1
|
Cai Q, Lan H, Yi D, Xian B, Zidan L, Li J, Liao Z. Flow cytometry in acute myeloid leukemia and detection of minimal residual disease. Clin Chim Acta 2025; 564:119945. [PMID: 39209245 DOI: 10.1016/j.cca.2024.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Acute myeloid leukemia (AML) is a common type of acute leukemia (AL), belonging to malignant tumors of the hematopoietic system with the characteristics of rapid disease development, control with extreme difficulties, easy recurrence, poor prognosis, and incidence rate increasing with age. The traditionally diagnostic standard of French American British (FAB), being based on the morphological examination with high human subjectivity, can no longer meet the demand of clinical diagnosis and treatment of AML. Requirements of objective accuracy and low-dose sample, have become the indispensable method for AML diagnosis and monitoring prognosis. Flow cytometry is a modern technology that can quickly and accurately detect the series, antigen distribution, differentiation stage of AML cells, minimal residual lesions after AML therapy, so as to provide the great significance in guiding clinical diagnosis, hierarchical treatment, and prognosis judgement. This article will systematically elaborate on the application of flow cytometry in the diagnosis and classification of AML, and the detection of minimal residual lesions, thereby providing reference significance for dynamic monitoring and prognostic observation of AML with different immune subtypes of FAB.
Collapse
Affiliation(s)
- Qihui Cai
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Haiqiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Deng Yi
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Bojun Xian
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Luo Zidan
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Jianqiao Li
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Zhaohong Liao
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, Guangdong 528000, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Sun G, Song Y, Li C, Sun B, Li C, Sun J, Xiao P, Zhang Z. MTCH2 promotes the malignant progression of ovarian cancer through the upregulation of AIMP2 expression levels, mitochondrial dysfunction and by mediating energy metabolism. Oncol Lett 2024; 28:492. [PMID: 39185493 PMCID: PMC11342418 DOI: 10.3892/ol.2024.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer (OC) is a gynecological malignancy that ranks among the most common female cancers worldwide and notably reduces a patient's quality of life. Mitochondrial carrier homology 2 (MTCH2) is a mitochondrial outer membrane protein that serves a regulatory role in mitochondrial metabolism and cell death. The precise contribution and underlying molecular pathways of MTCH2 in the context of OC development is currently unclear. The present study aimed to investigate the roles of MTCH2 in the energy metabolism, cell proliferation and metastatic potential of OC cells and evaluate the regulatory relationship between MTCH2, aminoacyl transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2) and claudin-3. An analysis of 67 patients with high-grade serous OC demonstrated increased expression levels of MTCH2, AIMP2 and claudin-3 in OC tumor tissue samples compared with in corresponding normal tissues adjacent to OC tissue samples. MTCH2 overexpression was significantly associated with the International Federation of Gynecology and Obstetrics stage and tumor differentiation of the OC tumor samples. In vitro experiments using the SK-OV-3 OC cell line demonstrated that MTCH2 exerts a regulatory effect on the cell proliferation, invasion and migratory capabilities of these cells. Knockdown of MTCH2 reduced ATP production, induced mitochondrial dysfunction and promoted cytoskeleton remodeling and apoptosis in SK-OV-3 OC cells. In addition, MTCH2 knockdown downregulated the expression levels of both claudin-3 and AIMP2 proteins. Knockdown of AIMP2 inhibited the regulatory effect of MTCH2. Co-immunoprecipitation experiments demonstrated that MTCH2 interacts with AIMP2 and claudin-3. The present study provides novel insights into the treatment of OC metastasis, as MTCH2 was demonstrated to serve roles in the progression of OC cells through the regulation of claudin-3 via AIMP2, which could provide novel insights into the treatment of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Guangyu Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yanmin Song
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Congxian Li
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Bo Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Chengcheng Li
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Jinbao Sun
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Ping Xiao
- Department of Gynecology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhengmao Zhang
- Department of Gynecology, The Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
3
|
Zhang J, Xu X, Deng H, Liu L, Xiang Y, Feng J. Overcoming cancer drug-resistance calls for novel strategies targeting abnormal alternative splicing. Pharmacol Ther 2024; 261:108697. [PMID: 39025436 DOI: 10.1016/j.pharmthera.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Abnormal gene alternative splicing (AS) events are strongly associated with cancer progression. Here, we summarize AS events that contribute to the development of drug resistance and classify them into three categories: alternative cis-splicing (ACS), alternative trans-splicing (ATS), and alternative back-splicing (ABS). The regulatory mechanisms underlying AS processes through cis-acting regulatory elements and trans-acting factors are comprehensively described, and the distinct functions of spliced variants, including linear spliced variants derived from ACS, chimeric spliced variants arising from ATS, and circRNAs generated through ABS, are discussed. The identification of dysregulated spliced variants, which contribute to drug resistance and hinder effective cancer treatment, suggests that abnormal AS processes may together serve as a precise regulatory mechanism enabling drug-resistant cancer cell survival or, alternatively, represent an evolutionary pathway for cancer cells to adapt to changes in the external environment. Moreover, this review summarizes recent advancements in treatment approaches targeting AS-associated drug resistance, focusing on cis-acting regulatory elements, trans-acting factors, and specific spliced variants. Collectively, gaining an in-depth understanding of the mechanisms underlying aberrant alternative splicing events and developing strategies to target this process hold great promise for overcoming cancer drug resistance.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Xinyu Xu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Hongwei Deng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yuancai Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou city, Sichuan 646000, China.
