1
|
Rosa LT, Vernhes É, Soulet AL, Polard P, Fronzes R. Structural insights into the mechanism of DNA branch migration during homologous recombination in bacteria. EMBO J 2024; 43:6180-6198. [PMID: 39424952 PMCID: PMC11612176 DOI: 10.1038/s44318-024-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024] Open
Abstract
Some DNA helicases play central and specific roles in genome maintenance and plasticity through their branch migration activity in different pathways of homologous recombination. RadA is a highly conserved bacterial helicase involved in DNA repair throughout all bacterial species. In Gram-positive Firmicutes, it also has a role in natural transformation, while in Gram-negative bacteria, ComM is the canonical transformation-specific helicase. Both RadA and ComM helicases form hexameric rings and use ATP hydrolysis as an energy source to propel themselves along DNA. In this study, we present the cryoEM structures of RadA and ComM interacting with DNA and ATP analogs. These structures reveal important molecular interactions that couple ATP hydrolysis and DNA binding in RadA, as well as the role of the Lon protease-like domain, shared by RadA and ComM, in this process. Taken together, these results provide new molecular insights into the mechanisms of DNA branch migration in different pathways of homologous recombination.
Collapse
Affiliation(s)
- Leonardo Talachia Rosa
- Structure and Function of Bacterial Nanomachines-Institut Européen de Chimie et Biologie, Microbiologie fondamentale et pathogénicité, UMR 5234, CNRS, University of Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France
- Departamento de Bioquímica e Biologia Tecidual. Laboratório de Bioquímica de Complexos Bacterianos. Instituto de Biologia. Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato, 255, Campinas, 13083-862, Brasil
| | - Émeline Vernhes
- Laboratoire de Microbiologie et de Génétique Moléculaire (UMR 5100). Centre de Biologie Intégrative; 169, avenue Marianne Grunberg-Manago; CNRS-Université Paul Sabatier-31062, Toulouse, Cedex 09, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Anne-Lise Soulet
- Laboratoire de Microbiologie et de Génétique Moléculaire (UMR 5100). Centre de Biologie Intégrative; 169, avenue Marianne Grunberg-Manago; CNRS-Université Paul Sabatier-31062, Toulouse, Cedex 09, France
| | - Patrice Polard
- Laboratoire de Microbiologie et de Génétique Moléculaire (UMR 5100). Centre de Biologie Intégrative; 169, avenue Marianne Grunberg-Manago; CNRS-Université Paul Sabatier-31062, Toulouse, Cedex 09, France.
| | - Rémi Fronzes
- Structure and Function of Bacterial Nanomachines-Institut Européen de Chimie et Biologie, Microbiologie fondamentale et pathogénicité, UMR 5234, CNRS, University of Bordeaux, 2 rue Robert Escarpit, 33600, Pessac, France.
| |
Collapse
|
2
|
Zhan J, Zeher A, Huang R, Tang WK, Jenkins LM, Xia D. Conformations of Bcs1L undergoing ATP hydrolysis suggest a concerted translocation mechanism for folded iron-sulfur protein substrate. Nat Commun 2024; 15:4655. [PMID: 38821922 PMCID: PMC11143374 DOI: 10.1038/s41467-024-49029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
The human AAA-ATPase Bcs1L translocates the fully assembled Rieske iron-sulfur protein (ISP) precursor across the mitochondrial inner membrane, enabling respiratory Complex III assembly. Exactly how the folded substrate is bound to and released from Bcs1L has been unclear, and there has been ongoing debate as to whether subunits of Bcs1L act in sequence or in unison hydrolyzing ATP when moving the protein cargo. Here, we captured Bcs1L conformations by cryo-EM during active ATP hydrolysis in the presence or absence of ISP substrate. In contrast to the threading mechanism widely employed by AAA proteins in substrate translocation, subunits of Bcs1L alternate uniformly between ATP and ADP conformations without detectable intermediates that have different, co-existing nucleotide states, indicating that the subunits act in concert. We further show that the ISP can be trapped by Bcs1 when its subunits are all in the ADP-bound state, which we propose to be released in the apo form.
