1
|
Alvarez MM, Cantoral-Sánchez A, Trujillo-de Santiago G. Chaotic (bio)printing in the context of drug delivery systems. Adv Drug Deliv Rev 2025; 216:115475. [PMID: 39561907 DOI: 10.1016/j.addr.2024.115475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Chaotic (bio)printing, an innovative fabrication technique that uses chaotic flows to create highly ordered microstructures within materials, may be transformative for drug delivery systems. This review explores the principles underlying chaotic flows and their application in fabricating complex, multi-material constructs designed for advanced drug delivery and controlled release. Chaotic printing enables the precise layering of different active ingredients-a feature that may greatly facilitate the development of polypills with customizable release profiles. Recently, chaos-assisted fabrication has been extended to produce micro-architected hydrogel spheres in a high-throughput manner, potentially enhancing the versatility and efficiency of drug delivery methods. In addition, chaotic bioprinting enables the creation of evolved tissue models that more accurately emulate physiological systems, providing a more relevant platform for drug testing. This review also highlights the unique advantages of chaotic printing, including the ability to fabricate tissues with organized porosity and pre-vascularized structures, addressing critical challenges in tissue engineering. Despite its promising capabilities, challenges remain, particularly in expanding the range of materials compatible with chaotic printing. Continued research and development in this area are essential to fully realize the potential of chaotic (bio)printing in advancing drug delivery, paving the way for the next generation of smart drug delivery systems and functional tissue models for drug testing.
Collapse
Affiliation(s)
- Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico.
| | - Ariel Cantoral-Sánchez
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico; Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL 64849, Mexico.
| |
Collapse
|
2
|
Bottura B, Rooney L, Feeney M, Hoskisson PA, McConnell G. Quantifying the fractal complexity of nutrient transport channels in Escherichia coli biofilms under varying cell shape and growth environment. MICROBIOLOGY (READING, ENGLAND) 2024; 170. [PMID: 39499556 DOI: 10.1099/mic.0.001511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Recent mesoscopic characterization of nutrient-transporting channels in Escherichia coli has allowed the identification and measurement of individual channels in whole mature colony biofilms. However, their complexity under different physiological and environmental conditions remains unknown. Analysis of confocal micrographs of colony biofilms formed by cell shape mutants of E. coli shows that channels have high fractal complexity, regardless of cell phenotype or growth medium. In particular, colony biofilms formed by the mutant strain ΔompR, which has a wide-cell phenotype, have a higher fractal dimension when grown on rich medium than when grown on minimal medium, with channel complexity affected by glucose and agar concentrations in the medium. Osmotic stress leads to a dramatic reduction in the ΔompR cell size but has a limited effect on channel morphology. This work shows that fractal image analysis is a powerful tool to quantify the effect of phenotypic mutations and growth environment on the morphological complexity of internal E. coli biofilm structures. If applied to a wider range of mutant strains, this approach could help elucidate the genetic determinants of channel formation in E. coli colony biofilms.