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
4
|
Kim HJ, Jeong MS, Jang SB. Identification and structure of AIMP2-DX2 for therapeutic perspectives. BMB Rep 2024; 57:318-323. [PMID: 38835119 PMCID: PMC11289502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-β and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-β. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers. [BMB Reports 2024; 57(7): 318-323].
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Insitute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
5
|
Wang Q, Duan Y, Zan Z, Yang K, Wang J, Jia F, Tan Y, Wang H, Li L. The Study of SRSF1 Regulates Abnormal Alternative Splicing of BCL2L11 and the Role in Refractory Acute Myeloid Leukemia. Chemotherapy 2024; 69:224-236. [PMID: 38763139 DOI: 10.1159/000539414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Abnormalities in splicing factors, such as mutations or deregulated expression, can lead to aberrant splicing of target genes, potentially contributing to the pathogenesis of acute myeloid leukemia (AML). Despite this, the precise mechanism underlying the abnormal alternative splicing (AS) induced by SRSF1, a splicing factor associated with poor AML prognosis, remains elusive. METHODS Using strict splicing criteria, we globally screened for AS events in NPMc-positive and NPMc-negative AML samples from TCGA. An AS network associated with AML prognosis was then established. Functional assays, including CCK-8, flow cytometry, and Western blot, were conducted on K562 and THP-1 cells overexpressing SRSF1. Cell viability following 72-h Omipalisib treatment was also assessed. To explore the mechanism of SRSF1-induced AS, we created a BCL2L11 miniGene with a site-specific mutation at its branch point. The AS patterns of both wild-type and mutant miniGenes were analyzed following SRSF1 overexpression in HEK-293T, along with the subcellular localization of different spliceosomes. RESULTS SRSF1 was significantly associated with AML prognosis. Notably, its expression was markedly upregulated in refractory AML patients compared to those with a favorable chemotherapy response. Overexpression of SRSF1 promoted THP-1 cell proliferation, suppressed apoptosis, and reduced sensitivity to Omipalisib. Mechanistically, SRSF1 recognized an aberrant branch point within the BCL2L11 intron, promoting the inclusion of a cryptic exon 3, which in turn led to apoptosis arrest. CONCLUSION Overexpression of SRSF1 and the resulting abnormal splicing of BCL2L11 are associated with drug resistance and poor prognosis in AML.
Collapse
Affiliation(s)
- Qirong Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yu Duan
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China,
| | - Zhifang Zan
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Kai Yang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Jinjuan Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Fengfeng Jia
- Taiyuan Technology Transfer Promotion Center, Taiyuan, China
| | - Yanhong Tan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Chen X, Dong X, Li H, Wu T, Liu H, Wu J, Ge W, Hao L, Zhang Z. RNA-binding proteins signature is a favorable biomarker of prognosis, immunotherapy and chemotherapy response for cervical cancer. Cancer Cell Int 2024; 24:80. [PMID: 38383371 PMCID: PMC10882920 DOI: 10.1186/s12935-024-03257-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) still present a huge threaten to women's health, especially the local advanced patients. Hence, developing more effectiveness prognostic signatures is urgently needed. This study constructed and verified a robust RNA-binding proteins (RBPs) related signature through a series of bioinformatics methods and explored the biological function of hub RBP in vitro experiments. As a result, the 10 RBPs signature was successfully established and could act as an independent prognostic biomarker in CESC patients, which displayed the highest sensitivity and specificity in prognosis prediction compared with other clinicopathological parameters. The risk model also presented good performance in risk stratification among CESC patients. Besides, a nomogram was constructed based on pathological stage and the risk signature and exhibited satisfactory accuracy in prognosis prediction. Functional enrichment indicated that the risk signature mainly participated in immune-related pathways and cancer-related pathways, and the infiltration level of immune cells and immune checkpoints showed a significantly higher degree in low-risk patients compared with high-risk patients. Notably, the 10 RBPs signature act as a novel biomarker in immunotherapy and chemotherapy response. In addition, PRPF40B was selected as hub RBP and its transcription and translation levels were obviously increased in CESC tissues, as well as Hela and Siha cells. Knockdown of PRPF40B inhibits the proliferation, migration and invasion of Hela and Siha cells in vitro. In conclusion, our research provides a noticeable strategy in prognostic prediction among CESC patients, which may illuminate the prospect of CESC patients' clinical outcome.
