1
|
Zhong W, Geng C, Fu Z, Mao C, Zheng Y, Wang S, Liu K, Yang Y, Lu C, Jiang X. Flow Cytometry Sorting for Random Access in DNA Data Storage: Encapsulation for Enhanced Stability and Sequence Integrity of DNA. Anal Chem 2024; 96:16099-16108. [PMID: 39319639 DOI: 10.1021/acs.analchem.4c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
As digital data undergo explosive growth, deoxyribonucleic acid (DNA) has emerged as a promising storage medium due to its high density, longevity, and ease of replication, offering vast potential in data storage solutions. This study focuses on the protection and retrieval of data during the DNA storage process, developing a technique that employs flow cytometry sorting (FCS) to segregate multicolored fluorescent DNA microparticles encoded with data and facilitating efficient random access. Moreover, the encapsulated fluorescent DNA microparticles, formed through layer-by-layer self-assembly, preserve structural and sequence integrity even under harsh conditions while also supporting a high-density DNA payload. Experimental results have shown that the encoded data can still be successfully recovered from encapsulated DNA microparticles following de-encapsulation. We also successfully demonstrated the automated encapsulation process of fluorescent DNA microparticles using a microfluidic chip. This research provides an innovative approach to the long-term stability and random readability of DNA data storage.
Collapse
Affiliation(s)
- Wukun Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunyang Geng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhangcheng Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cuiping Mao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanlin Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Zhang J, Chen M, Lin G, Liu S, Yang C, Song Y. Advanced DNA Amplification for Efficient Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48870-48879. [PMID: 39254000 DOI: 10.1021/acsami.4c12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA amplification technologies have significantly advanced biotechnology, particularly in DNA storage. However, adaptation of these technologies to DNA storage poses substantial challenges. Key bottlenecks include achieving high throughput to manage large data sets, ensuring rapid and efficient DNA amplification, and minimizing bias to maintain data fidelity. This perspective begins with an overview of natural and artificial amplification strategies, such as polymerase chain reaction and isothermal amplification, highlighting their respective advantages and limitations. It then explores the prospective applications of these techniques in DNA storage, emphasizing the need to optimize protocols for scalability and robustness in handling diverse digital data. Concurrently, we identify promising avenues, including advancements in enzymatic processes and novel amplification methodologies, poised to mitigate existing constraints and propel the field forward. Ultimately, we provide insights into how to utilize advanced DNA amplification strategies poised to revolutionize the efficiency and feasibility of data storage, ushering in enhanced approaches to data retrieval in the digital age.
Collapse
Affiliation(s)
- Jialu Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Mingying Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Guihong Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Sinong Liu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yanling Song
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
3
|
Zhou Y, Bi K, Ge Q, Lu Z. Advances and Challenges in Random Access Techniques for In Vitro DNA Data Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43102-43113. [PMID: 39110103 DOI: 10.1021/acsami.4c07235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
With digital transformation and the general application of new technologies, data storage is facing new challenges with the demand for high-density loading of massive information. In response, DNA storage technology has emerged as a promising research direction. Efficient and reliable data retrieval is critical for DNA storage, and the development of random access technology plays a key role in its practicality and reliability. However, achieving fast and accurate random access functions has proven difficult for existing DNA storage efforts, which limits its practical applications in industry. In this review, we summarize the recent advances in DNA storage technology that enable random access functionality, as well as the challenges that need to be overcome and the current solutions. This review aims to help researchers in the field of DNA storage better understand the importance of the random access step and its impact on the overall development of DNA storage. Furthermore, the remaining challenges and future research trends in random access technology of DNA storage are discussed, with the goal of providing a solid foundation for achieving random access in DNA storage under large-scale data conditions.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Kun Bi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Yu M, Tang X, Li Z, Wang W, Wang S, Li M, Yu Q, Xie S, Zuo X, Chen C. High-throughput DNA synthesis for data storage. Chem Soc Rev 2024; 53:4463-4489. [PMID: 38498347 DOI: 10.1039/d3cs00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
