1
|
Patel AC, Sinha S, Arantes PR, Palermo G. Unveiling Cas8 Dynamics and Regulation within a transposon-encoded Cascade-TniQ Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600075. [PMID: 38948825 PMCID: PMC11213026 DOI: 10.1101/2024.06.21.600075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The Vibrio cholerae Cascade-TniQ complex unveiled a new paradigm in biology, demonstrating that CRISPR-associated proteins can direct DNA transposition. Despite the tremendous potential of "knocking in" genes at desired sites, the mechanisms underlying DNA binding and transposition remain elusive. In this system, a conformational change of the Cas8 protein is essential for DNA binding, yet how it occurs is unclear. Here, structural modeling and free energy simulations reconstruct the Cas8 helical bundle and reveal an open-to-close conformational transition at key steps of the complex's function. We show that when Cascade-TniQ binds RNA, the Cas8 bundle changes conformation mediated by the interaction with the Cas7.1 protein. This interaction alleviates unfavorable contacts and synchronizes Cas8's shift with neighboring subunits, lowering the barrier for the transition to the open state, a critical requirement for DNA binding. As DNA fully pairs with RNA, the open state becomes increasingly accessible, favoring interactions with DNA and aiding the formation of an R-loop. These outcomes provide the first dynamic representation of a critical conformational change in one of the largest CRISPR systems and illustrate its role at critical steps of the Cascade-TniQ biophysical function, advancing our understanding of nucleic acid binding and transposition mechanisms.
Collapse
|
2
|
Kumar A, Daripa P, Rasool K, Chakraborty D, Jain N, Maiti S. Deciphering the Thermodynamic Landscape of CRISPR/Cas9: Insights into Enhancing Gene Editing Precision and Efficiency. J Phys Chem B 2024; 128:8409-8422. [PMID: 39190773 DOI: 10.1021/acs.jpcb.4c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The thermodynamic landscape of the CRISPR/Cas9 system plays a crucial role in understanding and optimizing the performance of this revolutionary genome-editing technology. In this research, we utilized isothermal titration calorimetry and microscale thermophoresis techniques to thoroughly investigate the thermodynamic properties governing CRISPR/Cas9 interactions. Our findings revealed that the binding between sgRNA and Cas9 is primarily governed by entropy, which compensates for an unfavorable enthalpy change. Conversely, the interaction between the CRISPR RNP complex and the target DNA is characterized by a favorable enthalpy change, offsetting an unfavorable entropy change. Notably, both interactions displayed negative heat capacity changes, indicative of potential hydration, ionization, or structural rearrangements. However, we noted that the involvement of water molecules and counterions in the interactions is minimal, suggesting that structural rearrangements play a significant role in influencing the binding thermodynamics. These results offer a nuanced understanding of the energetic contributions and structural dynamics underlying CRISPR-mediated gene editing. Such insights are invaluable for optimizing the efficiency and specificity of CRISPR-based genome editing applications, ultimately advancing our ability to precisely manipulate genetic material in various organisms for research, therapeutic, and biotechnological purposes.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purba Daripa
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Kaiser Rasool
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Chang C, Zhou G, Gao Y. Observing one-divalent-metal-ion-dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo. eLife 2024; 13:RP99960. [PMID: 39141555 PMCID: PMC11325842 DOI: 10.7554/elife.99960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.
Collapse
Affiliation(s)
- Caleb Chang
- Department of Biosciences, Rice UniversityHoustonUnited States
| | - Grace Zhou
- Department of Biosciences, Rice UniversityHoustonUnited States
| | - Yang Gao
- Department of Biosciences, Rice UniversityHoustonUnited States
| |
Collapse
|
4
|
Strohkendl I, Saha A, Moy C, Nguyen AH, Ahsan M, Russell R, Palermo G, Taylor DW. Cas12a domain flexibility guides R-loop formation and forces RuvC resetting. Mol Cell 2024; 84:2717-2731.e6. [PMID: 38955179 PMCID: PMC11283365 DOI: 10.1016/j.molcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Aakash Saha
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Catherine Moy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexander-Hoi Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mohd Ahsan
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; LIVESTRONG Cancer Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Chang C, Zhou G, Gao Y. Observing one-divalent-metal-ion dependent and histidine-promoted His-Me family I-PpoI nuclease catalysis in crystallo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592236. [PMID: 38746211 PMCID: PMC11092635 DOI: 10.1101/2024.05.02.592236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.
