1
|
Cai W, Wang C, Chu Y, Hu M, Wang Q, Xu J, Deng F. Unveiling the Brønsted acid mechanism for Meerwein-Ponndorf-Verley reduction in methanol conversion over ZSM-5. Nat Commun 2024; 15:8736. [PMID: 39384793 PMCID: PMC11464788 DOI: 10.1038/s41467-024-52999-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
The conversion of methanol over zeolites offers a sustainable alternative for fuels and chemicals production. However, a complete understanding of the competing reaction pathways, particularly those leading to C-C bond formation, remains elusive. This work presents a novel mechanism for selective methanol conversion in ZSM-5 zeolites, involving a Brønsted acid site (BAS)-mediated Meerwein-Ponndorf-Verley (MPV) reduction pathway. Employing a multidimensional solid-state NMR spectroscopy combined with isotopic labeling and theoretical calculations, we identify this pathway for acetaldehyde reduction with methanol, directly contributing to ethene formation. This mechanism, involving carbenium ion intermediates like 1-hydroxyethane or 1-methoxyethane ions, contrasts with the well-established Lewis acid-catalyzed MPV process. Based on reactant adsorption modes, we propose two distinct reaction routes for BAS-MPV reduction, bridging the gap between direct and hydrocarbon pool mechanisms in methanol conversion. We further demonstrate the applicability of this pathway to acetone, highlighting its broader role in the early stages of the reaction.
Collapse
Affiliation(s)
- Wenjin Cai
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Hu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| |
Collapse
|
2
|
Babayan M, Redekop E, Kokkonen E, Olsbye U, Huttula M, Urpelainen S. PEPICO analysis of catalytic reactor effluents towards quantitative isomer discrimination: DME conversion over a ZSM-5 zeolite. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:841-850. [PMID: 38917019 PMCID: PMC11226177 DOI: 10.1107/s1600577524004405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/10/2024] [Indexed: 06/27/2024]
Abstract
The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts - zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron-photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra.
Collapse
Affiliation(s)
- Morsal Babayan
- Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
| | - Evgeniy Redekop
- Department of Chemistry, Centre for Materials Science and Nanotechnology (SMN)University of OsloOsloNorway
| | | | - Unni Olsbye
- Department of Chemistry, Centre for Materials Science and Nanotechnology (SMN)University of OsloOsloNorway
| | - Marko Huttula
- Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
| | - Samuli Urpelainen
- Nano and Molecular Systems Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
3
|
Chen Y, Xu S, Fang Wen C, Zhang H, Zhang T, Lv F, Yue Y, Bian Z. Unravelling the Role of Free Radicals in Photocatalysis. Chemistry 2024; 30:e202400001. [PMID: 38501217 DOI: 10.1002/chem.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
Free radicals are increasingly recognized as active intermediate reactive species that can participate in various redox processes, significantly influencing the mechanistic pathways of reactions. Numerous researchers have investigated the generation of one or more distinct photogenerated radicals, proposing various hypotheses to explain the reaction mechanisms. Notably, recent research has demonstrated the emergence of photogenerated radicals in innovative processes, including organic chemical reactions and the photocatalytic dissolution of precious metals. To harness the potential of these free radicals more effectively, it is imperative to consolidate and analyze the processes and action modes of these photogenerated radicals. This conceptual paper delves into the latest advancements in understanding the mechanics of photogenerated radicals.
