylene decrease. However, at low WHSV, secondary reactions were accelerated, and the yields of alkanes and aromatics increased significantly. In addition, the possible main and side reaction routes of the 1-decene cracking reaction were proposed based on product distribution.
Collapse
|
6
|
Singh MV. A BaCO
3
Nanomaterial for Pyrolysis of Sustainable Waste and Virgin Polystyrene into Green Aromatic Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202204400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Man Vir Singh
- Department of chemistry Dev Bhoomi Uttarakhand University Dehradun India 248007
| |
Collapse
|
7
|
Qiao H, Ma Z, Hou X, Chen B, Huang J, Yuan E, Cui T. Roles of Molecular Structure in the Catalytic Cracking of n‐Heptane, Methylcyclohexane and Cyclopentene over HZSM‐5 Zeolites. ChemistrySelect 2022. [DOI: 10.1002/slct.202203425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huimin Qiao
- School of Chemical Engineering Changchun University of Technology Changchun Jilin PR China
| | - Zhenzhou Ma
- School of Chemical Engineering Changchun University of Technology Changchun Jilin PR China
| | - Xu Hou
- School of Chemical Engineering Changchun University of Technology Changchun Jilin PR China
- Advanced Institute of Materials Science Changchun University of Technology Changchun Jilin PR China
| | - Bochong Chen
- School of Chemical Engineering Changchun University of Technology Changchun Jilin PR China
| | - Jing Huang
- School of Chemical Engineering Changchun University of Technology Changchun Jilin PR China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu PR China
| | - Tingting Cui
- Department of Chemistry Tsinghua University Beijing PR China
| |
Collapse
|
8
|
Green synthesis of propylene oxide directly from propane. Nat Commun 2022; 13:7504. [PMID: 36513639 PMCID: PMC9748031 DOI: 10.1038/s41467-022-34967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
The chemical industry faces the challenge of bringing emissions of climate-damaging CO2 to zero. However, the synthesis of important intermediates, such as olefins or epoxides, is still associated with the release of large amounts of greenhouse gases. This is due to both a high energy input for many process steps and insufficient selectivity of the underlying catalyzed reactions. Surprisingly, we find that in the oxidation of propane at elevated temperature over apparently inert materials such as boron nitride and silicon dioxide not only propylene but also significant amounts of propylene oxide are formed, with unexpectedly small amounts of CO2. Process simulations reveal that the combined synthesis of these two important chemical building blocks is technologically feasible. Our discovery leads the ways towards an environmentally friendly production of propylene oxide and propylene in one step. We demonstrate that complex catalyst development is not necessary for this reaction.
Collapse
|
9
|
Wang X, Xu Y. Recent Advances in Catalytic Conversion of C5/C6 Alkanes to Olefins: A Review. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Sanz-Martínez A, Lasobras J, Soler J, Herguido J, Menéndez M. Methanol to gasoline (MTG): Parametric study and validation of the process in a two-zone fluidized bed reactor (TZFBR). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Zapater D, Lasobras J, Soler J, Herguido J, Menéndez M. Comparison of Conventional and Two-Zone Fluidized Bed Reactors for Methanol to Olefins. Effect of Reaction Conditions and the Presence of Water in the Feed. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Diego Zapater
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
- Multiscale Reaction Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Javier Lasobras
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| | - Jaime Soler
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| | - Javier Herguido
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| | - Miguel Menéndez
- Catalysis, Molecular Separations and Reaction Engineering Group, Department of Chemical and Environmental Engineering, Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza 50018, Spain
| |
Collapse
|
12
|
Facile Synthesis of Nanosheet-Stacked Hierarchical ZSM-5 Zeolite for Efficient Catalytic Cracking of n-Octane to Produce Light Olefins. Catalysts 2022. [DOI: 10.3390/catal12030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of an effective strategy for synthesizing two-dimensional MFI zeolites has attracted more and more attention. Herein, nanosheet-stacked hierarchical ZSM-5 zeolite was obtained by a seed-assisted hydrothermal synthesis route using a small amount of [C18H37-N+(CH3)2-C6H12-N+(CH3)2-C6H12]Br2 (C18-6-6Br2) as a zeolite structure-directing agent and triethylamine (TEA) as a zeolite growth modifier. By varying the molar ratio of C18-6-6Br2/TEA from 2.5/0 to 2.5/40, the morphologies and textural properties of the resultant HZ5-2.5/x catalysts were finely modulated. By increasing x from 5 to 40, the morphology of the HZ5-2.5/x changed from unilamellar assembly with narrow a–c plane to intertwined nanosheets with wide a–c plane and multilamellar nanosheets with house-of-cards morphology. The thickness of these nanosheets was almost 8–10 nm. In addition, selectivity to light olefins reached 70.7% for the HZ5-2.5/10 catalyst, which was 6.6% higher than that for CZSM-5 (64.1%). Furthermore, the MFI zeolite nanosheets exhibited better anticoking stability within the 60 h reaction time compared to conventional ZSM-5 zeolite, which could be attributed to the short diffusion path and hierarchical porosity. This work will provide valuable insights into the rational design of novel zeolite catalysts for the efficient cracking of hydrocarbons.