Collapse
Affiliation(s)
- Caleb Chang
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Grace Zhou
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
6
|
Yan J, Luo Y, Zhu M, Yang B, Shen X, Wang Z, Zhuang Z, Yu Y. General and Scalable Synthesis of Mesoporous 2D MZrO 2 (M = Co, Mn, Ni, Cu, Fe) Nanocatalysts by Amorphous-to-Crystalline Transformation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308016. [PMID: 38308412 DOI: 10.1002/smll.202308016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Indexed: 02/04/2024]
Abstract
In modern heterogeneous catalysis, it remains highly challenging to create stable, low-cost, mesoporous 2D photo-/electro-catalysts that carry atomically dispersed active sites. In this work, a general shape-preserving amorphous-to-crystalline transformation (ACT) strategy is developed to dope various transition metal (TM) heteroatoms in ZrO2, which enabled the scalable synthesis of TMs/oxide with a mesoporous 2D structure and rich defects. During the ACT process, the amorphous MZrO2 nanoparticles (M = Fe, Ni, Cu, Co, Mn) are deposited within a confined space created by the NaCl template, and they transform to crystalline 2D ACT-MZrO2 nanosheets in a shape-preserving manner. The interconnected crystalline ACT-MZrO2 nanoparticles thus inherit the same structure as the original MZrO2 precursor. Owing to its rich active sites on the surface and abundant oxygen vacancies (OVs), ACT-CoZrO2 gives superior performance in catalyzing the CO2-to-syngas conversion as demonstrated by experiments and theoretical calculations. The ACT chemistry opens a general route for the scalable synthesis of advanced catalysts with precise microstructure by reconciliating the control of crystalline morphologies and the dispersion of heteroatoms.
Collapse
Affiliation(s)
- Jiawei Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yifei Luo
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Mengyao Zhu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Bixia Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoxin Shen
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zhiqi Wang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
7
|
Chen J, Chen Y, Huang L, Lin X, Chen H, Xiang W, Liu L. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol 2024:10.1038/s41587-024-02255-7. [PMID: 38811761 DOI: 10.1038/s41587-024-02255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Type V and type VI CRISPR-Cas systems have been shown to cleave nonspecific single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) in trans, but this has not been observed in type II CRISPR-Cas systems using single guide RNA. We show here that the type II CRISPR-Cas9 systems directed by CRISPR RNA and trans-activating CRISPR RNA dual RNAs show RuvC domain-dependent trans-cleavage activity for both ssDNA and ssRNA substrates. Cas9 possesses sequence preferences for trans-cleavage substrates, preferring to cleave T- or C-rich ssDNA substrates. We find that the trans-cleavage activity of Cas9 can be activated by target ssDNA, double-stranded DNA and ssRNA. The crystal structure of Cas9 in complex with guide RNA and target RNA provides a structural basis for the binding of target RNA to activate Cas9. Based on the trans-cleavage activity of Cas9 and nucleic acid amplification technology, we develop the nucleic acid detection platforms DNA-activated Cas9 detection and RNA-activated Cas9 detection, which are capable of detecting DNA and RNA samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Linglong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wenwen Xiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Hibshman GN, Bravo JPK, Hooper MM, Dangerfield TL, Zhang H, Finkelstein IJ, Johnson KA, Taylor DW. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9. Nat Commun 2024; 15:3663. [PMID: 38688943 PMCID: PMC11061278 DOI: 10.1038/s41467-024-47830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
CRISPR-Cas9 is a powerful tool for genome editing, but the strict requirement for an NGG protospacer-adjacent motif (PAM) sequence immediately next to the DNA target limits the number of editable genes. Recently developed Cas9 variants have been engineered with relaxed PAM requirements, including SpG-Cas9 (SpG) and the nearly PAM-less SpRY-Cas9 (SpRY). However, the molecular mechanisms of how SpRY recognizes all potential PAM sequences remains unclear. Here, we combine structural and biochemical approaches to determine how SpRY interrogates DNA and recognizes target sites. Divergent PAM sequences can be accommodated through conformational flexibility within the PAM-interacting region, which facilitates tight binding to off-target DNA sequences. Nuclease activation occurs ~1000-fold slower than for Streptococcus pyogenes Cas9, enabling us to directly visualize multiple on-pathway intermediate states. Experiments with SpG position it as an intermediate enzyme between Cas9 and SpRY. Our findings shed light on the molecular mechanisms of PAMless genome editing.
