1
|
Whilde J, Mashkour N, Koda SA, Eastman CB, Thompson D, Burkhalter B, Frandsen HR, Page A, Blackburn NB, Jones K, Ariel E, Dupont SM, Wood L, Duffy DJ. International overview of sea turtle fibropapillomatosis: a survey of expert opinions and trends. Front Cell Dev Biol 2024; 12:1445438. [PMID: 39239565 PMCID: PMC11374714 DOI: 10.3389/fcell.2024.1445438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Marine environments offer a wealth of opportunities to improve understanding and treatment options for cancers, through insights into a range of fields from drug discovery to mechanistic insights. By applying One Health principles the knowledge obtained can benefit both human and animal populations, including marine species suffering from cancer. One such species is green sea turtles (Chelonia mydas), which are under threat from fibropapillomatosis (FP), an epizootic tumor disease (animal epidemic) that continues to spread and increase in prevalence globally. In order to effectively address this epizootic, a more thorough understanding is required of the prevalence of the disease and the approaches to treating afflicted turtles. Methods To identify knowledge gaps and assess future needs, we conducted a survey of sea turtle FP experts. The survey consisted of 47 questions designed to assess general perceptions of FP, the areas where more information is needed, local FP trends, the disease status, and mitigation needs, and was voluntarily completed by 44 experts across a broad geographic range. Results Over 70% of respondents both recognized FP as a cancerous panzootic disease, and reported that FP is increasing in prevalence. They report several factors contributing to this increase. Nearly all of the respondents reported that FP research, patient treatment and rehabilitation required more funding in their area, and reported inadequate facilities and capacity for dealing with FP patients. Treatment approaches varied: just over 70% of the medical experts that responded surgically remove FP tumors, either using laser or scalpel. Just under half of respondents use anti-cancer drugs in their treatment of FP. Internal tumors were reported as justification for euthanasia by 61.5% of respondents, and 30.8% reported severe external tumors to be sufficient grounds for euthanasia. Most medical respondents (93.3%) routinely perform necropsy on deceased or euthanized FP-afflicted turtles. Over 80% of respondents considered large-scale multidisciplinary collaboration 'extremely important' for advancing the field of FP research. Discussion The survey responses provide a valuable insight into the current status of FP in sea turtles, FP treatment, rehabilitation and research, and help to identify critical FP-related areas most in need of attention.
Collapse
Affiliation(s)
- Jenny Whilde
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Narges Mashkour
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Samantha A Koda
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Catherine B Eastman
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Drew Thompson
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Brooke Burkhalter
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
| | - Hilary R Frandsen
- National Park Service, Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX, United States
| | - Annie Page
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States
| | - Nicholas B Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Karina Jones
- School of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Sophie M Dupont
- BOREA Research Unit, Laboratoire de Biologie des Organismes et des Ecosystèmes Aquatiques, UMR 8067, MNHN, CNRS, SU, IRD 207, UCN, UA, Station de Recherche Marine de Martinique, Les Anses d'Arlet, France
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS, La Rochelle Université, La Rochelle, France
| | - Lawrence Wood
- Florida Hawksbill Project, National Save The Sea Turtle Foundation, Ft. Lauderdale, FL, United States
| | - David J Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St Augustine, FL, United States
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Manes C, Carthy RR, Hull V. A Coupled Human and Natural Systems Framework to Characterize Emerging Infectious Diseases-The Case of Fibropapillomatosis in Marine Turtles. Animals (Basel) 2023; 13:ani13091441. [PMID: 37174478 PMCID: PMC10177368 DOI: 10.3390/ani13091441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Emerging infectious diseases of wildlife have markedly increased in the last few decades. Unsustainable, continuous, and rapid alterations within and between coupled human and natural systems have significantly disrupted wildlife disease dynamics. Direct and indirect anthropogenic effects, such as climate change, pollution, encroachment, urbanization, travel, and trade, can promote outbreaks of infectious diseases in wildlife. We constructed a coupled human and natural systems framework identifying three main wildlife disease risk factors behind these anthropogenic effects: (i) immune suppression, (ii) viral spillover, and (iii) disease propagation. Through complex and convoluted dynamics, each of the anthropogenic effects and activities listed in our framework can lead, to some extent, to one or more of the identified risk factors accelerating disease outbreaks in wildlife. In this review, we present a novel framework to study anthropogenic effects within coupled human and natural systems that facilitate the emergence of infectious disease involving wildlife. We demonstrate the utility of the framework by applying it to Fibropapillomatosis disease of marine turtles. We aim to articulate the intricate and complex nature of anthropogenically exacerbated wildlife infectious diseases as multifactorial. This paper supports the adoption of a One Health approach and invites the integration of multiple disciplines for the achievement of effective and long-lasting conservation and the mitigation of wildlife emerging diseases.