Collapse
Affiliation(s)
- Xiaomei Chen
- Nursing Department, Medical Centre Hospital of Qionglai City, Qionglai, 611530, Sichuan, China
| | - Xunhu Dong
- Institute of Toxicology, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hong Li
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tingting Wu
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Haoyin Liu
- Institute of Toxicology, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jie Wu
- Institute of Toxicology, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Wei Ge
- Institute of Toxicology, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lingji Hao
- Department of Obstetrics and Gynecology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhe Zhang
- Institute of Toxicology, School of Military Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
7
|
Qiu J, Zhou T, Wang D, Hong W, Qian D, Meng X, Liu X. Pan-cancer Analysis Identifies AIMP2 as a Potential Biomarker for Breast Cancer. Curr Genomics 2023; 24:307-329. [PMID: 38235352 PMCID: PMC10790333 DOI: 10.2174/0113892029255941231014142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Aminoacyl tRNA synthetase complex interacting with multifunctional protein 2 (AIMP2) is a significant regulator of cell proliferation and apoptosis. Despite its abnormal expression in various tumor types, the specific functions and effects of AIMP2 on tumor immune cell infiltration, proliferation, and migration remain unclear. Materials and Methods To assess AIMP2's role in tumor immunity, we conducted a pan-cancer multi-database analysis using the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Lines Encyclopedia (CCLE) datasets, examining expression levels, prognosis, tumor progression, and immune microenvironment. Additionally, we investigated AIMP2's impact on breast cancer (BRCA) proliferation and migration using cell counting kit 8 (CCK-8) assay, transwell assays, and western blot analysis. Results Our findings revealed that AIMP2 was overexpressed in 24 tumor tissue types compared to normal tissue and was associated with four tumor stages. Survival analysis indicated that AIMP2 expression was strongly correlated with overall survival (OS) in certain cancer patients, with high AIMP2 expression linked to poorer prognosis in five cancer types. Conclusion Finally, siRNA-mediated AIMP2 knockdown inhibited BRCA cell proliferation and migration in vitro. In conclusion, our pan-cancer analysis suggests that AIMP2 may play a crucial role in tumor immunity and could serve as a potential prognostic marker, particularly in BRCA.
Collapse
Affiliation(s)
- Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing 312000, Zhejiang, China
| | - Tao Zhou
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Danhong Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Weimin Hong
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu 215500, Jiangsu Province, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| | - Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
8
|
Antibacterial and Antibiofilm Potency of Menadione Against Multidrug-Resistant S. aureus. Curr Microbiol 2022; 79:282. [PMID: 35934752 DOI: 10.1007/s00284-022-02975-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 11/03/2022]
Abstract
Menadione is an analogue of 1,4-naphthoquinone (1,4-NQ) that possesses enormous pharmaceutical potential. The minimum inhibitory concentration (MIC) of menadione was determined against eighteen pathogens of the ESKAPE category, including thirteen multidrug-resistant (MDR) and five standard strains. From a total of eighteen pathogens, five strains of S. aureus (four: MDR and one: Standard strain) were considered further for detailed studies. This study included the determination of minimum bactericidal concentration (MBC), time-kill assay, scanning electron microscopic technique (SEM), and detection of reactive oxygen species (ROS). Additionally, the effect of menadione on biofilms of three strains of S. aureus was performed through crystal violet assay, SEM, and confocal laser scanning microscopy (CLSM). Menadione exerted substantial antibacterial activity against S. aureus (S8, S9, NCIM 5021) at a lower MIC (64 µg/mL). Whereas, the MIC of 256 µg/mL was displayed against J2 and J4 (MDR and biofilm-forming strains). The time-killing effect of menadione against S. aureus strains was observed after 9 h at MBCs of 64 µg/mL (NCIM 5021), 128 µg/mL (S8, S9), and 512 µg/mL (J2, J4). Enhanced levels of ROS in all five S. aureus were observed in presence of menadione (MICs and MBCs). The relation of enhanced ROS due to menadione activity invigorated us to explore its effect on S. aureus biofilms. We report menadione-mediated inhibition (> 90%) of biofilm formation (at respective MICs) and effect on preformed biofilms (> 85%) at 1024 µg/mL. Menadione possessing antibacterial and antibiofilm potentials are imperative in the era of multidrug resistance developed by bacterial pathogens.