Collapse
Affiliation(s)
- Beatrice Bottura
- Department of Physics, SUPA, University of Strathclyde, G4 0NG, Glasgow, UK
- Present address: Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, G61 1BD, Glasgow, UK
| | - Liam Rooney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| | - Morgan Feeney
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| | - Gail McConnell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| |
Collapse
|
3
|
Miguel Trabajo T, Guex I, Dubey M, Sarton-Lohéac E, Todorov H, Richard X, Mazza C, van der Meer JR. Inferring bacterial interspecific interactions from microcolony growth expansion. MICROLIFE 2024; 5:uqae020. [PMID: 39524022 PMCID: PMC11549556 DOI: 10.1093/femsml/uqae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Bacterial species interactions significantly shape growth and behavior in communities, determining the emergence of community functions. Typically, these interactions are studied through bulk population measurements, overlooking the role of cell-to-cell variability and spatial context. This study uses real-time surface growth measurements of thousands of sparsely positioned microcolonies to investigate interactions and kinetic variations in monocultures and cocultures of Pseudomonas putida and P. veronii under substrate competition (succinate) or substrate independence (d-mannitol and putrescine). In monoculture, microcolonies exhibited expected substrate-dependent expansion rates, but individual colony sizes were affected by founder cell density, spatial positioning, growth rates, and lag times. In coculture, substrate competition favored P. putida, but unexpectedly, reduced the maximum growth rates of both species. In contrast, 10% of P. veronii microcolonies under competition grew larger than expected, likely due to founder cell phenotypic variation and stochastic spatial positioning. These effects were alleviated under substrate independence. A linear relationship between founder cell ratios and final colony area ratios in local neighborhoods (6.5-65 µm radius) was observed in coculture, with its slope reflecting interaction type and strength. Measured slopes in the P. putida to P. veronii biomass ratio under competition were one-third reduced compared to kinetic predictions using a cell-agent growth model, which exometabolite analysis and simulations suggested may be due to metabolite cross-feeding or inhibitory compound production. This indicates additional factors beyond inherent monoculture growth kinetics driving spatial interactions. Overall, the study demonstrates how microcolony growth experiments offer valuable insights into bacterial interactions, from local to community-level dynamics.
Collapse
Affiliation(s)
- Tania Miguel Trabajo
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Isaline Guex
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Elvire Sarton-Lohéac
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Helena Todorov
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | - Xavier Richard
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Batiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Ma Y, Kan A, Johnson DR. Metabolic interactions control the transfer and spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth. Cell Rep 2024; 43:114653. [PMID: 39213158 DOI: 10.1016/j.celrep.2024.114653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Surface-associated microbial systems are hotspots for the spread of plasmid-encoded antibiotic resistance, but how surface association affects plasmid transfer and proliferation remains unclear. Surface association enables prolonged spatial proximities between different populations, which promotes plasmid transfer between them. However, surface association also fosters strong metabolic interactions between different populations, which can direct their spatial self-organization with consequences for plasmid transfer and proliferation. Here, we hypothesize that metabolic interactions direct the spatial self-organization of different populations and, in turn, regulate the spread of plasmid-encoded antibiotic resistance. We show that resource competition causes populations to spatially segregate, which represses plasmid transfer. In contrast, resource cross-feeding causes populations to spatially intermix, which promotes plasmid transfer. We further show that the spatial positionings that emerge from metabolic interactions determine the proliferation of plasmid recipients. Our results demonstrate that metabolic interactions are important regulators of both the transfer and proliferation of plasmid-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Yinyin Ma
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland.
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), 8093 Zürich, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
5
|
Nuñez JG, Paulose J, Möbius W, Beller DA. Range expansions across landscapes with quenched noise. Proc Natl Acad Sci U S A 2024; 121:e2411487121. [PMID: 39136984 PMCID: PMC11348022 DOI: 10.1073/pnas.2411487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.
Collapse
Affiliation(s)
- Jimmy Gonzalez Nuñez
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Jayson Paulose
- Department of Physics, Institute for Fundamental Science, University of Oregon, Eugene, OR97403
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, ExeterEX4 4QH, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QL, United Kingdom
| | - Daniel A. Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
6
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
7
|
Ruan C, Ramoneda J, Kan A, Rudge TJ, Wang G, Johnson DR. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance. Nat Commun 2024; 15:5397. [PMID: 38926498 PMCID: PMC11208555 DOI: 10.1038/s41467-024-49840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Phage predation is generally assumed to reduce microbial proliferation while not contributing to the spread of antibiotic resistance. However, this assumption does not consider the effect of phage predation on the spatial organization of different microbial populations. Here, we show that phage predation can increase the spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth by reshaping spatial organization. Using two strains of the bacterium Escherichia coli, we demonstrate that phage predation slows the spatial segregation of the strains during growth. This increases the number of cell-cell contacts and the extent of conjugation-mediated plasmid transfer between them. The underlying mechanism is that phage predation shifts the location of fastest growth from the biomass periphery to the interior where cells are densely packed and aligned closer to parallel with each other. This creates straighter interfaces between the strains that are less likely to merge together during growth, consequently slowing the spatial segregation of the strains and enhancing plasmid transfer between them. Our results have implications for the design and application of phage therapy and reveal a mechanism for how microbial functions that are deleterious to human and environmental health can proliferate in the absence of positive selection.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Josep Ramoneda
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Timothy J Rudge
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
- National Black Soil & Agriculture Research, China Agricultural University, Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Postek W, Staśkiewicz K, Lilja E, Wacław B. Substrate geometry affects population dynamics in a bacterial biofilm. Proc Natl Acad Sci U S A 2024; 121:e2315361121. [PMID: 38621130 PMCID: PMC11047097 DOI: 10.1073/pnas.2315361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/11/2024] [Indexed: 04/17/2024] Open
Abstract
Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.