Collapse
Affiliation(s)
- Costanza Manes
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA
| | - Raymond R Carthy
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- U.S. Geological Survey, Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, FL 32611, USA
| | - Vanessa Hull
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Immunity in Sea Turtles: Review of a Host-Pathogen Arms Race Millions of Years in the Running. Animals (Basel) 2023; 13:ani13040556. [PMID: 36830343 PMCID: PMC9951749 DOI: 10.3390/ani13040556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
The immune system of sea turtles is not completely understood. Sea turtles (as reptiles) bridge a unique evolutionary gap, being ectothermic vertebrates like fish and amphibians and amniotes like birds and mammals. Turtles are ectotherms; thus, their immune system is influenced by environmental conditions like temperature and season. We aim to review the turtle immune system and note what studies have investigated sea turtles and the effect of the environment on the immune response. Turtles rely heavily on the nonspecific innate response rather than the specific adaptive response. Turtles' innate immune effectors include antimicrobial peptides, complement, and nonspecific leukocytes. The antiviral defense is understudied in terms of the diversity of pathogen receptors and interferon function. Turtles also mount adaptive responses to pathogens. Lymphoid structures responsible for lymphocyte activation and maturation are either missing in reptiles or function is affected by season. Turtles are a marker of health for their marine environment, and their immune system is commonly dysregulated because of disease or contaminants. Fibropapillomatosis (FP) is a tumorous disease that afflicts sea turtles and is thought to be caused by a virus and an environmental factor. We aim, by exploring the current understanding of the immune system in turtles, to aid the investigation of environmental factors that contribute to the pathogenesis of this disease and provide options for immunotherapy.
Collapse
|
4
|
Guo Y, Chen H, Liu P, Wang F, Li L, Ye M, Zhao W, Chen J. Microbial composition of carapace, feces, and water column in captive juvenile green sea turtles with carapacial ulcers. Front Vet Sci 2022; 9:1039519. [PMID: 36590814 PMCID: PMC9797667 DOI: 10.3389/fvets.2022.1039519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Green sea turtles are endangered marine reptiles. Carapacial ulcers will develop on juvenile green sea turtles during artificial rescue, seriously affecting their health and potentially leading to death. Methods To determine the pathogens causing ulcerative carapacial disease, we performed 16S and ITS high-throughput sequencing, and microbial diversity analysis on samples from carapacial ulcers, healthy carapaces, feces, and seawater of juvenile green sea turtles. Results Our analysis showed that changes in microbial diversity of green sea turtle feces and seawater were not significantly associated with ulcerative carapacial disease. Discussion Psychrobacter sp. is the dominant species in the carapacial ulcers of green sea turtles. The bacterium is present in both healthy turtles and seawater where carapacial ulcers did not occur and decreasing seawater temperatures are likely responsible for the infection of juvenile green turtles with Psychrobacter sp. This is the first study on carapacial ulcers in captive juvenile green sea turtles. Our research provides theoretical guidance for the prevention and control of carapacial ulcers in captive juvenile green sea turtles.