Collapse
Affiliation(s)
- Jingyu Zhan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allison Zeher
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- NIH Intramural Cryo-EM Consortium (NICE), Bethesda, MD, USA
| | - Rick Huang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- NIH Intramural Cryo-EM Consortium (NICE), Bethesda, MD, USA
| | - Wai Kwan Tang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Key J, Gispert S, Koepf G, Steinhoff-Wagner J, Reichlmeir M, Auburger G. Translation Fidelity and Respiration Deficits in CLPP-Deficient Tissues: Mechanistic Insights from Mitochondrial Complexome Profiling. Int J Mol Sci 2023; 24:17503. [PMID: 38139332 PMCID: PMC10743472 DOI: 10.3390/ijms242417503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Gabriele Koepf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Julia Steinhoff-Wagner
- TUM School of Life Sciences, Animal Nutrition and Metabolism, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising-Weihenstephan, Germany;
| | - Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany; (S.G.); (M.R.); (G.A.)
| |
Collapse
|
4
|
Krin E, Carvalho A, Lang M, Babosan A, Mazel D, Baharoglu Z. RavA-ViaA antibiotic response is linked to Cpx and Zra2 envelope stress systems in Vibrio cholerae. Microbiol Spectr 2023; 11:e0173023. [PMID: 37861314 PMCID: PMC10848872 DOI: 10.1128/spectrum.01730-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE The RavA-ViaA complex was previously found to sensitize Escherichia coli to aminoglycosides (AGs) in anaerobic conditions, but the mechanism is unknown. AGs are antibiotics known for their high efficiency against Gram-negative bacteria. In order to elucidate how the expression of the ravA-viaA genes increases bacterial susceptibility to aminoglycosides, we aimed at identifying partner functions necessary for increased tolerance in the absence of RavA-ViaA, in Vibrio cholerae. We show that membrane stress response systems Cpx and Zra2 are required in the absence of RavA-ViaA, for the tolerance to AGs and for outer membrane integrity. In the absence of these systems, the ∆ravvia strain's membrane becomes permeable to external agents such as the antibiotic vancomycin.
Collapse
Affiliation(s)
- Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Anamaria Babosan
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
5
|
Shvarev D, Scholz AI, Moeller A. Conformational variability of cyanobacterial ChlI, the AAA+ motor of magnesium chelatase involved in chlorophyll biosynthesis. mBio 2023; 14:e0189323. [PMID: 37737632 PMCID: PMC10653834 DOI: 10.1128/mbio.01893-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Photosynthesis is an essential life process that relies on chlorophyll. In photosynthetic organisms, chlorophyll synthesis involves multiple steps and depends on magnesium chelatase. This enzyme complex is responsible for inserting magnesium into the chlorophyll precursor, but the molecular mechanism of this process is not fully understood. By using cryogenic electron microscopy and conducting functional analyses, we have discovered that the motor subunit ChlI of magnesium chelatase undergoes conformational changes in the presence of ATP. Our findings offer new insights into how energy is transferred from ChlI to the other components of magnesium chelatase. This information significantly contributes to our understanding of the initial step in chlorophyll biosynthesis and lays the foundation for future studies on the entire process of chlorophyll production.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Alischa Ira Scholz
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
| | - Arne Moeller
- Structural Biology Section, Department of Biology/Chemistry, Osnabrück University, Osnabrück, Lower Saxony, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
6
|
Bhandari V, Reichheld SE, Houliston S, Lemak A, Arrowsmith CH, Sharpe S, Houry WA. The RavA-ViaA chaperone complex modulates bacterial persistence through its association with the fumarate reductase enzyme. J Biol Chem 2023; 299:105199. [PMID: 37660904 PMCID: PMC10585395 DOI: 10.1016/j.jbc.2023.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
Regulatory ATPase variant A (RavA) is a MoxR AAA+ protein that functions together with a partner protein termed von Willebrand factor type A interacting with AAA+ ATPase (ViaA). RavA-ViaA are functionally associated with anaerobic respiration in Escherichia coli through interactions with the fumarate reductase (Frd) electron transport complex. Through this association, RavA and ViaA modulate the activity of the Frd complex and, hence, are proposed to have chaperone-like activity. However, the functional role of RavA-ViaA in the cell is not yet well established. We had demonstrated that RavA-ViaA can sensitize E. coli cells to sublethal concentrations of the aminoglycoside class of antibiotics. Since Frd has been associated with bacterial persistence against antibiotics, the relationship of RavA-ViaA and Frd was explored within this context. Experiments performed here reveal a function of RavA-ViaA in bacterial persistence upon treatment with antibiotics through the association of the chaperone complex with Frd. As part of this work, the NMR structure of the N-terminal domain of ViaA was solved. The structure reveals a novel alpha helical fold, which we name the VAN fold, that has not been observed before. We show that this domain is required for the function of the chaperone complex. We propose that modulating the levels of RavA-ViaA could enhance the susceptibility of Gram-negative bacteria to antibiotics.