Collapse
Affiliation(s)
- Witold Postek
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Klaudia Staśkiewicz
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Elin Lilja
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
| | - Bartłomiej Wacław
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warszawa01-224, Poland
- School of Physics and Astronomy, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| |
Collapse
|
9
|
García Vázquez A, Mitarai N, Jauffred L. Genetic mixing and demixing on expanding spherical frontiers. ISME COMMUNICATIONS 2024; 4:ycae009. [PMID: 38524760 PMCID: PMC10958774 DOI: 10.1093/ismeco/ycae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Genetic fluctuation during range expansion is a key process driving evolution. When a bacterial population is expanding on a 2D surface, random fluctuations in the growth of the pioneers at the front line cause a strong demixing of genotypes. Even when there is no selective advantage, sectors of low genetic diversity are formed. Experimental studies of range expansions in surface-attached colonies of fluorescently labelled micro-organisms have contributed significantly to our understanding of fundamental evolutionary dynamics. However, experimental studies on genetic fluctuations in 3D range expansions have been sparse, despite their importance for tumour or biofilm development. We encapsulated populations of two fluorescent Escherichia coli strains in inoculation droplets (volumes [Formula: see text] nl). The confined ensemble of cells grew when embedded in a hydrogel-with nutrients-and developed 3D colonies with well-defined, sector-like regions. Using confocal laser scanning microscopy, we imaged the development of 3D colonies and the emergence of sectors. We characterized how cell concentration in the inoculation droplet controls sectors, growth rate, and the transition from branched colonies to quasi-spherical colonies. We further analysed how sectors on the surface change over time. We complement these experimental results with a modified 3D Eden growth model. The model in 3D spherical growth predicts a phase, where sectors are merging, followed by a steady increase (constant rate), and the experimentally analysed sectors were consistent with this prediction. Therefore, our results demonstrate qualitative differences between radial (2D) and spherical (3D) range expansions and their importance in gene fixation processes.
Collapse
Affiliation(s)
- Alba García Vázquez
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| | - Liselotte Jauffred
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
| |
Collapse
|
10
|
Chakraborty PP, Nemzer LR, Kassen R. Experimental evidence that network topology can accelerate the spread of beneficial mutations. Evol Lett 2023; 7:447-456. [PMID: 38045727 PMCID: PMC10693003 DOI: 10.1093/evlett/qrad047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 12/05/2023] Open
Abstract
Whether and how the spatial arrangement of a population influences adaptive evolution has puzzled evolutionary biologists. Theoretical models make conflicting predictions about the probability that a beneficial mutation will become fixed in a population for certain topologies like stars, in which "leaf" populations are connected through a central "hub." To date, these predictions have not been evaluated under realistic experimental conditions. Here, we test the prediction that topology can change the dynamics of fixation both in vitro and in silico by tracking the frequency of a beneficial mutant under positive selection as it spreads through networks of different topologies. Our results provide empirical support that meta-population topology can increase the likelihood that a beneficial mutation spreads, broaden the conditions under which this phenomenon is thought to occur, and points the way toward using network topology to amplify the effects of weakly favored mutations under directed evolution in industrial applications.