Collapse
Affiliation(s)
- Yide Guo
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Hualing Chen
- Huidong Sea Turtle National Reserve Management Bureau, Sea Turtle Bay, Huidong, Guangdong, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Fumin Wang
- Huidong Sea Turtle National Reserve Management Bureau, Sea Turtle Bay, Huidong, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China
| | - Mingbin Ye
- Huidong Sea Turtle National Reserve Management Bureau, Sea Turtle Bay, Huidong, Guangdong, China
| | - Wenge Zhao
- College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, China,*Correspondence: Wenge Zhao
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong Province, China,Jinping Chen
| |
Collapse
|
5
|
Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13:3004. [PMID: 35637187 PMCID: PMC9151791 DOI: 10.1038/s41467-022-30605-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Genetically identical cells are known to exhibit differential phenotypes in the same environmental conditions. These phenotypic variants are linked to transcriptional stochasticity and have been shown to contribute towards adaptive flexibility of a wide range of unicellular organisms. Here, we investigate transcriptional heterogeneity and stochastic gene expression in Plasmodium falciparum by performing the quasilinear multiple annealing and looping based amplification cycles (MALBAC) based amplification and single cell RNA sequencing of blood stage schizonts. Our data reveals significant transcriptional variations in the schizont stage with a distinct group of highly variable invasion gene transcripts being identified. Moreover, the data reflects several diversification processes including putative developmental “checkpoint”; transcriptomically distinct parasite sub-populations and transcriptional switches in variable gene families (var, rifin, phist). Most of these features of transcriptional variability are preserved in isogenic parasite cell populations (albeit with a lesser amplitude) suggesting a role of epigenetic factors in cell-to-cell transcriptional variations in human malaria parasites. Lastly, we apply quantitative RT-PCR and RNA-FISH approach and confirm stochastic expression of key invasion genes, such as, msp1, msp3, msp7, eba181 and ama1 which represent prime candidates for invasion-blocking vaccines. Genetically identical cells can be phenotypically diverse to allow adaptive flexibility in a given environment. This phenotypic diversity is driven by epigenetic and transcriptional variability. Here, Tripathi et al. perform scRNA-seq of isogenic and non-isogenic Plasmodium falciparum schizont populations to explore transcriptional heterogeneity and stochastic gene expression during the course of development.
Collapse
|
6
|
Manes C, Pinton D, Canestrelli A, Capua I. Occurrence of Fibropapillomatosis in Green Turtles ( Chelonia mydas) in Relation to Environmental Changes in Coastal Ecosystems in Texas and Florida: A Retrospective Study. Animals (Basel) 2022; 12:1236. [PMID: 35625082 PMCID: PMC9137486 DOI: 10.3390/ani12101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
Fibropapillomatosis is a neoplastic disease of marine turtles, with green turtles (Chelonia mydas) being the most affected species. Fibropapillomatosis causes debilitating tumor growths on soft tissues and internal organs, often with lethal consequences. Disease incidence has been increasing in the last few decades and the reason is still uncertain. The potential viral infectious agent of Fibropapillomatosis, chelonid herpesvirus 5, has been co-evolving with its sea turtle host for millions of years and no major mutation linked with increased disease occurrence has been detected. Hence, frequent outbreaks in recent decades are likely attributable to external drivers such as large-scale anthropogenic changes in the green turtle coastal marine ecosystem. This study found that variations in sea surface temperature, salinity, and nutrient effluent discharge from nearby rivers were correlated with an increased incidence of the disease, substantiating that these may be among the significant environmental drivers impacting Fibropapillomatosis prevalence. This study offers data and insight on the need to establish a baseline of environmental factors which may drive Fibropapillomatosis and its clinical exacerbation. We highlight the multifactorial nature of this disease and support the inclusion of interdisciplinary work in future Fibropapillomatosis research efforts.
Collapse
Affiliation(s)
- Costanza Manes
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA;
| | - Daniele Pinton
- Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA; (D.P.); (A.C.)
| | - Alberto Canestrelli
- Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32611, USA; (D.P.); (A.C.)