Collapse
Affiliation(s)
- Grace N Hibshman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| | - Matthew M Hooper
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongshan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX, 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Schwartz EA, Bravo JPK, Ahsan M, Macias LA, McCafferty CL, Dangerfield TL, Walker JN, Brodbelt JS, Palermo G, Fineran PC, Fagerlund RD, Taylor DW. RNA targeting and cleavage by the type III-Dv CRISPR effector complex. Nat Commun 2024; 15:3324. [PMID: 38637512 PMCID: PMC11026444 DOI: 10.1038/s41467-024-47506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.
Collapse
Affiliation(s)
- Evan A Schwartz
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mohd Ahsan
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, CA, USA
| | - Luis A Macias
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | - Caitlyn L McCafferty
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA
| | - Tyler L Dangerfield
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin, Austin, TX, USA
| | | | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, CA, USA.
| | - Peter C Fineran
- Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Robert D Fagerlund
- Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin, New Zealand.
- Genetics Otago, University of Otago, PO Box 56, Dunedin, New Zealand.
| | - David W Taylor
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Han KK, Zhou Q, Tian M, Li YN, Zhang JY, Zhang YW. Cloning, heterologous expression, and molecular characterization of a highly active and stable non-specific endonuclease from Pseudomonas fluorescens. Arch Microbiol 2024; 206:125. [PMID: 38411841 DOI: 10.1007/s00203-024-03867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Non-specific endonucleases can be used for the digestion of nucleic acids because they hydrolyze DNA/RNA into 3-5 base pairs (bp) length oligonucleotide fragments without strict selectivity. In this work, a novel non-specific endonuclease from Pseudomonas fluorescens (PfNuc) with high activities for both DNA and RNA was successfully cloned and expressed in Escherichia coli. The production of PfNuc in flask scale could be achieved to 1.73 × 106 U/L and 4.82 × 106 U/L for DNA and RNA by investigation of the culture and induction conditions. The characterization of PfNuc indicated that it was Mg2+-dependent and the catalytic activity was enhanced by 3.74 folds for DNA and 1.06 folds for RNA in the presence of 5 mM Mg2+. The specific activity of PfNuc for DNA was 1.44 × 105 U/mg at pH 8.0 and 40 °C, and 3.93 × 105 U/mg for RNA at pH 8.5 and 45 °C. The Km of the enzyme for both DNA and RNA was close to 43 µM. The Vmax was 6.40 × 105 U/mg and 1.11 × 106 U/mg for DNA and RNA, respectively. There was no observed activity loss when PfNuc was stored at 4 °C and - 20 °C after 28 days or 10 repeated freeze-thaw cycles at - 80 °C. Molecular docking revealed that PfNuc formed 17 and 19 hydrogen bonds with single-stranded RNA and double-stranded DNA, respectively. These results could explain the high activity and stability of PfNuc, suggesting its great potential applications in the industry and clinic.
Collapse
Affiliation(s)
- Ke-Ke Han
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qiang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Miao Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yang-Nan Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jing-Yi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
11
|
Saha A, Ahsan M, Arantes PR, Schmitz M, Chanez C, Jinek M, Palermo G. An alpha-helical lid guides the target DNA toward catalysis in CRISPR-Cas12a. Nat Commun 2024; 15:1473. [PMID: 38368461 PMCID: PMC10874386 DOI: 10.1038/s41467-024-45762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
CRISPR-Cas12a is a powerful RNA-guided genome-editing system that generates double-strand DNA breaks using its single RuvC nuclease domain by a sequential mechanism in which initial cleavage of the non-target strand is followed by target strand cleavage. How the spatially distant DNA target strand traverses toward the RuvC catalytic core is presently not understood. Here, continuous tens of microsecond-long molecular dynamics and free-energy simulations reveal that an α-helical lid, located within the RuvC domain, plays a pivotal role in the traversal of the DNA target strand by anchoring the crRNA:target strand duplex and guiding the target strand toward the RuvC core, as also corroborated by DNA cleavage experiments. In this mechanism, the REC2 domain pushes the crRNA:target strand duplex toward the core of the enzyme, while the Nuc domain aids the bending and accommodation of the target strand within the RuvC core by bending inward. Understanding of this critical process underlying Cas12a activity will enrich fundamental knowledge and facilitate further engineering strategies for genome editing.
Collapse
Affiliation(s)
- Aakash Saha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Mohd Ahsan
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Pablo R Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA
| | - Michael Schmitz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Christelle Chanez
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA.