Collapse
Affiliation(s)
| | - Louis R Nemzer
- Department of Chemistry and Physics, Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Ruan C, Borer B, Ramoneda J, Wang G, Johnson DR. Evaporation-induced hydrodynamics control plasmid transfer during surface-associated microbial growth. NPJ Biofilms Microbiomes 2023; 9:58. [PMID: 37608025 PMCID: PMC10444754 DOI: 10.1038/s41522-023-00428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023] Open
Abstract
Droplet evaporation is a general process in unsaturated environments that results in micro-scale hydrodynamic flows which in turn determine the spatial distributions of microbial cells across surfaces. These spatial distributions can have significant effects on the development and functioning of surface-associated microbial communities, with consequences for important processes such as the spread of plasmids. Here, we experimentally quantified how evaporation-induced hydrodynamic processes modulate the initial deposition patterns of microbial cells (via the coffee ring effect and Marangoni convection) and how these patterns control the spread of an antibiotic resistance-encoding plasmid during surface-associated growth. We found that plasmid spread is a function of the initial density of cells deposited along the droplet periphery, which is a manifestation of the coffee ring effect. Using an individual-based model, we systematically linked how the different initial cell deposition patterns caused by the relative strengths of the coffee ring effect and Marangoni convection determine the extent of plasmid transfer during surface-associated growth. Our study demonstrates that evaporation-induced hydrodynamic processes that are common in nature can alter crucial ecological properties of surface-associated microbial communities and control the proliferation of plasmids, with consequences on the spread of antibiotic resistance and other plasmid-encoded traits.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Benedict Borer
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Josep Ramoneda
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
- National Black Soil & Agriculture Research, China Agricultural University, Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Guex I, Mazza C, Dubey M, Batsch M, Li R, van der Meer JR. Regulated bacterial interaction networks: A mathematical framework to describe competitive growth under inclusion of metabolite cross-feeding. PLoS Comput Biol 2023; 19:e1011402. [PMID: 37603551 PMCID: PMC10470959 DOI: 10.1371/journal.pcbi.1011402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/31/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
When bacterial species with the same resource preferences share the same growth environment, it is commonly believed that direct competition will arise. A large variety of competition and more general 'interaction' models have been formulated, but what is currently lacking are models that link monoculture growth kinetics and community growth under inclusion of emerging biological interactions, such as metabolite cross-feeding. In order to understand and mathematically describe the nature of potential cross-feeding interactions, we design experiments where two bacterial species Pseudomonas putida and Pseudomonas veronii grow in liquid medium either in mono- or as co-culture in a resource-limited environment. We measure population growth under single substrate competition or with double species-specific substrates (substrate 'indifference'), and starting from varying cell ratios of either species. Using experimental data as input, we first consider a mean-field model of resource-based competition, which captures well the empirically observed growth rates for monocultures, but fails to correctly predict growth rates in co-culture mixtures, in particular for skewed starting species ratios. Based on this, we extend the model by cross-feeding interactions where the consumption of substrate by one consumer produces metabolites that in turn are resources for the other consumer, thus leading to positive feedback in the species system. Two different cross-feeding options were considered, which either lead to constant metabolite cross-feeding, or to a regulated form, where metabolite utilization is activated with rates according to either a threshold or a Hill function, dependent on metabolite concentration. Both mathematical proof and experimental data indicate regulated cross-feeding to be the preferred model to constant metabolite utilization, with best co-culture growth predictions in case of high Hill coefficients, close to binary (on/off) activation states. This suggests that species use the appearing metabolite concentrations only when they are becoming high enough; possibly as a consequence of their lower energetic content than the primary substrate. Metabolite sharing was particularly relevant at unbalanced starting cell ratios, causing the minority partner to proliferate more than expected from the competitive substrate because of metabolite release from the majority partner. This effect thus likely quells immediate substrate competition and may be important in natural communities with typical very skewed relative taxa abundances and slower-growing taxa. In conclusion, the regulated bacterial interaction network correctly describes species substrate growth reactions in mixtures with few kinetic parameters that can be obtained from monoculture growth experiments.