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
7
|
EVALUATION OF IMMUNE FUNCTION IN TWO POPULATIONS OF GREEN SEA TURTLES (CHELONIA MYDAS) IN A DEGRADED VERSUS A NONDEGRADED HABITAT. J Wildl Dis 2021; 57:761-772. [PMID: 34460917 DOI: 10.7589/jwd-d-20-00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
There is a strong correlation between degraded marine habitats and the prevalence of diseases such as green turtle fibropapillomatosis (GTFP) in coastal populations. In GTFP, small to large tumors grow on the turtle's soft tissues and shell, while internal nodules may also occur. The disease primarily affects juvenile green sea turtles (Chelonia mydas) that reside in nearshore waters. As a link has been shown between environmental pollution and immune suppression in a variety of animals, the objective of our research was to compare innate and adaptive immune responsiveness in green sea turtles from a severely degraded and a more pristine habitat, which differ greatly in rates of GTFP. We quantified phagocytosis by flow cytometry and performed in vitro stimulation analysis to measure activity of both the innate and adaptive immune systems in wild-caught Florida green turtles. Sea turtles from the degraded environment, both with and without visible cutaneous tumors, exhibited significantly reduced phagocytosis and stimulation indices than did those from the less polluted environment. Our results suggest that environmental factors may contribute to the development of GTFP and thus can impact the health of sea turtle populations.
Collapse
|
8
|
Whitmore L, Yetsko K, Farrell JA, Page-Karjian A, Daniel W, Shaver DJ, Frandsen HR, Walker JS, Crowder W, Bovery C, Rollinson Ramia D, Burkhalter B, Ryan E, Duffy DJ. Evolutionary Comparisons of Chelonid Alphaherpesvirus 5 (ChHV5) Genomes from Fibropapillomatosis-Afflicted Green ( Chelonia mydas), Olive Ridley ( Lepidochelys olivacea) and Kemp's Ridley ( Lepidochelys kempii) Sea Turtles. Animals (Basel) 2021; 11:2489. [PMID: 34573455 PMCID: PMC8465875 DOI: 10.3390/ani11092489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
The spreading global sea turtle fibropapillomatosis (FP) epizootic is threatening some of Earth's ancient reptiles, adding to the plethora of threats faced by these keystone species. Understanding this neoplastic disease and its likely aetiological pathogen, chelonid alphaherpesvirus 5 (ChHV5), is crucial to understand how the disease impacts sea turtle populations and species and the future trajectory of disease incidence. We generated 20 ChHV5 genomes, from three sea turtle species, to better understand the viral variant diversity and gene evolution of this oncogenic virus. We revealed previously underappreciated genetic diversity within this virus (with an average of 2035 single nucleotide polymorphisms (SNPs), 1.54% of the ChHV5 genome) and identified genes under the strongest evolutionary pressure. Furthermore, we investigated the phylogeny of ChHV5 at both genome and gene level, confirming the propensity of the virus to be interspecific, with related variants able to infect multiple sea turtle species. Finally, we revealed unexpected intra-host diversity, with up to 0.15% of the viral genome varying between ChHV5 genomes isolated from different tumours concurrently arising within the same individual. These findings offer important insights into ChHV5 biology and provide genomic resources for this oncogenic virus.
Collapse
Affiliation(s)
- Liam Whitmore
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Kelsey Yetsko
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
| | - Jessica A. Farrell
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Annie Page-Karjian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA;
| | - Whitney Daniel
- South Carolina Aquarium, 100 Aquarium Wharf, Charleston, SC 29401, USA;
| | - Donna J. Shaver
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (H.R.F.); (J.S.W.)
| | - Hilary R. Frandsen
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (H.R.F.); (J.S.W.)
| | - Jennifer Shelby Walker
- Division of Sea Turtle Science and Recovery, Padre Island National Seashore, Corpus Christi, TX 78480, USA; (D.J.S.); (H.R.F.); (J.S.W.)
| | - Whitney Crowder
- Gumbo Limbo Nature Center, Boca Raton, FL 33432, USA; (W.C.); (C.B.)
| | - Caitlin Bovery
- Gumbo Limbo Nature Center, Boca Raton, FL 33432, USA; (W.C.); (C.B.)
| | - Devon Rollinson Ramia
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
| | - Brooke Burkhalter
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
| | - Elizabeth Ryan
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | - David J. Duffy
- Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL 32080, USA; (K.Y.); (J.A.F.); (D.R.R.); (B.B.); (D.J.D.)