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA, 52512, USA.
| |
Collapse
|
12
|
Kovalev MA, Davletshin AI, Karpov DS. Engineering Cas9: next generation of genomic editors. Appl Microbiol Biotechnol 2024; 108:209. [PMID: 38353732 PMCID: PMC10866799 DOI: 10.1007/s00253-024-13056-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The Cas9 endonuclease of the CRISPR/Cas type IIA system from Streptococcus pyogenes is the heart of genome editing technology that can be used to treat human genetic and viral diseases. Despite its large size and other drawbacks, S. pyogenes Cas9 remains the most widely used genome editor. A vast amount of research is aimed at improving Cas9 as a promising genetic therapy. Strategies include directed evolution of the Cas9 protein, rational design, and domain swapping. The first generation of Cas9 editors comes directly from the wild-type protein. The next generation is obtained by combining mutations from the first-generation variants, adding new mutations to them, or refining mutations. This review summarizes and discusses recent advances and ways in the creation of next-generation genomic editors derived from S. pyogenes Cas9. KEY POINTS: • The next-generation Cas9-based editors are more active than in the first one. • PAM-relaxed variants of Cas9 are improved by increased specificity and activity. • Less mutagenic and immunogenic variants of Cas9 are created.
Collapse
Affiliation(s)
- Maxim A Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia
| | - Dmitry S Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991, Moscow, Russia.
| |
Collapse
|
13
|
Davletshin AI, Matveeva AA, Bachurin SS, Karpov DS, Garbuz DG. Increasing the Activity of the High-Fidelity SpyCas9 Form in Yeast by Directed Mutagenesis of the PAM-Interacting Domain. Int J Mol Sci 2023; 25:444. [PMID: 38203615 PMCID: PMC10779060 DOI: 10.3390/ijms25010444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
CRISPR/Cas systems are used for genome editing, both in basic science and in biotechnology. However, CRISPR/Cas editors have several limitations, including insufficient specificity leading to "off-targets" and the dependence of activity on chromatin state. A number of highly specific Cas9 variants have now been obtained, but most of them are characterized by reduced activity on eukaryotic chromatin. We identified a spatial cluster of amino acid residues in the PAM-recognizing domain of Streptococcus pyogenes Cas9, whose mutations restore the activity of one of the highly specific forms of SpyCas9 without reducing its activity in Saccharomyces cerevisiae. In addition, one of these new mutations also increases the efficiency of SpyCas9-mediated editing of a site localized on the stable nucleosome. The improved Cas9 variants we obtained, which are capable of editing hard-to-reach regions of the yeast genome, may help in both basic research and yeast biotechnological applications.
Collapse
Affiliation(s)
- Artem I. Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.D.); (A.A.M.); (D.S.K.)
| | - Anna A. Matveeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.D.); (A.A.M.); (D.S.K.)
| | - Stanislav S. Bachurin
- FSBEI HE Rostov State Medical University, Ministry of Health, 344022 Rostov-on-Don, Russia;
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.D.); (A.A.M.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - David G. Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.I.D.); (A.A.M.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
14
|
Wang J, Maschietto F, Qiu T, Arantes PR, Skeens E, Palermo G, Lisi GP, Batista VS. Substrate-independent activation pathways of the CRISPR-Cas9 HNH nuclease. Biophys J 2023; 122:4635-4644. [PMID: 37936350 PMCID: PMC10754686 DOI: 10.1016/j.bpj.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
A hallmark of tightly regulated high-fidelity enzymes is that they become activated only after encountering cognate substrates, often by an induced-fit mechanism rather than conformational selection. Upon analysis of molecular dynamics trajectories, we recently discovered that the Cas9 HNH domain exists in three conformations: 1) Y836 (which is two residues away from the catalytic D839 and H840 residues) is hydrogen bonded to the D829 backbone amide, 2) Y836 is hydrogen bonded to the backbone amide of D861 (which is one residue away from the third catalytic residue N863), and 3) Y836 is not hydrogen bonded to either residue. Each of the three conformers differs from the active state of HNH. The conversion between the inactive and active states involves a local unfolding-refolding process that displaces the Cα and side chain of the catalytic N863 residue by ∼5 Å and ∼10 Å, respectively. In this study, we report the two largest principal components of coordinate variance of the HNH domain throughout molecular dynamics trajectories to establish the interconversion pathways of these conformations. We show that conformation 2 is an obligate step between conformations 1 and 3, which are not directly interconvertible without conformation 2. The loss of hydrogen bonding of the Y836 side chain in conformation 3 likely plays an essential role in activation during local unfolding-refolding of an α-helix containing the catalytic N863. Three single Lys-to-Ala mutants appear to eliminate this substrate-independent activation pathway of the wild-type HNH nuclease, thereby enhancing the fidelity of HNH cleavage.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | | | - Tianyin Qiu
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Pablo R Arantes
- Department of Bioengineering, University of California, Riverside, Riverside, California
| | - Erin Skeens
- Department of Chemistry, University of California, Riverside, Riverside, California
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, California; Department of Chemistry, University of California, Riverside, Riverside, California.