Collapse
Affiliation(s)
- Vaibhav Bhandari
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sean E Reichheld
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Scott Houliston
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexander Lemak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Simon Sharpe
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Zumsteg J, Hirschler A, Carapito C, Maurer L, Villette C, Heintz D, Dahl C, El Nayal A, Sangal V, Mahmoud H, Van Dorsselaer A, Ismail W. Mechanistic insights into sulfur source-driven physiological responses and metabolic reorganization in the fuel-biodesulfurizing Rhodococcus qingshengii IGTS8. Appl Environ Microbiol 2023; 89:e0082623. [PMID: 37655899 PMCID: PMC10537767 DOI: 10.1128/aem.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Comparative proteomics and untargeted metabolomics were combined to study the physiological and metabolic adaptations of Rhodococcus qingshengii IGTS8 under biodesulfurization conditions. After growth in a chemically defined medium with either dibenzothiophene (DBT) or MgSO4 as the sulfur source, many differentially produced proteins and metabolites associated with several metabolic and physiological processes were detected including the metabolism of carbohydrates, amino acids, lipids, nucleotides, vitamins, protein synthesis, transcriptional regulation, cell envelope biogenesis, and cell division. Increased production of the redox cofactor mycofactocin and associated proteins was one of the most striking adaptations under biodesulfurization conditions. While most central metabolic enzymes were less abundant in the presence of DBT, a key enzyme of the glyoxylate shunt, isocitrate lyase, was up to 26-fold more abundant. Several C1 metabolism and oligotrophy-related enzymes were significantly more abundant in the biodesulfurizing culture. R. qingshengii IGTS8 exhibited oligotrophic growth in liquid and solid media under carbon starvation. Moreover, the oligotrophic growth was faster on the solid medium in the presence of DBT compared to MgSO4 cultures. In the DBT culture, the cell envelope and phospholipids were remodeled, with lower levels of phosphatidylethanolamine and unsaturated and short-chain fatty acids being the most prominent changes. Biodesulfurization increased the biosynthesis of osmoprotectants (ectoine and mannosylglycerate) as well as glutamate and induced the stringent response. Our findings reveal highly diverse and overlapping stress responses that could protect the biodesulfurizing culture not only from the associated sulfate limitation but also from chemical, oxidative, and osmotic stress, allowing efficient resource management. IMPORTANCE Despite decades of research, a commercially viable bioprocess for fuel desulfurization has not been developed yet. This is mainly due to lack of knowledge of the physiology and metabolism of fuel-biodesulfurizing bacteria. Being a stressful condition, biodesulfurization could provoke several stress responses that are not understood. This is particularly important because a thorough understanding of the microbial stress response is essential for the development of environmentally friendly and industrially efficient microbial biocatalysts. Our comparative systems biology studies provide a mechanistic understanding of the biology of biodesulfurization, which is crucial for informed developments through the rational design of recombinant biodesulfurizers and optimization of the bioprocess conditions. Our findings enhance the understanding of the physiology, metabolism, and stress response not only in biodesulfurizing bacteria but also in rhodococci, a precious group of biotechnologically important bacteria.