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Farrell JA, Yetsko K, Whitmore L, Whilde J, Eastman CB, Ramia DR, Thomas R, Linser P, Creer S, Burkhalter B, Schnitzler C, Duffy DJ. Environmental DNA monitoring of oncogenic viral shedding and genomic profiling of sea turtle fibropapillomatosis reveals unusual viral dynamics. Commun Biol 2021; 4:565. [PMID: 33980988 PMCID: PMC8115626 DOI: 10.1038/s42003-021-02085-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Pathogen-induced cancers account for 15% of human tumors and are a growing concern for endangered wildlife. Fibropapillomatosis is an expanding virally and environmentally co-induced sea turtle tumor epizootic. Chelonid herpesvirus 5 (ChHV5) is implicated as a causative virus, but its transmission method and specific role in oncogenesis and progression is unclear. We applied environmental (e)DNA-based viral monitoring to assess viral shedding as a direct means of transmission, and the relationship between tumor burden, surgical resection and ChHV5 shedding. To elucidate the abundance and transcriptional status of ChHV5 across early, established, regrowth and internal tumors we conducted genomics and transcriptomics. We determined that ChHV5 is shed into the water column, representing a likely transmission route, and revealed novel temporal shedding dynamics and tumor burden correlations. ChHV5 was more abundant in the water column than in marine leeches. We also revealed that ChHV5 is latent in fibropapillomatosis, including early stage, regrowth and internal tumors; higher viral transcription is not indicative of poor patient outcome, and high ChHV5 loads predominantly arise from latent virus. These results expand our knowledge of the cellular and shedding dynamics of ChHV5 and can provide insights into temporal transmission dynamics and viral oncogenesis not readily investigable in tumors of terrestrial species.
Collapse
Affiliation(s)
- Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Liam Whitmore
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Catherine B Eastman
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Devon Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Paul Linser
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK
| | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, UK.
| |
Collapse
|
10
|
Farrell JA, Whitmore L, Duffy DJ. The Promise and Pitfalls of Environmental DNA and RNA Approaches for the Monitoring of Human and Animal Pathogens from Aquatic Sources. Bioscience 2021. [PMCID: PMC8083301 DOI: 10.1093/biosci/biab027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Novel forensics-inspired molecular approaches have revolutionized species detection in the wild and are particularly useful for tracing endangered or invasive species. These new environmental DNA or RNA (eDNA or eRNA)–based techniques are now being applied to human and animal pathogen surveillance, particularly in aquatic environments. They allow better disease monitoring (presence or absence and geographical spread) and understanding of pathogen occurrence and transmission, benefitting species conservation and, more recently, our understanding of the COVID-19 global human pandemic. In the present article, we summarize the benefits of eDNA-based monitoring, highlighted by two case studies: The first is a fibropapillomatosis tumor-associated herpesvirus (chelonid herpesvirus 5) driving a sea turtle panzootic, and the second relates to eRNA-based detection of the SARS-CoV-2 coronavirus driving the COVID-19 human pandemic. The limitations of eDNA- or eRNA-based approaches are also summarized, and future directions and recommendations of the field are discussed. Continuous eDNA- or eRNA-based monitoring programs can potentially improve human and animal health by predicting disease outbreaks in advance, facilitating proactive rather than reactive responses.
Collapse
Affiliation(s)
- Jessica A Farrell
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| | - Liam Whitmore
- University of Limerick's Department of Biological Sciences in the School of Natural Sciences and Faculty of Science and Engineering, Limerick, Ireland
| | - David J Duffy
- University of Florida's Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital (St. Augustine), and The University of Florida's Department of Biology in the College of Liberal Arts and Sciences (Gainesville), United States
| |
Collapse
|
11
|
|
12
|
Blackburn NB, Leandro AC, Nahvi N, Devlin MA, Leandro M, Martinez Escobedo I, Peralta JM, George J, Stacy BA, deMaar TW, Blangero J, Keniry M, Curran JE. Transcriptomic Profiling of Fibropapillomatosis in Green Sea Turtles ( Chelonia mydas) From South Texas. Front Immunol 2021; 12:630988. [PMID: 33717164 PMCID: PMC7943941 DOI: 10.3389/fimmu.2021.630988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Sea turtle fibropapillomatosis (FP) is a tumor promoting disease that is one of several threats globally to endangered sea turtle populations. The prevalence of FP is highest in green sea turtle (Chelonia mydas) populations, and historically has shown considerable temporal growth. FP tumors can significantly affect the ability of turtles to forage for food and avoid predation and can grow to debilitating sizes. In the current study, based in South Texas, we have applied transcriptome sequencing to FP tumors and healthy control tissue to study the gene expression profiles of FP. By identifying differentially expressed turtle genes in FP, and matching these genes to their closest human ortholog we draw on the wealth of human based knowledge, specifically human cancer, to identify new insights into the biology of sea turtle FP. We show that several genes aberrantly expressed in FP tumors have known tumor promoting biology in humans, including CTHRC1 and NLRC5, and provide support that disruption of the Wnt signaling pathway is a feature of FP. Further, we profiled the expression of current targets of immune checkpoint inhibitors from human oncology in FP tumors and identified potential candidates for future studies.