With the explosion of digital world, the dramatically increasing data volume is expected to reach 175 ZB (1 ZB = 1012 GB) in 2025. Storing such huge global data would consume tons of resources. Fortunately, it has been found that the deoxyribonucleic acid (DNA) molecule is the most compact and durable information storage medium in the world so far. Its high coding density and long-term preservation properties make itself one of the best data storage carriers for the future. High-throughput DNA synthesis is a key technology for "DNA data storage", which encodes binary data stream (0/1) into quaternary long DNA sequences consisting of four bases (A/G/C/T). In this review, the workflow of DNA data storage and the basic methods of artificial DNA synthesis technology are outlined first. Then, the technical characteristics of different synthesis methods and the state-of-the-art of representative commercial companies, with a primary focus on silicon chip microarray-based synthesis and novel enzymatic DNA synthesis are presented. Finally, the recent status of DNA storage and new opportunities for future development in the field of high-throughput, large-scale DNA synthesis technology are summarized.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaohui Tang
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Zhenhua Li
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Weidong Wang
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Qiuliyang Yu
- Shenzhen Key Laboratory for the Intelligent Microbial Manufacturing of Medicines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Sijia Xie
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Chang Chen
- Institute of Medical Chips, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- School of Microelectronics, Shanghai University, 201800, Shanghai, China
- Shanghai Industrial μTechnology Research Institute, 201800, Shanghai, China
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
| |
Collapse
|
5
|
Cao B, Zheng Y, Shao Q, Liu Z, Xie L, Zhao Y, Wang B, Zhang Q, Wei X. Efficient data reconstruction: The bottleneck of large-scale application of DNA storage. Cell Rep 2024; 43:113699. [PMID: 38517891 DOI: 10.1016/j.celrep.2024.113699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/15/2023] [Accepted: 01/05/2024] [Indexed: 03/24/2024] Open
Abstract
Over the past decade, the rapid development of DNA synthesis and sequencing technologies has enabled preliminary use of DNA molecules for digital data storage, overcoming the capacity and persistence bottlenecks of silicon-based storage media. DNA storage has now been fully accomplished in the laboratory through existing biotechnology, which again demonstrates the viability of carbon-based storage media. However, the high cost and latency of data reconstruction pose challenges that hinder the practical implementation of DNA storage beyond the laboratory. In this article, we review existing advanced DNA storage methods, analyze the characteristics and performance of biotechnological approaches at various stages of data writing and reading, and discuss potential factors influencing DNA storage from the perspective of data reconstruction.
Collapse
Affiliation(s)
- Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China; Centre for Frontier AI Research, Agency for Science, Technology, and Research (A(∗)STAR), 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| | - Qi Shao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Zhenlu Liu
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Lei Xie
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Yunzhu Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Xuefu Street, Dalian, Liaoning 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China.
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Lingshui Street, Dalian, Liaoning 116024, China
| |
Collapse
|
6
|
Huang X, Cui J, Qiang W, Ye J, Wang Y, Xie X, Li Y, Dai J. Storage-D: A user-friendly platform that enables practical and personalized DNA data storage. IMETA 2024; 3:e168. [PMID: 38882485 PMCID: PMC11170965 DOI: 10.1002/imt2.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 06/18/2024]
Abstract
Deoxyribonucleic acid (DNA) has been suggested as a very promising medium for data storage in recent years. Although numerous studies have advocated for DNA data storage, its practical application remains obscure and there is a lack of a user-oriented platform. Here, we developed a DNA data storage platform, named Storage-D, which allows users to convert their data into DNA sequences of any length and vice versa by selecting algorithms, error-correction, random-access, and codec pin strategies in terms of their own choice. It incorporates a newly designed "Wukong" algorithm, which provides over 20 trillion codec pins for data privacy use. This algorithm can also control GC content to the selected standard, as well as adjust the homopolymer run length to a defined level, while maintaining a high coding potential of ~1.98 bis/nt, allowing it to outperform previous algorithms. By connecting to a commercial DNA synthesis and sequencing platform with "Storage-D," we successfully stored "Diagnosis and treatment protocol for COVID-19 patients" into 200 nt oligo pools in vitro, and 500 bp genes in vivo which replicated in both normal and extreme bacteria. Together, this platform allows for practical and personalized DNA data storage, potentially with a wide range of applications.