Collapse
Affiliation(s)
- Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Loïc Maurer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Département mécanique, ICube Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie, UNISTRA/CNRS/ENGEES/INSA, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ashraf El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
8
|
Krüger G, Kirkpatrick J, Mahieu E, Franzetti B, Gabel F, Carlomagno T. An NMR Study of a 300-kDa AAA+ Unfoldase. J Mol Biol 2023; 435:167997. [PMID: 37330287 DOI: 10.1016/j.jmb.2023.167997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
AAA+ ATPases are ubiquitous hexameric unfoldases acting in cellular protein quality control. In complex with proteases, they form protein degradation machinery (the proteasome) in both archaea and eukaryotes. Here, we use solution-state NMR spectroscopy to determine the symmetry properties of the archaeal PAN AAA+ unfoldase and gain insights into its functional mechanism. PAN consists of three folded domains: the coiled-coil (CC), OB and ATPase domains. We find that full-length PAN assembles into a hexamer with C2 symmetry, and that this symmetry extends over the CC, OB and ATPase domains. The NMR data, collected in the absence of substrate, are incompatible with the spiral staircase structure observed in electron-microscopy studies of archaeal PAN in the presence of substrate and in electron-microscopy studies of eukaryotic unfoldases both in the presence and in the absence of substrate. Based on the C2 symmetry revealed by NMR spectroscopy in solution, we propose that archaeal ATPases are flexible enzymes, which can adopt distinct conformations in different conditions. This study reaffirms the importance of studying dynamic systems in solution.
Collapse
Affiliation(s)
- Georg Krüger
- Centre of Biomolecular Drug Research and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - John Kirkpatrick
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emilie Mahieu
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Bruno Franzetti
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Frank Gabel
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Teresa Carlomagno
- Centre of Biomolecular Drug Research and Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany; School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
9
|
Kahle M, Appelgren S, Elofsson A, Carroni M, Ädelroth P. Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. BMC Biol 2023; 21:47. [PMID: 36855050 PMCID: PMC9976466 DOI: 10.1186/s12915-023-01546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND NorQ, a member of the MoxR-class of AAA+ ATPases, and NorD, a protein containing a Von Willebrand Factor Type A (VWA) domain, are essential for non-heme iron (FeB) cofactor insertion into cytochrome c-dependent nitric oxide reductase (cNOR). cNOR catalyzes NO reduction, a key step of bacterial denitrification. This work aimed at elucidating the specific mechanism of NorQD-catalyzed FeB insertion, and the general mechanism of the MoxR/VWA interacting protein families. RESULTS We show that NorQ-catalyzed ATP hydrolysis, an intact VWA domain in NorD, and specific surface carboxylates on cNOR are all features required for cNOR activation. Supported by BN-PAGE, low-resolution cryo-EM structures of NorQ and the NorQD complex show that NorQ forms a circular hexamer with a monomer of NorD binding both to the side and to the central pore of the NorQ ring. Guided by AlphaFold predictions, we assign the density that "plugs" the NorQ ring pore to the VWA domain of NorD with a protruding "finger" inserting through the pore and suggest this binding mode to be general for MoxR/VWA couples. CONCLUSIONS Based on our results, we present a tentative model for the mechanism of NorQD-catalyzed cNOR remodeling and suggest many of its features to be applicable to the whole MoxR/VWA family.
Collapse
Affiliation(s)
- Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden. .,Present Address: Department of Biochemistry, University of Potsdam, 14476, Potsdam, Germany.