Collapse
Affiliation(s)
- Yao Chen
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Shuyang Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Ting Zhang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Fujian Lv
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655400, China
| | - Yinghong Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
4
|
Zhang Z, Vanni M, Wu X, Hemberger P, Bodi A, Mitchell S, Pérez-Ramírez J. CO Cofeeding Affects Product Distribution in CH 3Cl Coupling over ZSM-5 Zeolite: Pressure Twists the Plot. Angew Chem Int Ed Engl 2024; 63:e202401060. [PMID: 38451557 DOI: 10.1002/anie.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/08/2024]
Abstract
C1 coupling reactions over zeolite catalysts are central to sustainable chemical production strategies. However, questions persist regarding the involvement of CO in ketene formation, and the impact of this elusive oxygenate intermediate on reactivity patterns. Using operando photoelectron photoion coincidence spectroscopy (PEPICO), we investigate the role of CO in methyl chloride conversion to hydrocarbons (MCTH), a prospective process for methane valorization with a reaction network akin to methanol to hydrocarbons (MTH) but without oxygenate intermediates. Our findings reveal the transformative role of CO in MCTH at the low pressures, inducing ketene formation in MCTH and boosting olefin production, confirming the Koch carbonylation step in the initial stages of C1 coupling. We uncover pressure-dependent product distributions driven by CO-induced ketene formation, and its subsequent desorption from the zeolite surface, which is enhanced at low pressure. Inspired by the above results, extension of the co-feeding approach to CH3OH as another simple oxygenate showcases the additional potential for improved catalyst stability in MCTH at ambient pressure.
Collapse
Affiliation(s)
- Zihao Zhang
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Matteo Vanni
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Andras Bodi
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
5
|
Tian Y, Gao M, Xie H, Xu S, Ye M, Liu Z. Spatiotemporal Heterogeneity of Temperature and Catalytic Activation within Individual Catalyst Particles. J Am Chem Soc 2024; 146:4958-4972. [PMID: 38334752 DOI: 10.1021/jacs.3c14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Temperature is a critical parameter in chemical conversion, significantly affecting the reaction kinetics and thermodynamics. Measuring temperature inside catalyst particles of industrial interest (∼micrometers to millimeters), which is crucial for understanding the evolution of chemical dynamics at catalytic active sites during reaction and advancing catalyst designs, however, remains a big challenge. Here, we propose an approach combining two-photon confocal microscopy and state-of-the-art upconversion luminescence (UL) imaging to measure the spatiotemporal-resolved temperature within individual catalyst particles in the industrially significant methanol-to-hydrocarbons reaction. Specifically, catalyst particles containing zeolites and functional nanothermometers were fabricated using microfluidic chips. Our experimental results directly demonstrate that the zeolite density and particle size can alter the temperature distribution within a single catalyst particle. Importantly, the observed temperature heterogeneity plays a decisive role in the activation of the reaction intermediate and the utilization of active sites. We expect that this work opens a venue for unveiling the reaction mechanism and kinetics within industrial catalyst particles by considering temperature heterogeneity.
Collapse
Affiliation(s)
- Yu Tian
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Mingbin Gao
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Hua Xie
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Shuliang Xu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Mao Ye
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhongmin Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| |
Collapse
|
6
|
Song G, Li C, Wang T, Lim KH, Hu F, Cheng S, Hondo E, Liu S, Kawi S. Hierarchical Hollow Carbon Particles with Encapsulation of Carbon Nanotubes for High Performance Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305517. [PMID: 37670220 DOI: 10.1002/smll.202305517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/26/2023] [Indexed: 09/07/2023]
Abstract
A novel and sustainable carbon-based material, referred to as hollow porous carbon particles encapsulating multi-wall carbon nanotubes (MWCNTs) (CNTs@HPC), is synthesized for use in supercapacitors. The synthesis process involves utilizing LTA zeolite as a rigid template and dopamine hydrochloride (DA) as the carbon source, along with catalytic decomposition of methane (CDM) to simultaneously produce MWCNTs and COx -free H2 . The findings reveal a distinctive hierarchical porous structure, comprising macropores, mesopores, and micropores, resulting in a total specific surface area (SSA) of 913 m2 g-1 . The optimal CNTs@HPC demonstrates a specific capacitance of 306 F g-1 at a current density of 1 A g-1 . Moreover, this material demonstrates an electric double-layer capacitor (EDLC) that surpasses conventional capabilities by exhibiting additional pseudocapacitance characteristics. These properties are attributed to redox reactions facilitated by the increased charge density resulting from the attraction of ions to nickel oxides, which is made possible by the material's enhanced hydrophilicity. The heightened hydrophilicity can be attributed to the presence of residual silicon-aluminum elements in CNTs@HPC, a direct outcome of the unique synthesis approach involving nickel phyllosilicate in CDM. As a result of this synthesis strategy, the material possesses excellent conductivity, enabling rapid transportation of electrolyte ions and delivering outstanding capacitive performance.