Collapse
|
13
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Research Institute of Petrochem Processing, SINOPEC Beijing 100083 China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- Shanghai Low Carbon Technology Innovation Platform Shanghai 210620 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
14
|
Zhu Z, Feng K, Li C, Tang R, Xiao M, Song R, Yang D, Yan B, He L. Stabilization of Exposed Metal Nanocrystals in High-Temperature Heterogeneous Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108727. [PMID: 34816506 DOI: 10.1002/adma.202108727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Colloidal metal nanocrystals with uniform sizes, shapes, compositions, and architectures are ideal building blocks for constructing heterogeneous catalysts with well-defined characteristics toward the investigation of accurate structure-property relationships and better understanding of catalytic mechanism. However, their applications in high-temperature heterogeneous catalysis are often restricted by the difficulty in maintaining the high metal dispersity and easy accessibility to active sites under harsh operating conditions. Here, a partial-oxide-coating strategy is proposed to stabilize metal nanocrystals against sintering and meanwhile enable an effective exposure of active sites. As a proof-of-concept, controlled partial silica coating of colloidally prepared Pd0.82 Ni0.18 nanocrystals with the size of 8 nm is demonstrated. This partially coated catalyst exhibits excellent activity, selectivity, and stability, outperforming its counterparts with fully coated and supported structures, in reverse water gas shift (RWGS) catalysis particularly at high operating temperatures. This study opens a new avenue for the exploration of colloidal metal nanocrystals in high-temperature heterogeneous catalysis.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Kai Feng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mengqi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rui Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Di Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
15
|
Kulkarni SR, Velisoju VK, Tavares F, Dikhtiarenko A, Gascon J, Castaño P. Silicon carbide in catalysis: from inert bed filler to catalytic support and multifunctional material. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2025670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shekhar R Kulkarni
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Vijay K. Velisoju
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Fernanda Tavares
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Alla Dikhtiarenko
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
16
|
Al-Shafei EN, Albahar MZ, Aljishi MF, Akah A, Aljishi AN, Alasseel A. Catalytic conversion of heavy naphtha to reformate over the phosphorus-ZSM-5 catalyst at a lower reforming temperature. RSC Adv 2022; 12:25465-25477. [PMID: 36199298 PMCID: PMC9450848 DOI: 10.1039/d2ra04092a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Naphtha reforming to aromatics, naphthenes, and iso-paraffins is an essential process to increase the octane number of gasoline through the utilization of middle naphtha (whole). A ZSM-5 zeolite catalyst with modified medium pores was developed to comprehend the existing limitation of catalytic reforming to the unutilized refinery feedstock of heavy naphtha. The study applied a lower reforming conversion temperature (350 °C) than a conventional reformer without noble metal addition in an effort to lower the carbon footprint of the process and catalyst cost. The modified zeolite catalyst was impregnated with phosphorus oxide and spray-dried, followed by a hydrothermal treatment with steam. The parent and modified catalysts were characterized by NH3-TPD, SEM, XRD, NMR, FTIR, and N2 physisorption. Steam treatment was conducted to reduce the original zeolite acidity, mainly in the form of Brønsted acid sites, which resulted in the formation of phosphorus–aluminum species in the framework. The modified catalyst consisting of 40% ZSM-5 and 60% binder delivered high conversion of dodecane, and the reforming reaction selectivity favored the formation of carbonium ions through β-scission. Therefore, monomolecular cracking took place, resulting in the production of olefins and paraffin alongside iso-paraffins, aromatics, and naphthenes, which are associated with the bimolecular pathway. The reforming of heavy naphtha was different; the free radicals from β-scission were affected by the surrounding molecules of feedstock, and the bimolecular reactions were more dominant through zeolite pores. The study demonstrated that the addition of 10% steam during the reaction of heavy naphtha suppressed coke formation. Furthermore, high conversion and steady selectivity were maintained during the reaction, which resulted in gasoline reformate with a high research octane number (RON). Catalytic conversion of heavy naphtha to reformate product over the phosphorus-ZSM-5 catalyst at a lower reforming temperature.![]()
Collapse
Affiliation(s)
- Emad N. Al-Shafei
- Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
| | | | | | - Aaron Akah
- Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
| | - Ali N. Aljishi
- Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
| | - Ahmed Alasseel
- Research and Development Center, Saudi Aramco, Dhahran 31311, Saudi Arabia
| |
Collapse
|
17
|
Ma Z, Hou X, Chen B, Zhao L, Yuan E, Cui T. Analysis of n-hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites: effects of molecular structure. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00532d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular structure significantly affects n-hexane, 1-hexene, cyclohexane and cyclohexene catalytic cracking over HZSM-5 zeolites.