| | - Sofia Appelgren
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.,Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden. .,Swedish Cryo-EM Facility, Science for Life Laboratory Stockholm University, Solna, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
Abstract
Type 4 pili (T4P) are retractable surface appendages found on numerous bacteria and archaea that play essential roles in various microbial functions, including host colonization by pathogens. An ATPase is required for T4P extension, but the mechanism by which chemical energy is transduced to mechanical energy for pilus extension has not been elucidated. Here, we report the cryo-electron microscopy (cryo-EM) structure of the BfpD ATPase from enteropathogenic Escherichia coli (EPEC) in the presence of either ADP or a mixture of ADP and AMP-PNP. Both structures, solved at 3 Å resolution, reveal the typical toroid shape of AAA+ ATPases and unambiguous 6-fold symmetry. This 6-fold symmetry contrasts with the 2-fold symmetry previously reported for other T4P extension ATPase structures, all of which were from thermophiles and solved by crystallography. In the presence of the nucleotide mixture, BfpD bound exclusively AMP-PNP, and this binding resulted in a modest outward expansion in comparison to the structure in the presence of ADP, suggesting a concerted model for hydrolysis. De novo molecular models reveal a partially open configuration of all subunits where the nucleotide binding site may not be optimally positioned for catalysis. ATPase functional studies reveal modest activity similar to that of other extension ATPases, while calculations indicate that this activity is insufficient to power pilus extension. Our results reveal that, despite similarities in primary sequence and tertiary structure, T4P extension ATPases exhibit divergent quaternary configurations. Our data raise new possibilities regarding the mechanism by which T4P extension ATPases power pilus formation. IMPORTANCE Type 4 pili are hairlike surface appendages on many bacteria and archaea that can be extended and retracted with tremendous force. They play a critical role in disease caused by several deadly human pathogens. Pilus extension is made possible by an enzyme that converts chemical energy to mechanical energy. Here, we describe the three-dimensional structure of such an enzyme from a human pathogen in unprecedented detail, which reveals a mechanism of action that has not been seen previously among enzymes that power type 4 pilus extension.
Collapse
|
11
|
Felix J, Bumba L, Liesche C, Fraudeau A, Rébeillé F, El Khoury JY, Huard K, Gallet B, Moriscot C, Kleman JP, Duhoo Y, Jessop M, Kandiah E, Barras F, Jouhet J, Gutsche I. The AAA+ ATPase RavA and its binding partner ViaA modulate E. coli aminoglycoside sensitivity through interaction with the inner membrane. Nat Commun 2022; 13:5502. [PMID: 36127320 PMCID: PMC9489729 DOI: 10.1038/s41467-022-32992-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Enteric bacteria have to adapt to environmental stresses in the human gastrointestinal tract such as acid and nutrient stress, oxygen limitation and exposure to antibiotics. Membrane lipid composition has recently emerged as a key factor for stress adaptation. The E. coli ravA-viaA operon is essential for aminoglycoside bactericidal activity under anaerobiosis but its mechanism of action is unclear. Here we characterise the VWA domain-protein ViaA and its interaction with the AAA+ ATPase RavA, and find that both proteins localise at the inner cell membrane. We demonstrate that RavA and ViaA target specific phospholipids and subsequently identify their lipid-binding sites. We further show that mutations abolishing interaction with lipids restore induced changes in cell membrane morphology and lipid composition. Finally we reveal that these mutations render E. coli gentamicin-resistant under fumarate respiration conditions. Our work thus uncovers a ravA-viaA-based pathway which is mobilised in response to aminoglycosides under anaerobiosis and engaged in cell membrane regulation.
Collapse
Affiliation(s)
- Jan Felix
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Ladislav Bumba
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- Institute of Microbiology, The Academy of Sciences of the Czech Republic, Videnska, 1083, Prague, Czech Republic
| | - Clarissa Liesche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Angélique Fraudeau
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- EMBL Grenoble, 71 Avenue des martyrs, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Univ Grenoble Alpes, CEA, CNRS, INRAE, IRIG, 17 Avenue des martyrs, Grenoble, France
| | - Jessica Y El Khoury
- Institut Pasteur, Université de Paris, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, Paris, France
| | - Karine Huard
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Benoit Gallet
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Christine Moriscot
- Univ Grenoble Alpes, CEA, CNRS, ISBG, 71 Avenue des martyrs, Grenoble, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Yoan Duhoo
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
| | - Matthew Jessop
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Eaazhisai Kandiah
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France
- European Synchrotron Radiation Facility, 71 Avenue des martyrs, Grenoble, France
| | - Frédéric Barras
- Institut Pasteur, Université de Paris, CNRS UMR6047, Stress Adaptation and Metabolism Unit, Department of Microbiology, Paris, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Univ Grenoble Alpes, CEA, CNRS, INRAE, IRIG, 17 Avenue des martyrs, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, Grenoble, France.