Collapse
Affiliation(s)
- Xiaoluo Huang
- Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Junting Cui
- Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wei Qiang
- Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Jianwen Ye
- School of Biology and Biological Engineering South China University of Technology Guangzhou China
| | - Yu Wang
- Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Xinying Xie
- School of Biology and Biological Engineering South China University of Technology Guangzhou China
| | - Yuanzhen Li
- Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Junbiao Dai
- Shenzhen Key Laboratory of Synthetic Genomics Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen China
- Shenzhen Branch Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences Shenzhen China
| |
Collapse
|
7
|
Wang S, Mao X, Wang F, Zuo X, Fan C. Data Storage Using DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307499. [PMID: 37800877 DOI: 10.1002/adma.202307499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.
Collapse
Affiliation(s)
- Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Cerdán L, Álvarez B, Fernández LÁ. Massive integration of large gene libraries in the chromosome of Escherichia coli. Microb Biotechnol 2024; 17:e14367. [PMID: 37971317 PMCID: PMC10832519 DOI: 10.1111/1751-7915.14367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Large gene libraries are frequently created in Escherichia coli plasmids, which can induce cell toxicity and expression instability due to the high gene dosage. To address these limitations, gene libraries can be integrated in a single copy into the bacterial chromosome. Here, we describe an efficient system for the massive integration (MAIN) of large gene libraries in the E. coli chromosome that generates in-frame gene fusions that are expressed stably. MAIN uses a thermosensitive integrative plasmid that is linearized in vivo to promote extensive integration of the gene library via homologous recombination. Positive and negative selections efficiently remove bacteria lacking gene integration in the target site. We tested MAIN with a library of 107 VHH genes that encode nanobodies (Nbs). The integration of VHH genes into a custom target locus of the E. coli chromosome enabled stable expression and surface display of the Nbs. Next-generation DNA sequencing confirmed that MAIN preserved the diversity of the gene library after integration. Finally, we screened the integrated library to select Nbs that bind a specific antigen using magnetic and fluorescence-activated cell sorting. This allowed us to identify Nbs binding the epidermal growth factor receptor that were not previously isolated in a similar screening of a multicopy plasmid library. Our results demonstrate that MAIN enables large gene library integration into the E. coli chromosome, creating stably expressed in-frame fusions for functional screening.
Collapse
Affiliation(s)
- Lidia Cerdán
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Beatriz Álvarez
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Luis Ángel Fernández
- Department of Microbial BiotechnologyCentro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| |
Collapse
|
9
|
Yu M, Lim D, Kim J, Song Y. Processing DNA Storage through Programmable Assembly in a Droplet-Based Fluidics System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303197. [PMID: 37755129 PMCID: PMC10646262 DOI: 10.1002/advs.202303197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/11/2023] [Indexed: 09/28/2023]
Abstract
DNA can be used to store digital data, and synthetic short-sequence DNA pools are developed to store high quantities of digital data. However, synthetic DNA data cannot be actively processed in DNA pools. An active DNA data editing process is developed using splint ligation in a droplet-controlled fluidics (DCF) system. DNA fragments of discrete sizes (100-500 bps) are synthesized for droplet assembly, and programmed sequence information exchange occurred. The encoded DNA sequences are processed in series and parallel to synthesize the determined DNA pools, enabling random access using polymerase chain reaction amplification. The sequencing results of the assembled DNA data pools can be orderly aligned for decoding and have high fidelity through address primer scanning. Furthermore, eight 90 bps DNA pools with pixel information (png: 0.27-0.28 kB), encoded by codons, are synthesized to create eight 270 bps DNA pools with an animation movie chip file (mp4: 12 kB) in the DCF system.
Collapse
Affiliation(s)
- Minsang Yu
- Standard Bioelectronics. Co.511 Michuhol Tower, Gaetbeol‐ro 12Incheon21999South Korea
| | - Doyeon Lim
- Department of Nano‐BioengineeringIncheon National UniversityAcademy‐ro 119Incheon22012South Korea
| | - Jungwoo Kim
- Department of Nano‐BioengineeringIncheon National UniversityAcademy‐ro 119Incheon22012South Korea
| | - Youngjun Song
- Standard Bioelectronics. Co.511 Michuhol Tower, Gaetbeol‐ro 12Incheon21999South Korea
- Department of Nano‐BioengineeringIncheon National UniversityAcademy‐ro 119Incheon22012South Korea
| |
Collapse
|
10
|
Buko T, Tuczko N, Ishikawa T. DNA Data Storage. BIOTECH 2023; 12:44. [PMID: 37366792 DOI: 10.3390/biotech12020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The demand for data storage is growing at an unprecedented rate, and current methods are not sufficient to accommodate such rapid growth due to their cost, space requirements, and energy consumption. Therefore, there is a need for a new, long-lasting data storage medium with high capacity, high data density, and high durability against extreme conditions. DNA is one of the most promising next-generation data carriers, with a storage density of 10¹⁹ bits of data per cubic centimeter, and its three-dimensional structure makes it about eight orders of magnitude denser than other storage media. DNA amplification during PCR or replication during cell proliferation enables the quick and inexpensive copying of vast amounts of data. In addition, DNA can possibly endure millions of years if stored in optimal conditions and dehydrated, making it useful for data storage. Numerous space experiments on microorganisms have also proven their extraordinary durability in extreme conditions, which suggests that DNA could be a durable storage medium for data. Despite some remaining challenges, such as the need to refine methods for the fast and error-free synthesis of oligonucleotides, DNA is a promising candidate for future data storage.