Collapse
Affiliation(s)
- Zhenzhou Ma
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, PR China
| | - Xu Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, PR China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin, PR China
| | - Bochong Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, PR China
| | - Liu Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, PR China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Tingting Cui
- Department of Chemistry, Tsinghua University, Beijing, PR China
| |
Collapse
|
18
|
Alabdullah MA, Shoinkhorova T, Dikhtiarenko A, Ould-Chikh S, Rodriguez-Gomez A, Chung SH, Alahmadi AO, Hita I, Pairis S, Hazemann JL, Castaño P, Ruiz-Martinez J, Morales Osorio I, Almajnouni K, Xu W, Gascon J. Understanding catalyst deactivation during the direct cracking of crude oil. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01125e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the formulation of zeolite-based catalysts for the direct cracking of crude, the use of kaolin matrixes prevents, to a large extent, zeolite dealumination. Metals and other impurities in crude oil provoke a slight decrease in activity and selectivity patterns.
Collapse
Affiliation(s)
- Mohammed A. Alabdullah
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tuiana Shoinkhorova
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Alla Dikhtiarenko
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Samy Ould-Chikh
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Alberto Rodriguez-Gomez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sang-ho Chung
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arwa O. Alahmadi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Idoia Hita
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Sébastien Pairis
- Department of Physics-Light-Materials (PLUM), Institute Neel, CNRS UPR2940, France
| | - Jean-louis Hazemann
- Department of Physics-Light-Materials (PLUM), Institute Neel, CNRS UPR2940, France
| | - Pedro Castaño
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Javier Ruiz-Martinez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Isidoro Morales Osorio
- Chemicals R&D, Research and Development Center, Saudi Aramco, Thuwal 23955, Saudi Arabia
| | - Khalid Almajnouni
- Chemicals R&D, Research and Development Center, Saudi Aramco, Thuwal 23955, Saudi Arabia
| | - Wei Xu
- Chemicals R&D, Research and Development Center, Saudi Aramco, Thuwal 23955, Saudi Arabia
| | - Jorge Gascon
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
19
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality. Angew Chem Int Ed Engl 2021; 61:e202112835. [PMID: 34919305 DOI: 10.1002/anie.202112835] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/10/2022]
Abstract
Green carbon science is defined as "Study and optimization of the transformation of carbon containing compounds and the relevant processes involved in the entire carbon cycle from carbon resource processing, carbon energy utilization, and carbon recycling to use carbon resources efficiently and minimize the net CO2 emission." [1] Green carbon science is related closely to carbon neutrality, and the relevant fields have developed quickly in the last decade. In this Minireview, we proposed the concept of carbon energy index, and the recent progresses in petroleum refining, production of liquid fuels, chemicals, and materials using coal, methane, CO2, biomass, and waste plastics are highlighted in combination with green carbon science, and an outlook for these important fields is provided in the final section.
Collapse
Affiliation(s)
- Mingyuan He
- East China Normal University, Department of Chemistry, 200062, Shanghai, CHINA
| | - Yuhan Sun
- Chinese Academy of Sciences, Shanghai Advanced Research Institute, 201203, Shanghai, CHINA
| | - Buxing Han
- Chinese Academy of Sciences, Institute of Chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA
| |
Collapse
|
20
|
Lezcano G, Velisoju VK, Kulkarni SR, Ramirez A, Castaño P. Engineering Thermally Resistant Catalytic Particles for Oxidative Coupling of Methane Using Spray-Drying and Incorporating SiC. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gontzal Lezcano
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Vijay K. Velisoju
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Shekhar R. Kulkarni
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pedro Castaño
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021; 50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging process of CO2 hydrogenation through heterogenous catalysis into important bulk chemicals provides an alternative strategy for sustainable and low-cost production of valuable chemicals, and brings an important chance for mitigating CO2 emissions. Direct synthesis of the family of unsaturated heavy hydrocarbons such as α-olefins and aromatics via CO2 hydrogenation is more attractive and challenging than the production of short-chain products to modern society, suffering from the difficult control between C-O activation and C-C coupling towards long-chain hydrocarbons. In the past several years, rapid progress has been achieved in the development of efficient catalysts for the process and understanding of their catalytic mechanisms. In this review, we provide a comprehensive, authoritative and critical overview of the substantial progress in the synthesis of α-olefins and aromatics from CO2 hydrogenation via direct and indirect routes. The rational fabrication and design of catalysts, proximity effects of multi-active sites, stability and deactivation of catalysts, reaction mechanisms and reactor design are systematically discussed. Finally, current challenges and potential applications in the development of advanced catalysts, as well as opportunities of next-generation CO2 hydrogenation techniques for carbon neutrality in future are proposed.
Collapse
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|