Collapse
Affiliation(s)
- Guoqiang Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province, 550003, China
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Tian Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Feiyang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shuwen Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Emmerson Hondo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| | - Shaomin Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 119260, Singapore
| |
Collapse
|
7
|
Giulimondi V, Ruiz-Ferrando A, Giannakakis G, Surin I, Agrachev M, Jeschke G, Krumeich F, López N, Clark AH, Pérez-Ramírez J. Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination. Nat Commun 2023; 14:5557. [PMID: 37689779 PMCID: PMC10492806 DOI: 10.1038/s41467-023-41344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023] Open
Abstract
Carbon supports are ubiquitous components of heterogeneous catalysts for acetylene hydrochlorination to vinyl chloride, from commercial mercury-based systems to more sustainable metal single-atom alternatives. Their potential co-catalytic role has long been postulated but never unequivocally demonstrated. Herein, we evidence the bifunctionality of carbons and metal sites in the acetylene hydrochlorination catalytic cycle. Combining operando X-ray absorption spectroscopy with other spectroscopic and kinetic analyses, we monitor the structure of single metal atoms (Pt, Au, Ru) and carbon supports (activated, non-activated, and nitrogen-doped) from catalyst synthesis, using various procedures, to operation at different conditions. Metal atoms exclusively activate hydrogen chloride, while metal-neighboring sites in the support bind acetylene. Resolving the coordination environment of working metal atoms guides theoretical simulations in proposing potential binding sites for acetylene in the support and a viable reaction profile. Expanding from single-atom to ensemble catalysis, these results reinforce the importance of optimizing both metal and support components to leverage the distinct functions of each for advancing catalyst design.
Collapse
Affiliation(s)
- Vera Giulimondi
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Andrea Ruiz-Ferrando
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007, Tarragona, Spain
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007, Tarragona, Spain
| | - Georgios Giannakakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Ivan Surin
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Mikhail Agrachev
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Adam H Clark
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
| |
Collapse
|
8
|
Hemberger P, Pan Z, Wu X, Zhang Z, Kanayama K, Bodi A. Photoion Mass-Selected Threshold Photoelectron Spectroscopy to Detect Reactive Intermediates in Catalysis: From Instrumentation and Examples to Peculiarities and a Database. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16751-16763. [PMID: 37670794 PMCID: PMC10476201 DOI: 10.1021/acs.jpcc.3c03120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/04/2023] [Indexed: 09/07/2023]
Abstract
Photoion mass-selected threshold photoelectron spectroscopy (ms-TPES) is a synchrotron-based, universal, sensitive, and multiplexed detection tool applied in the areas of catalysis, combustion, and gas-phase reactions. Isomer-selective vibrational fingerprints in the ms-TPES of stable and reactive intermediates allow for unequivocal assignment of spectral carriers. Case studies are presented on heterogeneous catalysis, revealing the role of ketenes in the methanol-to-olefins process, the catalytic pyrolysis mechanism of lignin model compounds, and the radical chemistry upon C-H activation in oxyhalogenation. These studies demonstrate the potential of ms-TPES as an analytical technique for elucidating complex reaction mechanisms. We examine the robustness of ms-TPES assignments and address sampling effects, especially the temperature dependence of ms-TPES due to rovibrational broadening. Data acquisition approaches and the Stark shift from the extraction field are also considered to arrive at general recommendations. Finally, the PhotoElectron PhotoIon Spectral Compendium (https://pepisco.psi.ch), a spectral database hosted at Paul Scherrer Institute to support assignment, is introduced.