Collapse
Affiliation(s)
- Tomasz Buko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Nella Tuczko
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL-02-096 Warsaw, Poland
| |
Collapse
|
11
|
Sun F, Dong Y, Ni M, Ping Z, Sun Y, Ouyang Q, Qian L. Mobile and Self-Sustained Data Storage in an Extremophile Genomic DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206201. [PMID: 36737843 PMCID: PMC10074078 DOI: 10.1002/advs.202206201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
DNA has been pursued as a novel biomaterial for digital data storage. While large-scale data storage and random access have been achieved in DNA oligonucleotide pools, repeated data accessing requires constant data replenishment, and these implementations are confined in professional facilities. Here, a mobile data storage system in the genome of the extremophile Halomonas bluephagenesis, which enables dual-mode storage, dynamic data maintenance, rapid readout, and robust recovery. The system relies on two key components: A versatile genetic toolbox for the integration of 10-100 kb scale synthetic DNA into H. bluephagenesis genome and an efficient error correction coding scheme targeting noisy nanopore sequencing reads. The storage and repeated retrieval of 5 KB data under non-laboratory conditions are demonstrated. The work highlights the potential of DNA data storage in domestic and field scenarios, and expands its application domain from archival data to frequently accessed data.
Collapse
Affiliation(s)
- Fajia Sun
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Yiming Dong
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Ming Ni
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Zhi Ping
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Yuhui Sun
- Academician Workstation of BGI Synthetic GenomicsBGI‐ShenzhenHuada Comprehensive ParkYantian DistrictShenzhen518083P. R. China
| | - Qi Ouyang
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| | - Long Qian
- Center for Quantitative BiologyPeking University5 Yiheyuan Road Haidian DistrictBeijing100871P. R. China
| |
Collapse
|
12
|
Liu J, Liu S, Zou C, Xu S, Zhou C. Research Progress in Construction and Application of Enzyme-Based DNA Logic Gates. IEEE Trans Nanobioscience 2023; 22:245-258. [PMID: 35679378 DOI: 10.1109/tnb.2022.3181615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a research hotspot in the field of information processing, DNA computing exhibits several important underlying characteristics-from parallel computing and low energy consumption to high-performance storage capabilities-thereby enabling its wide application in nanomachines, molecular encryption, biological detection, medical diagnosis, etc. Based on DNA computing, the most rapidly developed field focuses on DNA molecular logic-gates computing. In particular, the recent advances in enzyme-based DNA logic gates has emerged as ideal materials for constructing DNA logic gates. In this review, we explore protein enzymes that can manipulate DNA, especially, nicking enzymes and polymerases with high efficiency and specificity, which are widely used in constructing DNA logic gates, as well as ribozyme that can construct DNA logic gates following various mechanism with distinct biomaterials. Accordingly, the review highlights the characteristics and applications of various types of DNAzyme-based logic gates models, considering their future developments in information, biomedicine, chemistry, and computers.