Collapse
Affiliation(s)
- Nicholas B. Blackburn
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, United States
| | | | - Marcelo Leandro
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | | | - Juan M. Peralta
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jeff George
- Sea Turtle Inc., South Padre Island, TX, United States
| | - Brian A. Stacy
- National Marine Fisheries Service, Office of Protected Resources, University of Florida, Gainesville, FL, United States
| | | | - John Blangero
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Megan Keniry
- Department of Biology, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Joanne E. Curran
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
- South Texas Diabetes and Obesity Institute, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, TX, United States
| |
Collapse
|
13
|
Yetsko K, Farrell JA, Blackburn NB, Whitmore L, Stammnitz MR, Whilde J, Eastman CB, Ramia DR, Thomas R, Krstic A, Linser P, Creer S, Carvalho G, Devlin MA, Nahvi N, Leandro AC, deMaar TW, Burkhalter B, Murchison EP, Schnitzler C, Duffy DJ. Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors. Commun Biol 2021; 4:152. [PMID: 33526843 PMCID: PMC7851172 DOI: 10.1038/s42003-021-01656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Sea turtle populations are under threat from an epizootic tumor disease (animal epidemic) known as fibropapillomatosis. Fibropapillomatosis continues to spread geographically, with prevalence of the disease also growing at many longer-affected sites globally. However, we do not yet understand the precise environmental, mutational and viral events driving fibropapillomatosis tumor formation and progression.Here we perform transcriptomic and immunohistochemical profiling of five fibropapillomatosis tumor types: external new, established and postsurgical regrowth tumors, and internal lung and kidney tumors. We reveal that internal tumors are molecularly distinct from the more common external tumors. However, they have a small number of conserved potentially therapeutically targetable molecular vulnerabilities in common, such as the MAPK, Wnt, TGFβ and TNF oncogenic signaling pathways. These conserved oncogenic drivers recapitulate remarkably well the core pan-cancer drivers responsible for human cancers. Fibropapillomatosis has been considered benign, but metastatic-related transcriptional signatures are strongly activated in kidney and established external tumors. Tumors in turtles with poor outcomes (died/euthanized) have genes associated with apoptosis and immune function suppressed, with these genes providing putative predictive biomarkers.Together, these results offer an improved understanding of fibropapillomatosis tumorigenesis and provide insights into the origins, inter-tumor relationships, and therapeutic treatment for this wildlife epizootic.
Collapse
Affiliation(s)
- Kelsey Yetsko
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Jessica A Farrell
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Nicholas B Blackburn
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Liam Whitmore
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Maximilian R Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jenny Whilde
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Catherine B Eastman
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Devon Rollinson Ramia
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Rachel Thomas
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Aleksandar Krstic
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Paul Linser
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Nina Nahvi
- Sea Turtle Inc., South Padre Island, TX, USA
| | - Ana Cristina Leandro
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Brooke Burkhalter
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
| | - Elizabeth P Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Christine Schnitzler
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Duffy
- The Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital, University of Florida, St. Augustine, FL, 32080, USA.
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA.
- Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland.
- Systems Biology Ireland & Precision Oncology Ireland, School of Medicine, University College Dublin, Belfield, Dublin, 4, Ireland.
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| |
Collapse
|