Collapse
Affiliation(s)
| | - Zeyou Pan
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| | - Xiangkun Wu
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| | - Zihao Zhang
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| | - Keisuke Kanayama
- Paul
Scherrer Institute, Villigen 5232, Switzerland
- Institute
of Fluid Science, Tohoku University 2-1-1 Katahira, Aoba, Sendai 980-8577, Miyagi, Japan
- Graduate
School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba, Sendai 980-8579, Miyagi, Japan
| | - Andras Bodi
- Paul
Scherrer Institute, Villigen 5232, Switzerland
| |
Collapse
|
9
|
Ding J, Ye R, Fu Y, He Y, Wu Y, Zhang Y, Zhong Q, Kung HH, Fan M. Direct synthesis of urea from carbon dioxide and ammonia. Nat Commun 2023; 14:4586. [PMID: 37524739 PMCID: PMC10390537 DOI: 10.1038/s41467-023-40351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Affiliation(s)
- Jie Ding
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
- College of Engineering and Applied Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Runping Ye
- College of Engineering and Applied Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330031, P. R. China
| | - Yanghe Fu
- College of Engineering and Applied Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiming He
- College of Engineering and Applied Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA
- Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Ye Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China
- College of Engineering and Applied Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000, PR China
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, P. R. China.
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Maohong Fan
- College of Engineering and Applied Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA.
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
10
|
Pan Z, Puente-Urbina A, Batool SR, Bodi A, Wu X, Zhang Z, van Bokhoven JA, Hemberger P. Tuning the zeolite acidity enables selectivity control by suppressing ketene formation in lignin catalytic pyrolysis. Nat Commun 2023; 14:4512. [PMID: 37500623 PMCID: PMC10374901 DOI: 10.1038/s41467-023-40179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Unveiling catalytic mechanisms at a molecular level aids rational catalyst design and selectivity control for process optimization. In this study, we find that the Brønsted acid site density of the zeolite catalyst efficiently controls the guaiacol catalytic pyrolysis mechanism. Guaiacol demethylation to catechol initiates the reaction, as evidenced by the detected methyl radicals. The mechanism branches to form either fulvenone (c-C5H4 = C = O), a reactive ketene intermediate, by catechol dehydration, or phenol by acid-catalyzed dehydroxylation. At high Brønsted acid site density, fulvenone formation is inhibited due to surface coordination configuration of its precursor, catechol. By quantifying reactive intermediates and products utilizing operando photoelectron photoion coincidence spectroscopy, we find evidence that ketene suppression is responsible for the fivefold phenol selectivity increase. Complementary fulvenone reaction pathway calculations, along with 29Si NMR-MAS spectroscopy results corroborate the mechanism. The proposed, flexible operando approach is applicable to a broad variety of heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Zeyou Pan
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Allen Puente-Urbina
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Syeda Rabia Batool
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Andras Bodi
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Xiangkun Wu
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Zihao Zhang
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Patrick Hemberger
- Paul Scherrer Institute, Forschungsstrasse 111, CH-5232, Villigen PSI, Switzerland.
| |
Collapse
|
11
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
12
|
Liu C, Uslamin EA, Pidko EA, Kapteijn F. Revealing Main Reaction Paths to Olefins and Aromatics in Methanol-to-Hydrocarbons over H-ZSM-5 by Isotope Labeling. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Hu Z, Di Q, Liu B, Li Y, He Y, Zhu Q, Xu Q, Dagaut P, Hansen N, Sarathy SM, Xing L, Truhlar DG, Wang Z. Elucidating the photodissociation fingerprint and quantifying the determination of organic hydroperoxides in gas-phase autoxidation. Proc Natl Acad Sci U S A 2023; 120:e2220131120. [PMID: 36848575 PMCID: PMC10013783 DOI: 10.1073/pnas.2220131120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Hydroperoxides are formed in the atmospheric oxidation of volatile organic compounds, in the combustion autoxidation of fuel, in the cold environment of the interstellar medium, and also in some catalytic reactions. They play crucial roles in the formation and aging of secondary organic aerosols and in fuel autoignition. However, the concentration of organic hydroperoxides is seldom measured, and typical estimates have large uncertainties. In this work, we developed a mild and environmental-friendly method for the synthesis of alkyl hydroperoxides (ROOH) with various structures, and we systematically measured the absolute photoionization cross-sections (PICSs) of the ROOHs using synchrotron vacuum ultraviolet-photoionization mass spectrometry (SVUV-PIMS). A chemical titration method was combined with an SVUV-PIMS measurement to obtain the PICS of 4-hydroperoxy-2-pentanone, a typical molecule for combustion and atmospheric autoxidation ketohydroperoxides (KHPs). We found that organic hydroperoxide cations are largely dissociated by loss of OOH. This fingerprint was used for the identification and accurate quantification of the organic peroxides, and it can therefore be used to improve models for autoxidation chemistry. The synthesis method and photoionization dataset for organic hydroperoxides are useful for studying the chemistry of hydroperoxides and the reaction kinetics of the hydroperoxy radicals and for developing and evaluating kinetic models for the atmospheric autoxidation and combustion autoxidation of the organic compounds.