Collapse
|
13
|
Song L, Geng F, Gong ZY, Chen X, Tang J, Gong C, Zhou L, Xia R, Han MZ, Xu JY, Li BZ, Yuan YJ. Robust data storage in DNA by de Bruijn graph-based de novo strand assembly. Nat Commun 2022; 13:5361. [PMID: 36097016 PMCID: PMC9468002 DOI: 10.1038/s41467-022-33046-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
DNA data storage is a rapidly developing technology with great potential due to its high density, long-term durability, and low maintenance cost. The major technical challenges include various errors, such as strand breaks, rearrangements, and indels that frequently arise during DNA synthesis, amplification, sequencing, and preservation. In this study, a de novo strand assembly algorithm (DBGPS) is developed using de Bruijn graph and greedy path search to meet these challenges. DBGPS shows substantial advantages in handling DNA breaks, rearrangements, and indels. The robustness of DBGPS is demonstrated by accelerated aging, multiple independent data retrievals, deep error-prone PCR, and large-scale simulations. Remarkably, 6.8 MB of data is accurately recovered from a severely corrupted sample that has been treated at 70 °C for 70 days. With DBGPS, we are able to achieve a logical density of 1.30 bits/cycle and a physical density of 295 PB/g.
Collapse
Affiliation(s)
- Lifu Song
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Feng Geng
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong Province, China
| | - Zi-Yi Gong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Chen
- Centor for Applied Mathematics, Tianjin University, Tianjin, 300072, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, 300350, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunye Gong
- National SuperComputer Center in Tianjin, Tianjin, 300457, China
| | - Libang Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Rui Xia
- National SuperComputer Center in Tianjin, Tianjin, 300457, China
| | - Ming-Zhe Han
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing-Yi Xu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Liu Y, Ren Y, Li J, Wang F, Wang F, Ma C, Chen D, Jiang X, Fan C, Zhang H, Liu K. In vivo processing of digital information molecularly with targeted specificity and robust reliability. SCIENCE ADVANCES 2022; 8:eabo7415. [PMID: 35930647 PMCID: PMC9355361 DOI: 10.1126/sciadv.abo7415] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/22/2022] [Indexed: 05/28/2023]
Abstract
DNA has attracted increasing interest as an appealing medium for information storage. However, target-specific rewriting of the digital data stored in intracellular DNA remains a grand challenge because the highly repetitive nature and uneven guanine-cytosine content render the encoded DNA sequences poorly compatible with endogenous ones. In this study, a dual-plasmid system based on gene editing tools was introduced into Escherichia coli to process information accurately. Digital data containing large repeat units in binary codes, such as text, codebook, or image, were involved in the realization of target-specific rewriting in vivo, yielding up to 94% rewriting reliability. An optical reporter was introduced as an advanced tool for presenting data processing at the molecular level. Rewritten information was stored stably and amplified over hundreds of generations. Our work demonstrates a digital-to-biological information processing approach for highly efficient data storage, amplification, and rewriting, thus robustly promoting the application of DNA-based information technology.
Collapse
Affiliation(s)
- Yangyi Liu
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Fei Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Dong Chen
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
15
|
Zhang Y, Ren Y, Liu Y, Wang F, Zhang H, Liu K. Preservation and Encryption in DNA Digital Data Storage. Chempluschem 2022; 87:e202200183. [PMID: 35856827 DOI: 10.1002/cplu.202200183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Indexed: 11/08/2022]
Abstract
The exponential growth of the total amount of global data presents a huge challenge to mainstream storage media. The emergence of molecular digital storage inspires the development of the new-generation higher-density digital data storage. In particular, DNA with high storage density, reproducibility, and long recoverable lifetime behaves the ideal representative of molecular digital storage media. With the development of DNA synthesis and sequencing technologies and the reduction of cost, DNA digital storage has attracted more and more attention and achieved significant breakthroughs. Herein, this Review briefly describes the workflow of DNA storage, and highlights the storage step of DNA digital data storage. Then, according to different information storage forms, the current DNA information encryption methods are emphatically expounded. Finally, the brief perspectives on the current challenges and optimizing proposals in DNA information preservation and encryption are presented.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yubin Ren
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yangyi Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
16
|
Bennet D, Vo‐Dinh T, Zenhausern F. Current and emerging opportunities in biological medium‐based computing and digital data storage. NANO SELECT 2021. [DOI: 10.1002/nano.202100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
| | - Tuan Vo‐Dinh
- Department of Biomedical Engineering Department of Chemistry Fitzpatrick Institute for Photonics Duke University Durham North Carolina USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine College of Medicine Phoenix The University of Arizona Phoenix USA