Collapse
Affiliation(s)
- Isaline Guex
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Christian Mazza
- Department of Mathematics, University of Fribourg, Fribourg, Switzerland
| | - Manupriyam Dubey
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Maxime Batsch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Renyi Li
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
13
|
Cremin K, Duxbury SJN, Rosko J, Soyer OS. Formation and emergent dynamics of spatially organized microbial systems. Interface Focus 2023; 13:20220062. [PMID: 36789239 PMCID: PMC9912014 DOI: 10.1098/rsfs.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 02/12/2023] Open
Abstract
Spatial organization is the norm rather than the exception in the microbial world. While the study of microbial physiology has been dominated by studies in well-mixed cultures, there is now increasing interest in understanding the role of spatial organization in microbial physiology, coexistence and evolution. Where studied, spatial organization has been shown to influence all three of these aspects. In this mini review and perspective article, we emphasize that the dynamics within spatially organized microbial systems (SOMS) are governed by feedbacks between local physico-chemical conditions, cell physiology and movement, and evolution. These feedbacks can give rise to emergent dynamics, which need to be studied through a combination of spatio-temporal measurements and mathematical models. We highlight the initial formation of SOMS and their emergent dynamics as two open areas of investigation for future studies. These studies will benefit from the development of model systems that can mimic natural ones in terms of species composition and spatial structure.
Collapse
Affiliation(s)
- Kelsey Cremin
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Jerko Rosko
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
14
|
Wilbert SA, Newman DK. The contrasting roles of nitric oxide drive microbial community organization as a function of oxygen presence. Curr Biol 2022; 32:5221-5234.e4. [PMID: 36306787 PMCID: PMC9772256 DOI: 10.1016/j.cub.2022.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 12/23/2022]
Abstract
Microbial assemblages are omnipresent in the biosphere, forming communities on the surfaces of roots and rocks and within living tissues. These communities can exhibit strikingly beautiful compositional structures, with certain members reproducibly occupying particular spatiotemporal microniches. Despite this reproducibility, we lack the ability to explain these spatial patterns. We hypothesize that certain spatial patterns in microbial communities may be explained by the exchange of redox-active metabolites whose biological function is sensitive to microenvironmental gradients. To test this, we developed a simple community consisting of synthetic Pseudomonas aeruginosa strains with a partitioned denitrification pathway: a strict consumer and strict producer of nitric oxide (NO), a key pathway intermediate. Because NO can be both toxic or beneficial depending on the amount of oxygen present, this system provided an opportunity to investigate whether dynamic oxygen gradients can tune metabolic cross-feeding and fitness outcomes in a predictable fashion. Using a combination of genetic analysis, controlled growth environments, and imaging, we show that oxygen availability dictates whether NO cross-feeding is deleterious or mutually beneficial and that this organizing principle maps to the microscale. More generally, this work underscores the importance of considering the double-edged and microenvironmentally tuned roles redox-active metabolites can play in shaping microbial communities.
Collapse
Affiliation(s)
- Steven A Wilbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
15
|
Martinez-Rabert E, van Amstel C, Smith C, Sloan WT, Gonzalez-Cabaleiro R. Environmental and ecological controls of the spatial distribution of microbial populations in aggregates. PLoS Comput Biol 2022; 18:e1010807. [PMID: 36534694 PMCID: PMC9810174 DOI: 10.1371/journal.pcbi.1010807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/03/2023] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
In microbial communities, the ecological interactions between species of different populations are responsible for the spatial distributions observed in aggregates (granules, biofilms or flocs). To explore the underlying mechanisms that control these processes, we have developed a mathematical modelling framework able to describe, label and quantify defined spatial structures that arise from microbial and environmental interactions in communities. An artificial system of three populations collaborating or competing in an aggregate is simulated using individual-based modelling under different environmental conditions. In this study, neutralism, competition, commensalism and concurrence of commensalism and competition have been considered. We were able to identify interspecific segregation of communities that appears in competitive environments (columned stratification), and a layered distribution of populations that emerges in commensal (layered stratification). When different ecological interactions were considered in the same aggregate, the resultant spatial distribution was identified as the one controlled by the most limiting substrate. A theoretical modulus was defined, with which we were able to quantify the effect of environmental conditions and ecological interactions to predict the most probable spatial distribution. The specific microbial patterns observed in our results allowed us to identify the optimal spatial organizations for bacteria to thrive when building a microbial community and how this permitted co-existence of populations at different growth rates. Our model reveals that although ecological relationships between different species dictate the distribution of bacteria, the environment controls the final spatial distribution of the community.