Collapse
Affiliation(s)
- Zhihong Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Qimei Di
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Bingzhi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Yanbo Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Yunrui He
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan471003, China
| | - Qingbo Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Philippe Dagaut
- CNRS, Institut National des Sciences de l’Ingénierie et des Systèmes, Institut de Combustion, Aérothermique, Réactivité et Environnement, Orléans45071, cedex 2, France
| | - Nils Hansen
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA94551
| | - S. Mani Sarathy
- King Abdullah University of Science and Technology, Clean Combustion Research Center, Thuwal23955-6900, Saudi Arabia
| | - Lili Xing
- Energy and Power Engineering Institute, Henan University of Science and Technology, Luoyang, Henan471003, China
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN55455-0431
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| |
Collapse
|
14
|
Unraveling Radical and Oxygenate Routes in the Oxidative Dehydrogenation of Propane over Boron Nitride. J Am Chem Soc 2023; 145:7910-7917. [PMID: 36867720 PMCID: PMC10103127 DOI: 10.1021/jacs.2c12970] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH3•, C3H5•) and reactive oxygenates, C2-4 ketenes and C2-3 enols, in ODHP over BN by operando synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO2.
Collapse
|
15
|
Wu X, Pan Z, Steglich M, Ascher P, Bodi A, Bjelić S, Hemberger P. A direct liquid sampling interface for photoelectron photoion coincidence spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:034103. [PMID: 37012765 DOI: 10.1063/5.0136665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/19/2023] [Indexed: 06/19/2023]
Abstract
We introduce an effective and flexible high vacuum interface to probe the liquid phase with photoelectron photoion coincidence (liq-PEPICO) spectroscopy at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source. The interface comprises a high-temperature sheath gas-driven vaporizer, which initially produces aerosols. The particles evaporate and form a molecular beam, which is skimmed and ionized by VUV radiation. The molecular beam is characterized using ion velocity map imaging, and the vaporization parameters of the liq-PEPICO source have been optimized to improve the detection sensitivity. Time-of-flight mass spectra and photoion mass-selected threshold photoelectron spectra (ms-TPES) were recorded for an ethanolic solution of 4-propylguaiacol, vanillin, and 4-hydroxybenzaldehyde (1 g/l of each). The ground state ms-TPES band of vanillin reproduces the reference, room-temperature spectrum well. The ms-TPES for 4-propylguaiacol and 4-hydroxybenzaldehyde are reported for the first time. Vertical ionization energies obtained by equation-of-motion calculations reproduce the photoelectron spectral features. We also investigated the aldol condensation dynamics of benzaldehyde with acetone using liq-PEPICO. Our direct sampling approach, thus, enables probing reactions at ambient pressure during classical synthesis procedures and microfluidic chip devices.