Collapse
|
9
|
Araújo NJS, Macêdo MJF, de Morais LP, da Cunha FAB, de Matos YMLS, de Almeida RS, Braga MFBM, Coutinho HDM. Control of arboviruses vectors using biological control by Wolbachia pipientis: a short review. Arch Microbiol 2022; 204:376. [PMID: 35678877 DOI: 10.1007/s00203-022-02983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The number of arbovirus cases has increased in recent years, demonstrating a need for investing in effective control actions. Among these actions, are strategies using biological control vectors, a field where Wolbachia pipientis has shown itself as useful. Wolbachia pipientis, an obligatory intracellular Gram-negative bacteria, which parasites arthropods naturally or through laboratory-induced infections, is capable of manipulating the reproduction of its host. A systematic literature review gathering studies on this bacteria over last 10 years (2007-2021) was performed given its important role in the reduction of insect disease vectors. 111 articles were found, from which 78 were used in this study. Information on the Wolbachia biology, mechanism of action and potential for the biological control of insect disease vectors was gathered. The present study may contribute to the knowledge surrounding the bacterium, as well as stimulate the production of other studies with the same theme.
Collapse
Affiliation(s)
- Nara Juliana Santos Araújo
- Programa de Residência em Saúde Coletiva, Universidade Regional de Cariri-URCA, Regional University of Cariri, Crato, Ceará, 63105-000, Brazil
| | - Márcia Jordana Ferreira Macêdo
- Programa de Residência em Saúde Coletiva, Universidade Regional de Cariri-URCA, Regional University of Cariri, Crato, Ceará, 63105-000, Brazil
| | - Luís Pereira de Morais
- Programa de Residência em Saúde Coletiva, Universidade Regional de Cariri-URCA, Regional University of Cariri, Crato, Ceará, 63105-000, Brazil
| | - Francisco Assis Bezerra da Cunha
- Programa de Residência em Saúde Coletiva, Universidade Regional de Cariri-URCA, Regional University of Cariri, Crato, Ceará, 63105-000, Brazil.,Laboratório de Bioprospecção do Semiárido, Universidade Regional de Cariri-URCA, Crato, Ceará, Brazil
| | | | - Ray Silva de Almeida
- Laboratório de Microbiologia e Biologia Molecular, Universidade Regional de Cariri-URCA, Crato, Ceará, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Programa de Residência em Saúde Coletiva, Universidade Regional de Cariri-URCA, Regional University of Cariri, Crato, Ceará, 63105-000, Brazil. .,Laboratório de Microbiologia e Biologia Molecular, Universidade Regional de Cariri-URCA, Crato, Ceará, Brazil.
| |
Collapse
|
10
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
11
|
Zhang X, Zhou W, Zhang Y, Liu Z. CBX3 is a Prognostic Biomarker Correlated with ATR Activation and Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Int J Gen Med 2022; 15:1497-1508. [PMID: 35210823 PMCID: PMC8857981 DOI: 10.2147/ijgm.s344390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Chromobox protein homolog (CBX) family members play important roles in the progression and prognosis of many cancers. However, their functional role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. METHODS In this study, we analyzed the expression and functions of CBX family members using The Cancer Genome Atlas data. Most CBX family members were found to be differentially expressed in various tumors, including HNSCC, compared to normal tissues. Multivariate Cox regression analysis showed that CBX3 expression is an independent prognostic factor for HNSCC patients. A nomogram based on CBX3 expression was constructed for use as a diagnostic indicator for HNSCC patients. We also used qPCR to validate the expression of CBX3. RESULTS Gene set enrichment analysis suggested that CBX3 participates in ataxia-telangiectasia mutated and Rad3-related protein kinase (ATR) activation and tumor progression. Analysis of immune infiltration indicated that CBX3 expression is negatively correlated with mast cells, DCs, immature DCs, and neutrophils. CONCLUSION Our findings show that high CBX3 expression predicts poor prognosis in HNSCC and that CBX3 may act as an oncoprotein by activating ATR and affecting immune infiltration.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Yu Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| | - Zheqi Liu
- Department of Oral and Maxillofacial & Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People’s Republic of China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, People’s Republic of China
| |
Collapse
|
12
|
Panahi R, Ebrahimie E, Niazi A, Afsharifar A. Integration of meta-analysis and supervised machine learning for pattern recognition in breast cancer using epigenetic data. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|