Collapse
Affiliation(s)
- Eloi Martinez-Rabert
- James Watt School of Engineering, Infrastructure and Environment Research Division, University of Glasgow, Advanced Research Centre, Glasgow, United Kingdom
- * E-mail:
| | - Chiel van Amstel
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Cindy Smith
- James Watt School of Engineering, Infrastructure and Environment Research Division, University of Glasgow, Advanced Research Centre, Glasgow, United Kingdom
| | - William T. Sloan
- James Watt School of Engineering, Infrastructure and Environment Research Division, University of Glasgow, Advanced Research Centre, Glasgow, United Kingdom
| | | |
Collapse
|
16
|
Eigentler L, Davidson FA, Stanley-Wall NR. Mechanisms driving spatial distribution of residents in colony biofilms: an interdisciplinary perspective. Open Biol 2022; 12:220194. [PMID: 36514980 PMCID: PMC9748781 DOI: 10.1098/rsob.220194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biofilms are consortia of microorganisms that form collectives through the excretion of extracellular matrix compounds. The importance of biofilms in biological, industrial and medical settings has long been recognized due to their emergent properties and impact on surrounding environments. In laboratory situations, one commonly used approach to study biofilm formation mechanisms is the colony biofilm assay, in which cell communities grow on solid-gas interfaces on agar plates after the deposition of a population of founder cells. The residents of a colony biofilm can self-organize to form intricate spatial distributions. The assay is ideally suited to coupling with mathematical modelling due to the ability to extract a wide range of metrics. In this review, we highlight how interdisciplinary approaches have provided deep insights into mechanisms causing the emergence of these spatial distributions from well-mixed inocula.
Collapse
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Fordyce A. Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Nicola R. Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
Gutiérrez Mena J, Kumar S, Khammash M. Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback. Nat Commun 2022; 13:4808. [PMID: 35973993 PMCID: PMC9381578 DOI: 10.1038/s41467-022-32392-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/29/2022] [Indexed: 12/19/2022] Open
Abstract
Communities of microbes play important roles in natural environments and hold great potential for deploying division-of-labor strategies in synthetic biology and bioproduction. However, the difficulty of controlling the composition of microbial consortia over time hinders their optimal use in many applications. Here, we present a fully automated, high-throughput platform that combines real-time measurements and computer-controlled optogenetic modulation of bacterial growth to implement precise and robust compositional control of a two-strain E. coli community. In addition, we develop a general framework for dynamic modeling of synthetic genetic circuits in the physiological context of E. coli and use a host-aware model to determine the optimal control parameters of our closed-loop compositional control system. Our platform succeeds in stabilizing the strain ratio of multiple parallel co-cultures at arbitrary levels and in changing these targets over time, opening the door for the implementation of dynamic compositional programs in synthetic bacterial communities.
Collapse
Affiliation(s)
- Joaquín Gutiérrez Mena
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
18
|
Spatial patterns in ecological systems: from microbial colonies to landscapes. Emerg Top Life Sci 2022; 6:245-258. [PMID: 35678374 DOI: 10.1042/etls20210282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
Self-organized spatial patterns are ubiquitous in ecological systems and allow populations to adopt non-trivial spatial distributions starting from disordered configurations. These patterns form due to diverse nonlinear interactions among organisms and between organisms and their environment, and lead to the emergence of new (eco)system-level properties unique to self-organized systems. Such pattern consequences include higher resilience and resistance to environmental changes, abrupt ecosystem collapse, hysteresis loops, and reversal of competitive exclusion. Here, we review ecological systems exhibiting self-organized patterns. We establish two broad pattern categories depending on whether the self-organizing process is primarily driven by nonlinear density-dependent demographic rates or by nonlinear density-dependent movement. Using this organization, we examine a wide range of observational scales, from microbial colonies to whole ecosystems, and discuss the mechanisms hypothesized to underlie observed patterns and their system-level consequences. For each example, we review both the empirical evidence and the existing theoretical frameworks developed to identify the causes and consequences of patterning. Finally, we trace qualitative similarities across systems and propose possible ways of developing a more quantitative understanding of how self-organization operates across systems and observational scales in ecology.