Collapse
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Zeyou Pan
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | | | | - Andras Bodi
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Saša Bjelić
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | | |
Collapse
|
16
|
Liutkova A, Zhang H, Simons JFM, Mezari B, Mirolo M, Garcia GA, Hensen EJM, Kosinov N. Ca Cations Impact the Local Environment inside HZSM-5 Pores during the Methanol-to-Hydrocarbons Reaction. ACS Catal 2023; 13:3471-3484. [PMID: 36970466 PMCID: PMC10028611 DOI: 10.1021/acscatal.3c00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Indexed: 02/25/2023]
Abstract
The methanol-to-hydrocarbons (MTH) process is an industrially relevant method to produce valuable light olefins such as propylene. One of the ways to enhance propylene selectivity is to modify zeolite catalysts with alkaline earth cations. The underlying mechanistic aspects of this type of promotion are not well understood. Here, we study the interaction of Ca2+ with reaction intermediates and products formed during the MTH reaction. Using transient kinetic and spectroscopic tools, we find strong indications that the selectivity differences between Ca/ZSM-5 and HZSM-5 are related to the different local environment inside the pores due to the presence of Ca2+. In particular, Ca/ZSM-5 strongly retains water, hydrocarbons, and oxygenates, which occupy as much as 10% of the micropores during the ongoing MTH reaction. This change in the effective pore geometry affects the formation of hydrocarbon pool components and in this way directs the MTH reaction toward the olefin cycle.
Collapse
Affiliation(s)
- Anna Liutkova
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hao Zhang
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jérôme F. M. Simons
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Brahim Mezari
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marta Mirolo
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Gustavo A. Garcia
- Synchrotron SOLEIL, L’Orme des Merisiers, St Aubin, B.P. 48, 91192 Gif sur Yvette, France
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
17
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
18
|
Bodi A, Hemberger P, Pérez-Ramírez J. Photoionization reveals catalytic mechanisms. Nat Catal 2022. [DOI: 10.1038/s41929-022-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Paunović V, Hemberger P, Bodi A, Hauert R, van Bokhoven JA. Impact of Nonzeolite-Catalyzed Formation of Formaldehyde on the Methanol-to-Hydrocarbons Conversion. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladimir Paunović
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Patrick Hemberger
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Andras Bodi
- Laboratory for Synchrotron Radiation and Femtochemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Roland Hauert
- Swiss Federal Laboratories for Materials Science and Technology, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
20
|
Wu X, Zhang Z, Pan Z, Zhou X, Bodi A, Hemberger P. Ketenes in the Induction of the Methanol-to-Olefins Process. Angew Chem Int Ed Engl 2022; 61:e202207777. [PMID: 35929758 PMCID: PMC9804150 DOI: 10.1002/anie.202207777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 01/05/2023]
Abstract
Ketene (CH2 =C=O) has been postulated as a key intermediate for the first olefin production in the zeolite-catalyzed chemistry of methanol-to-olefins (MTO) and syngas-to-olefins (STO) processes. The reaction mechanism remains elusive, because the short-lived ethenone ketene and its derivatives are difficult to detect, which is further complicated by the low expected ketene concentration. We report on the experimental detection of methylketene (CH3 -CH=C=O) formed by the methylation of ketene on HZSM-5 via operando synchrotron photoelectron photoion coincidence (PEPICO) spectroscopy. Ketene is produced in situ from methyl acetate. The observation of methylketene as the ethylene precursor evidences a computationally predicted ketene-to-ethylene route proceeding via a methylketene intermediate followed by decarbonylation.
Collapse
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute5232VilligenSwitzerland
| | - Zihao Zhang
- Paul Scherrer Institute5232VilligenSwitzerland
- National Centre of Competence in Research (NCCR) CatalysisPaul Scherrer Institute5232VilligenSwitzerland
| | - Zeyou Pan
- Paul Scherrer Institute5232VilligenSwitzerland
| | - Xiaoguo Zhou
- Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei230026China
| | - Andras Bodi
- Paul Scherrer Institute5232VilligenSwitzerland
- National Centre of Competence in Research (NCCR) CatalysisPaul Scherrer Institute5232VilligenSwitzerland
| | - Patrick Hemberger
- Paul Scherrer Institute5232VilligenSwitzerland