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island.
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
15
|
Maghsoud Y, Jayasinghe-Arachchige VM, Kumari P, Cisneros GA, Liu J. Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects. J Chem Inf Model 2023; 63:6834-6850. [PMID: 37877218 DOI: 10.1021/acs.jcim.3c01284] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) technology is an RNA-guided targeted genome-editing tool using Cas family proteins. Two magnesium-dependent nuclease domains of the Cas9 enzyme, termed HNH and RuvC, are responsible for cleaving the target DNA (t-DNA) and nontarget DNA strands, respectively. The HNH domain is believed to determine the DNA cleavage activity of both endonuclease domains and is sensitive to complementary RNA-DNA base pairing. However, the underlying molecular mechanisms of CRISPR-Cas9, by which it rebukes or accepts mismatches, are poorly understood. Thus, investigation of the structure and dynamics of the catalytic state of Cas9 with either matched or mismatched t-DNA can provide insights into improving its specificity by reducing off-target cleavages. Here, we focus on a recently discovered catalytic-active form of the Streptococcus pyogenes Cas9 (SpCas9) and employ classical molecular dynamics and coupled quantum mechanics/molecular mechanics simulations to study two possible mechanisms of t-DNA cleavage reaction catalyzed by the HNH domain. Moreover, by designing a mismatched t-DNA structure called MM5 (C to G at the fifth position from the protospacer adjacent motif region), the impact of single-guide RNA (sgRNA) and t-DNA complementarity on the catalysis process was investigated. Based on these simulations, our calculated binding affinities, minimum energy paths, and analysis of catalytically important residues provide atomic-level details of the differences between matched and mismatched cleavage reactions. In addition, several residues exhibit significant differences in their catalytic roles for the two studied systems, including K253, K263, R820, K896, and K913.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vindi M Jayasinghe-Arachchige
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Pratibha Kumari
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
16
|
Noshay J, Walker T, Alexander W, Klingeman D, Romero J, Walker A, Prates E, Eckert C, Irle S, Kainer D, Jacobson D. Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering. Nucleic Acids Res 2023; 51:10147-10161. [PMID: 37738140 PMCID: PMC10602897 DOI: 10.1093/nar/gkad736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and new public resource, produced with quantum chemical tensors, for interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is performed using an explainable-artificial intelligence model: iterative Random Forest (iRF). By encoding quantitative attributes of position-specific sequences for Escherichia coli sgRNAs, we identify important traits for sgRNA design in bacterial species. Additionally, we show that expanding positional encoding to quantum descriptors of base-pair, dimer, trimer, and tetramer sequences captures intricate interactions in local and neighboring nucleotides of the target DNA. These features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapiens genomes. These novel encodings of sgRNAs enhance our understanding of the elaborate quantum biological processes involved in CRISPR-Cas9 machinery.
Collapse
Affiliation(s)
- Jaclyn M Noshay
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Tyler Walker
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - William G Alexander
- Synthetic Biology, Biosciences,Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dawn M Klingeman
- Synthetic Biology, Biosciences,Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jonathon Romero
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Angelica M Walker
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Erica Prates
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Carrie Eckert
- Synthetic Biology, Biosciences,Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Stephan Irle
- Computational Sciences and Engineering, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David Kainer
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daniel A Jacobson
- Computational and Predictive Biology, Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
17
|
Das A, Rai J, Roth MO, Shu Y, Medina ML, Barakat MR, Li H. Coupled catalytic states and the role of metal coordination in Cas9. Nat Catal 2023; 6:969-977. [PMID: 38348449 PMCID: PMC10861241 DOI: 10.1038/s41929-023-01031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/29/2023] [Indexed: 02/15/2024]
Abstract
Controlling the activity of the CRISPR-Cas9 system is essential to its safe adoption for clinical and research applications. Although the conformational dynamics of Cas9 are known to control its enzymatic activity, details of how Cas9 influences the catalytic processes at both nuclease domains remain elusive. Here we report five cryo-electron microscopy structures of the active Acidothermus cellulolyticus Cas9 complex along the reaction path at 2.2-2.9 Å resolution. We observed that a large movement in one nuclease domain, triggered by the cognate DNA, results in noticeable changes in the active site of the other domain that is required for metal coordination and catalysis. Furthermore, the conformations synchronize the reaction intermediates, enabling coupled cutting of the two DNA strands. Consistent with the roles of conformations in organizing the active sites, adjustments to the metal-coordination residues lead to altered metal specificity of A. cellulolyticus Cas9 and commonly used Streptococcus pyogenes Cas9 in cells.