Collapse
|
19
|
Eigentler L, Stanley‐Wall NR, Davidson FA. A theoretical framework for multi‐species range expansion in spatially heterogeneous landscapes. OIKOS 2022. [DOI: 10.1111/oik.09077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, Univ. of Dundee Dundee UK
- Mathematics, School of Science and Engineering, Univ. of Dundee Dundee UK
| | | | | |
Collapse
|
20
|
Rare and localized events stabilize microbial community composition and patterns of spatial self-organization in a fluctuating environment. THE ISME JOURNAL 2022; 16:1453-1463. [PMID: 35079136 PMCID: PMC9038690 DOI: 10.1038/s41396-022-01189-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/19/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Spatial self-organization is a hallmark of surface-associated microbial communities that is governed by local environmental conditions and further modified by interspecific interactions. Here, we hypothesize that spatial patterns of microbial cell-types can stabilize the composition of cross-feeding microbial communities under fluctuating environmental conditions. We tested this hypothesis by studying the growth and spatial self-organization of microbial co-cultures consisting of two metabolically interacting strains of the bacterium Pseudomonas stutzeri. We inoculated the co-cultures onto agar surfaces and allowed them to expand (i.e. range expansion) while fluctuating environmental conditions that alter the dependency between the two strains. We alternated between anoxic conditions that induce a mutualistic interaction and oxic conditions that induce a competitive interaction. We observed co-occurrence of both strains in rare and highly localized clusters (referred to as “spatial jackpot events”) that persist during environmental fluctuations. To resolve the underlying mechanisms for the emergence of spatial jackpot events, we used a mechanistic agent-based mathematical model that resolves growth and dispersal at the scale relevant to individual cells. While co-culture composition varied with the strength of the mutualistic interaction and across environmental fluctuations, the model provides insights into the formation of spatially resolved substrate landscapes with localized niches that support the co-occurrence of the two strains and secure co-culture function. This study highlights that in addition to spatial patterns that emerge in response to environmental fluctuations, localized spatial jackpot events ensure persistence of strains across dynamic conditions.
Collapse
|
21
|
Reproducible Propagation of Species-Rich Soil Bacterial Communities Suggests Robust Underlying Deterministic Principles of Community Formation. mSystems 2022; 7:e0016022. [PMID: 35353008 PMCID: PMC9040596 DOI: 10.1128/msystems.00160-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbiomes are typically characterized by high species diversity but it is poorly understood how such system-level complexity can be generated and propagated. Here, we used soil microcosms as a model to study development of bacterial communities as a function of their starting complexity and environmental boundary conditions. Despite inherent stochastic variation in manipulating species-rich communities, both laboratory-mixed medium complexity (21 soil bacterial isolates in equal proportions) and high-diversity natural top-soil communities followed highly reproducible succession paths, maintaining 16S rRNA gene amplicon signatures prominent for known soil communities in general. Development trajectories and compositional states were different for communities propagated in soil microcosms than in liquid suspension. Compositional states were maintained over multiple renewed growth cycles but could be diverged by short-term pollutant exposure. The different but robust trajectories demonstrated that deterministic taxa-inherent characteristics underlie reproducible development and self-organized complexity of soil microbiomes within their environmental boundary conditions. Our findings also have direct implications for potential strategies to achieve controlled restoration of desertified land. IMPORTANCE There is now a great awareness of the high diversity of most environmental (“free-living”) and host-associated microbiomes, but exactly how diverse microbial communities form and maintain is still highly debated. A variety of theories have been put forward, but testing them has been problematic because most studies have been based on synthetic communities that fail to accurately mimic the natural composition (i.e., the species used are typically not found together in the same environment), the diversity (usually too low to be representative), or the environmental system itself (using designs with single carbon sources or solely mixed liquid cultures). In this study, we show how species-diverse soil bacterial communities can reproducibly be generated, propagated, and maintained, either from individual isolates (21 soil bacterial strains) or from natural microbial mixtures washed from top-soil. The high replicate consistency we achieve both in terms of species compositions and developmental trajectories demonstrates the strong inherent deterministic factors driving community formation from their species composition. Generating complex soil microbiomes may provide ways for restoration of damaged soils that are prevalent on our planet.