- National Centre of Competence in Research (NCCR) CatalysisPaul Scherrer Institute5232VilligenSwitzerland
| |
Collapse
|
21
|
Zhang Y, Gao P, Jiao F, Chen Y, Ding Y, Hou G, Pan X, Bao X. Chemistry of Ketene Transformation to Gasoline Catalyzed by H-SAPO-11. J Am Chem Soc 2022; 144:18251-18258. [PMID: 36191129 DOI: 10.1021/jacs.2c03478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although ketene has been proposed to be an active intermediate in a number of reactions including OXZEO (metal oxide-zeolite)-catalyzed syngas conversion, dimethyl ether carbonylation, methanol to hydrocarbons, and CO2 hydrogenation, its chemistry and reaction pathway over zeolites are not well understood. Herein, we study the pathway of ketene transformation to gasoline range hydrocarbons over the molecular sieve H-SAPO-11 by kinetic analysis, in situ infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. It is demonstrated that butene is the reaction intermediate on the paths toward gasoline products. Ketene transforms to butene on the acid sites via either acetyl species following an acetic acid ketonization pathway or acetoacetyl species with keto-enol tautomerism following an acetoacetic acid decarboxylation pathway when in the presence of water. This study reveals experimentally for the first time insights into ketene chemistry in zeolite catalysis.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Pan Gao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Feng Jiao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Yuxiang Chen
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Yilun Ding
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, People's Republic of China
| |
Collapse
|
22
|
Pan Z, Bodi A, van Bokhoven JA, Hemberger P. Operando PEPICO unveils the catalytic fast pyrolysis mechanism of the three methoxyphenol isomers. Phys Chem Chem Phys 2022; 24:21786-21793. [PMID: 36082786 PMCID: PMC9491049 DOI: 10.1039/d2cp02741k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of lignin valorization processes such as catalytic fast pyrolysis (CFP) to produce fine chemicals and fuels leads to a more sustainable future. The implementation of CFP is enabled by understanding the chemistry of lignin constituents, which, however, requires thorough mechanistic investigations by detecting reactive species. In this contribution, we investigate the CFP of the three methoxyphenol (MP) isomers over H-ZSM-5 utilizing vacuum ultraviolet synchrotron radiation and operando photoelectron photoion coincidence (PEPICO) spectroscopy. All isomers demethylate at first to yield benzenediols, from which dehydroxylation reactions proceed to produce phenol and benzene. Additional pathways to form benzene proceed over cyclopentadiene, methylcyclopentadiene, and fulvene intermediates. The detection of trace amounts of methanol in the product stream suggests a demethoxylation reaction to yield phenol. Guaiacol (2- or ortho-MP) exhibits slightly higher reactivity compared to 3-MP and 4-MP, due to the formation of the fulvenone ketene, which opens additional routes to benzene and phenol. When compared to benzenediol catalytic pyrolysis, the additional methyl group in MP leads to high conversion at lower reactor temperatures, which is mostly owed to the lower H3C–O vs. H–O bond energy and the possibility to demethoxylate to produce phenol. Demethylation, demethoxylation and fulvenone ketene formation determine the reactivity of methoxyphenols over H-ZSM-5 to yield phenols, benzene and toluene. Intermediates are isomer-selectively detected utilizing threshold photoelectron spectroscopy.![]()
Collapse
Affiliation(s)
- Zeyou Pan
- Paul Scherrer Institute, 5232 Villigen, Switzerland. .,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Andras Bodi
- Paul Scherrer Institute, 5232 Villigen, Switzerland.
| | - Jeroen A van Bokhoven
- Paul Scherrer Institute, 5232 Villigen, Switzerland. .,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
23
|
Wu X, Zhang Z, Pan Z, Zhou X, Bodi A, Hemberger P. Ketenes in the Induction of the Methanol‐to‐Olefins Process. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiangkun Wu
- Paul Scherrer Institute: Paul Scherrer Institut PSI General Energy SWITZERLAND
| | - Zihao Zhang
- Paul Scherrer Institute: Paul Scherrer Institut PSI Photon Science SWITZERLAND
| | - Zeyou Pan
- Paul Scherrer Institute: Paul Scherrer Institut PSI Photon Science SWITZERLAND
| | - Xiaoguo Zhou
- University of Science and Technology of China Department of Chemical Physics CHINA
| | - Andras Bodi
- Paul Scherrer Institute: Paul Scherrer Institut PSI Photon Science SWITZERLAND
| | - Patrick Hemberger
- Paul Scherrer Institut Molecular Dynamics WSLA/028 5232 Villigen PSI SWITZERLAND
| |
Collapse
|