Collapse
Affiliation(s)
- Anuska Das
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
- These authors contributed equally: Anuska Das, Jay Rai, Mitchell O. Roth
| | - Jay Rai
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
- Present address: Materials and Structural Analysis Division, Thermo Fisher Scientific, Hillsboro, OR, USA
- These authors contributed equally: Anuska Das, Jay Rai, Mitchell O. Roth
| | - Mitchell O. Roth
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
- These authors contributed equally: Anuska Das, Jay Rai, Mitchell O. Roth
| | - Yuerong Shu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Megan L. Medina
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Mackenzie R. Barakat
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
18
|
Raghavan B, Paulikat M, Ahmad K, Callea L, Rizzi A, Ippoliti E, Mandelli D, Bonati L, De Vivo M, Carloni P. Drug Design in the Exascale Era: A Perspective from Massively Parallel QM/MM Simulations. J Chem Inf Model 2023; 63:3647-3658. [PMID: 37319347 PMCID: PMC10302481 DOI: 10.1021/acs.jcim.3c00557] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 06/17/2023]
Abstract
The initial phases of drug discovery - in silico drug design - could benefit from first principle Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics (MD) simulations in explicit solvent, yet many applications are currently limited by the short time scales that this approach can cover. Developing scalable first principle QM/MM MD interfaces fully exploiting current exascale machines - so far an unmet and crucial goal - will help overcome this problem, opening the way to the study of the thermodynamics and kinetics of ligand binding to protein with first principle accuracy. Here, taking two relevant case studies involving the interactions of ligands with rather large enzymes, we showcase the use of our recently developed massively scalable Multiscale Modeling in Computational Chemistry (MiMiC) QM/MM framework (currently using DFT to describe the QM region) to investigate reactions and ligand binding in enzymes of pharmacological relevance. We also demonstrate for the first time strong scaling of MiMiC-QM/MM MD simulations with parallel efficiency of ∼70% up to >80,000 cores. Thus, among many others, the MiMiC interface represents a promising candidate toward exascale applications by combining machine learning with statistical mechanics based algorithms tailored for exascale supercomputers.
Collapse
Affiliation(s)
- Bharath Raghavan
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics, RWTH Aachen University, Aachen 52074, Germany
| | - Mirko Paulikat
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Katya Ahmad
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Lara Callea
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Andrea Rizzi
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Atomistic
Simulations, Italian Institute of Technology, Genova 16163, Italy
| | - Emiliano Ippoliti
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Davide Mandelli
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
| | - Laura Bonati
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Marco De Vivo
- Molecular
Modelling and Drug Discovery, Italian Institute
of Technology, Genova 16163, Italy
| | - Paolo Carloni
- Computational
Biomedicine, Institute of Advanced Simulations IAS-5/Institute for
Neuroscience and Medicine INM-9, Forschungszentrum
Jülich GmbH, Jülich 52428, Germany
- Department
of Physics and Universitätsklinikum, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
19
|
Sinha S, Pindi C, Ahsan M, Arantes PR, Palermo G. Machines on Genes through the Computational Microscope. J Chem Theory Comput 2023; 19:1945-1964. [PMID: 36947696 PMCID: PMC10104023 DOI: 10.1021/acs.jctc.2c01313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Macromolecular machines acting on genes are at the core of life's fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of "machines on genes", focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications. As this review unfolds, advanced computational methods describe the biophysical function that is unseen through experimental techniques, accomplishing the power of the "computational microscope", an expression coined by Klaus Schulten to highlight the extraordinary capability of computer simulations. Pushing the frontiers of computational biophysics toward a pragmatic representation of large multimegadalton biomolecular complexes is instrumental in bridging the gap between experimentally obtained macroscopic observables and the molecular principles playing at the microscopic level. This understanding will help harness molecular machines for medical, pharmaceutical, and biotechnological purposes.