Collapse
|
22
|
Mataigne V, Vannier N, Vandenkoornhuyse P, Hacquard S. Microbial Systems Ecology to Understand Cross-Feeding in Microbiomes. Front Microbiol 2021; 12:780469. [PMID: 34987488 PMCID: PMC8721230 DOI: 10.3389/fmicb.2021.780469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Understanding how microorganism-microorganism interactions shape microbial assemblages is a key to deciphering the evolution of dependencies and co-existence in complex microbiomes. Metabolic dependencies in cross-feeding exist in microbial communities and can at least partially determine microbial community composition. To parry the complexity and experimental limitations caused by the large number of possible interactions, new concepts from systems biology aim to decipher how the components of a system interact with each other. The idea that cross-feeding does impact microbiome assemblages has developed both theoretically and empirically, following a systems biology framework applied to microbial communities, formalized as microbial systems ecology (MSE) and relying on integrated-omics data. This framework merges cellular and community scales and offers new avenues to untangle microbial coexistence primarily by metabolic modeling, one of the main approaches used for mechanistic studies. In this mini-review, we first give a concise explanation of microbial cross-feeding. We then discuss how MSE can enable progress in microbial research. Finally, we provide an overview of a MSE framework mostly based on genome-scale metabolic-network reconstruction that combines top-down and bottom-up approaches to assess the molecular mechanisms of deterministic processes of microbial community assembly that is particularly suitable for use in synthetic biology and microbiome engineering.
Collapse
Affiliation(s)
- Victor Mataigne
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nathan Vannier
- Université de Rennes 1, CNRS, UMR6553 ECOBIO, Rennes, France
| | | | | |
Collapse
|
23
|
Causes and consequences of pattern diversification in a spatially self-organizing microbial community. THE ISME JOURNAL 2021; 15:2415-2426. [PMID: 33664433 PMCID: PMC8319339 DOI: 10.1038/s41396-021-00942-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 01/31/2023]
Abstract
Surface-attached microbial communities constitute a vast amount of life on our planet. They contribute to all major biogeochemical cycles, provide essential services to our society and environment, and have important effects on human health and disease. They typically consist of different interacting genotypes that arrange themselves non-randomly across space (referred to hereafter as spatial self-organization). While spatial self-organization is important for the functioning, ecology, and evolution of these communities, the underlying determinants of spatial self-organization remain unclear. Here, we performed a combination of experiments, statistical modeling, and mathematical simulations with a synthetic cross-feeding microbial community consisting of two isogenic strains. We found that two different patterns of spatial self-organization emerged at the same length and time scales, thus demonstrating pattern diversification. This pattern diversification was not caused by initial environmental heterogeneity or by genetic heterogeneity within populations. Instead, it was caused by nongenetic heterogeneity within populations, and we provide evidence that the source of this nongenetic heterogeneity is local differences in the initial spatial positionings of individuals. We further demonstrate that the different patterns exhibit different community-level properties; namely, they have different expansion speeds. Together, our results demonstrate that pattern diversification can emerge in the absence of initial environmental heterogeneity or genetic heterogeneity within populations and can affect community-level properties, thus providing novel insights into the causes and consequences of microbial spatial self-organization.
Collapse
|