- Department of Basic Medical Sciences College of Medicine Phoenix The University of Arizona Phoenix Arizona USA
- Department of Biomedical Engineering; and BIO5 Institute College of Engineering The University of Arizona Tucson Arizona USA
- School of Pharmaceutical Sciences University of Geneva Geneva Switzerland
| |
Collapse
|
17
|
Anžel A, Heider D, Hattab G. The visual story of data storage: From storage properties to user interfaces. Comput Struct Biotechnol J 2021; 19:4904-4918. [PMID: 34527195 PMCID: PMC8430386 DOI: 10.1016/j.csbj.2021.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
About fifty times more data has been created than there are stars in the observable universe. Current trends in data creation and consumption mean that the devices and storage media we use will require more physical space. Novel data storage media such as DNA are considered a viable alternative. Yet, the introduction of new storage technologies should be accompanied by an evaluation of user requirements. To assess such needs, we designed and conducted a survey to rank different storage properties adapted for visualization. That is, accessibility, capacity, usage, mutability, lifespan, addressability, and typology. Withal, we reported different storage devices over time while ranking them by their properties. Our results indicated a timeline of three distinct periods: magnetic, optical and electronic, and alternative media. Moreover, by investigating user interfaces across different operating systems, we observed a predominant presence of bar charts and tree maps for the usage of a medium and its file directory hierarchy, respectively. Taken together with the results of our survey, this allowed us to create a customized user interface that includes data visualizations that can be toggled for both user groups: Experts and Public.
Collapse
Affiliation(s)
- Aleksandar Anžel
- University of Marburg, Department of Mathematics and Computer Science, Marburg 35043, Germany
| | - Dominik Heider
- University of Marburg, Department of Mathematics and Computer Science, Marburg 35043, Germany
| | - Georges Hattab
- University of Marburg, Department of Mathematics and Computer Science, Marburg 35043, Germany
| |
Collapse
|
18
|
Song LF, Deng ZH, Gong ZY, Li LL, Li BZ. Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:689797. [PMID: 34239862 PMCID: PMC8258115 DOI: 10.3389/fbioe.2021.689797] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, remarkable progress on phosphoramidite chemistry-based large-scale de novo oligonucleotide synthesis has been achieved, enabling numerous novel and exciting applications. Among them, de novo genome synthesis and DNA data storage are striking. However, to make these two applications more practical, the synthesis length, speed, cost, and throughput require vast improvements, which is a challenge to be met by the phosphoramidite chemistry. Harnessing the power of enzymes, the recently emerged enzymatic methods provide a competitive route to overcome this challenge. In this review, we first summarize the status of large-scale oligonucleotide synthesis technologies including the basic methodology and large-scale synthesis approaches, with special focus on the emerging enzymatic methods. Afterward, we discuss the opportunities and challenges of large-scale oligonucleotide synthesis on de novo genome synthesis and DNA data storage respectively.
Collapse
Affiliation(s)
- Li-Fu Song
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zheng-Hua Deng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zi-Yi Gong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lu-Lu Li
- LC-BIO Technologies Co., Ltd., Hangzhou, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Chen W, Han M, Zhou J, Ge Q, Wang P, Zhang X, Zhu S, Song L, Yuan Y. An artificial chromosome for data storage. Natl Sci Rev 2021; 8:nwab028. [PMID: 34691648 PMCID: PMC8288405 DOI: 10.1093/nsr/nwab028] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
DNA digital storage provides an alternative for information storage with high density and long-term stability. Here, we report the de novo design and synthesis of an artificial chromosome that encodes two pictures and a video clip. The encoding paradigm utilizing the superposition of sparsified error correction codewords and pseudo-random sequences tolerates base insertions/deletions and is well suited to error-prone nanopore sequencing for data retrieval. The entire 254 kb sequence was 95.27% occupied by encoded data. The Transformation-Associated Recombination method was used in the construction of this chromosome from DNA fragments and necessary autonomous replication sequences. The stability was demonstrated by transmitting the data-carrying chromosome to the 100th generation. This study demonstrates a data storage method using encoded artificial chromosomes via in vivo assembly for write-once and stable replication for multiple retrievals, similar to a compact disc, with potential in economically massive data distribution.
Collapse
Affiliation(s)
- Weigang Chen
- School of Microelectronics, Tianjin University, Tianjin 300072, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Mingzhe Han
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianting Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qi Ge
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Panpan Wang
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Xinchen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Siyu Zhu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lifu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|