Collapse
Affiliation(s)
- Souvik Sinha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Chinmai Pindi
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Mohd Ahsan
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Pablo R. Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
20
|
Spasskaya DS, Davletshin AI, Bachurin SS, Tutyaeva VV, Garbuz DG, Karpov DS. Improving the on-target activity of high-fidelity Cas9 editors by combining rational design and random mutagenesis. Appl Microbiol Biotechnol 2023; 107:2385-2401. [PMID: 36917274 DOI: 10.1007/s00253-023-12469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Genomic and post-genomic editors based on CRISPR/Cas systems are widely used in basic research and applied sciences, including human gene therapy. Most genome editing tools are based on the CRISPR/Cas9 type IIA system from Streptococcus pyogenes. Unfortunately, a number of drawbacks have hindered its application in therapeutic approaches, the most serious of which is the relatively high level of off-targets. To overcome this obstacle, various high-fidelity Cas9 variants have been created. However, they show reduced on-target activity compared to wild-type Cas9 possibly due to increased sensitivity to eukaryotic chromatin. Here, we combined a rational approach with random mutagenesis to create a set of new Cas9 variants showing high specificity and increased activity in Saccharomyces cerevisiae yeast. Moreover, a novel mutation in the PAM (protospacer adjacent motif)-interacting Cas9 domain was found, which increases the on-target activity of high-fidelity Cas9 variants while retaining their high specificity. The obtained data suggest that this mutation acts by weakening the eukaryotic chromatin barrier for Cas9 and rearranging the RuvC active center. Improved Cas9 variants should further advance genome and post-genome editing technologies. KEY POINTS: • D147Y and P411T mutations increase the activity of high-fidelity Cas9 variants. • The new L1206P mutation further increases the activity of high-fidelity Cas9 variants. • The L1206P mutation weakens the chromatin barrier for Cas9 editors.
Collapse
Affiliation(s)
- Daria S Spasskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Stanislav S Bachurin
- FSBEI HE Rostov State Medical University Ministry of Health, Nakhichevanskiy Lane 29, Rostov-On-Don, 344022, Russia
| | - Vera V Tutyaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - David G Garbuz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia
| | - Dmitry S Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov St. 32, Moscow, 119991, Russia.
| |
Collapse
|
21
|
Nierzwicki Ł, Ahsan M, Palermo G. The Electronic Structure of Genome Editors from the First Principles. ELECTRONIC STRUCTURE (BRISTOL, ENGLAND) 2023; 5:014003. [PMID: 36926635 PMCID: PMC10016068 DOI: 10.1088/2516-1075/acb410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Genome editing based on the CRISPR-Cas9 system has paved new avenues for medicine, pharmaceutics, biotechnology, and beyond. This article reports the role of first-principles (ab-initio) molecular dynamics (MD) in the CRISPR-Cas9 revolution, achieving a profound understanding of the enzymatic function and offering valuable insights for enzyme engineering. We introduce the methodologies and explain the use of ab-initio MD simulations to characterize the two-metal dependent mechanism of DNA cleavage in the RuvC domain of the Cas9 enzyme, and how a second catalytic domain, HNH, cleaves the target DNA with the aid of a single metal ion. A detailed description of how ab-initio MD is combined with free-energy methods - i.e., thermodynamic integration and metadynamics - to break and form chemical bonds is given, explaining the use of these methods to determine the chemical landscape and establish the catalytic mechanism in CRISPR-Cas9. The critical role of classical methods is also discussed, explaining theory and application of constant pH MD simulations, used to accurately predict the catalytic residues' protonation states. Overall, first-principles methods are shown to unravel the electronic structure of the Cas9 enzyme, providing valuable insights that can serve for the design of genome editing tools with improved catalytic efficiency or controllable activity.
Collapse
Affiliation(s)
- Łukasz Nierzwicki
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Mohd Ahsan
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
22
|
Belyaeva J, Zlobin A, Maslova V, Golovin A. Modern non-polarizable force fields diverge in modeling the enzyme-substrate complex of a canonical serine protease. Phys Chem Chem Phys 2023; 25:6352-6361. [PMID: 36779321 DOI: 10.1039/d2cp05502c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Classical molecular dynamics simulation is a powerful and established method of modern computational chemistry. Being able to obtain accurate information on molecular behavior is crucial to get valuable insights into structure-function relationships that translate into fundamental findings and practical applications. Active sites of enzymes are known to be particularly intricate, therefore, simpler non-polarizable force fields may provide an inaccurate description. In this work, we addressed this hypothesis in a case of a canonical serine triad protease trypsin in its complex with a substrate-mimicking inhibitor. We tested six modern and popular force fields to find that significantly diverging results may be obtained. Amber FB-15 and OPLS-AA/M turned out to model the active site incorrectly. Amber ff19sb and ff15ipq demonstrated mixed performance. The best performing force fields were CHARMM36m and Amber ff99sb-ildn, therefore, they are recommended for use with this and related systems. We speculate that a similar lack of cross-force field convergence may be characteristic of other enzymatic systems. Therefore, we advocate for careful consideration of different force fields in any study within the field of computational enzymology.
Collapse
Affiliation(s)
- Julia Belyaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - Alexander Zlobin
- Sirius University of Science and Technology, 354340, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Valentina Maslova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 354340, Sochi, Russia
| | - Andrey Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991, Moscow, Russia. .,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.,Sirius University of Science and Technology, 354340, Sochi, Russia
| |
Collapse
|
23
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
24
|
Wang J, Arantes PR, Ahsan M, Sinha S, Kyro GW, Maschietto F, Allen B, Skeens E, Lisi GP, Batista VS, Palermo G. Twisting and swiveling domain motions in Cas9 to recognize target DNA duplexes, make double-strand breaks, and release cleaved duplexes. Front Mol Biosci 2023; 9:1072733. [PMID: 36699705 PMCID: PMC9868570 DOI: 10.3389/fmolb.2022.1072733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The CRISPR-associated protein 9 (Cas9) has been engineered as a precise gene editing tool to make double-strand breaks. CRISPR-associated protein 9 binds the folded guide RNA (gRNA) that serves as a binding scaffold to guide it to the target DNA duplex via a RecA-like strand-displacement mechanism but without ATP binding or hydrolysis. The target search begins with the protospacer adjacent motif or PAM-interacting domain, recognizing it at the major groove of the duplex and melting its downstream duplex where an RNA-DNA heteroduplex is formed at nanomolar affinity. The rate-limiting step is the formation of an R-loop structure where the HNH domain inserts between the target heteroduplex and the displaced non-target DNA strand. Once the R-loop structure is formed, the non-target strand is rapidly cleaved by RuvC and ejected from the active site. This event is immediately followed by cleavage of the target DNA strand by the HNH domain and product release. Within CRISPR-associated protein 9, the HNH domain is inserted into the RuvC domain near the RuvC active site via two linker loops that provide allosteric communication between the two active sites. Due to the high flexibility of these loops and active sites, biophysical techniques have been instrumental in characterizing the dynamics and mechanism of the CRISPR-associated protein 9 nucleases, aiding structural studies in the visualization of the complete active sites and relevant linker structures. Here, we review biochemical, structural, and biophysical studies on the underlying mechanism with emphasis on how CRISPR-associated protein 9 selects the target DNA duplex and rejects non-target sequences.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Pablo R. Arantes
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Mohd Ahsan
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Souvik Sinha
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Gregory W. Kyro
- Department of Chemistry, Yale University, New Haven, CT, United States
| | | | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Erin Skeens
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - George P. Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Giulia Palermo
- Department of Bioengineering and Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
25
|
Belato HB, Norbrun C, Luo J, Pindi C, Sinha S, D’Ordine AM, Jogl G, Palermo G, Lisi GP. Disruption of electrostatic contacts in the HNH nuclease from a thermophilic Cas9 rewires allosteric motions and enhances high-temperature DNA cleavage. J Chem Phys 2022; 157:225103. [PMID: 36546784 PMCID: PMC9759293 DOI: 10.1063/5.0128815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Allosteric signaling within multidomain proteins is a driver of communication between spatially distant functional sites. Understanding the mechanism of allosteric coupling in large multidomain proteins is the most promising route to achieving spatial and temporal control of the system. The recent explosion of CRISPR-Cas9 applications in molecular biology and medicine has created a need to understand how the atomic level protein dynamics of Cas9, which are the driving force of its allosteric crosstalk, influence its biophysical characteristics. In this study, we used a synergistic approach of nuclear magnetic resonance (NMR) and computation to pinpoint an allosteric hotspot in the HNH domain of the thermostable GeoCas9. We show that mutation of K597 to alanine disrupts a salt-bridge network, which in turn alters the structure, the timescale of allosteric motions, and the thermostability of the GeoHNH domain. This homologous lysine-to-alanine mutation in the extensively studied mesophilic S. pyogenes Cas9 similarly alters the dynamics of the SpHNH domain. We have previously demonstrated that the alteration of allostery via mutations is a source for the specificity enhancement of SpCas9 (eSpCas9). Hence, this may also be true in GeoCas9.
Collapse
Affiliation(s)
- Helen B. Belato
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Carmelissa Norbrun
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jinping Luo
- Brown University Transgenic Mouse and Gene Targeting Facility, Providence, Rhode Island 02903, USA
| | - Chinmai Pindi
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, California 92521, USA
| | - Souvik Sinha
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, California 92521, USA
| | - Alexandra M. D’Ordine
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Giulia Palermo
- Departments of Bioengineering and Chemistry, University of California Riverside, Riverside, California 92521, USA
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|