| |
Collapse
|
12
|
Swan JA, Sandate CR, Chavan AG, Freeberg AM, Etwaru D, Ernst DC, Palacios JG, Golden SS, LiWang A, Lander GC, Partch CL. Coupling of distant ATPase domains in the circadian clock protein KaiC. Nat Struct Mol Biol 2022; 29:759-766. [PMID: 35864165 DOI: 10.1038/s41594-022-00803-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
The AAA+ family member KaiC is the central pacemaker for circadian rhythms in the cyanobacterium Synechococcus elongatus. Composed of two hexameric rings of adenosine triphosphatase (ATPase) domains with tightly coupled activities, KaiC undergoes a cycle of autophosphorylation and autodephosphorylation on its C-terminal (CII) domain that restricts binding of clock proteins on its N-terminal (CI) domain to the evening. Here, we use cryogenic-electron microscopy to investigate how daytime and nighttime states of CII regulate KaiB binding on CI. We find that the CII hexamer is destabilized during the day but takes on a rigidified C2-symmetric state at night, concomitant with ring-ring compression. Residues at the CI-CII interface are required for phospho-dependent KaiB association, coupling ATPase activity on CI to cooperative KaiB recruitment. Together, these studies clarify a key step in the regulation of cyanobacterial circadian rhythms by KaiC phosphorylation.
Collapse
Affiliation(s)
- Jeffrey A Swan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Colby R Sandate
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Archana G Chavan
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Alfred M Freeberg
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Diana Etwaru
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Dustin C Ernst
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Joseph G Palacios
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Andy LiWang
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA.,Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA.,Center for Cellular and Biomolecular Machines, University of California, Merced, CA, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA. .,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
14
|
Khan YA, White KI, Brunger AT. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. Crit Rev Biochem Mol Biol 2021; 57:156-187. [PMID: 34632886 DOI: 10.1080/10409238.2021.1979460] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATPases associated with diverse cellular activities (AAA+ proteins) are a superfamily of proteins found throughout all domains of life. The hallmark of this family is a conserved AAA+ domain responsible for a diverse range of cellular activities. Typically, AAA+ proteins transduce chemical energy from the hydrolysis of ATP into mechanical energy through conformational change, which can drive a variety of biological processes. AAA+ proteins operate in a variety of cellular contexts with diverse functions including disassembly of SNARE proteins, protein quality control, DNA replication, ribosome assembly, and viral replication. This breadth of function illustrates both the importance of AAA+ proteins in health and disease and emphasizes the importance of understanding conserved mechanisms of chemo-mechanical energy transduction. This review is divided into three major portions. First, the core AAA+ fold is presented. Next, the seven different clades of AAA+ proteins and structural details and reclassification pertaining to proteins in each clade are described. Finally, two well-known AAA+ proteins, NSF and its close relative p97, are reviewed in detail.
Collapse
Affiliation(s)
- Yousuf A Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
| | - K Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Structural Biology, Stanford University, Stanford, CA, USA.,Department of Photon Science, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Li B, Liang J, Hanfrey CC, Phillips MA, Michael AJ. Discovery of ancestral L-ornithine and L-lysine decarboxylases reveals parallel, pseudoconvergent evolution of polyamine biosynthesis. J Biol Chem 2021; 297:101219. [PMID: 34560100 PMCID: PMC8503589 DOI: 10.1016/j.jbc.2021.101219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022] Open
Abstract
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jue Liang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Margaret A Phillips
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Michael
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
16
|
Jessop M, Felix J, Gutsche I. AAA+ ATPases: structural insertions under the magnifying glass. Curr Opin Struct Biol 2021; 66:119-128. [PMID: 33246198 PMCID: PMC7973254 DOI: 10.1016/j.sbi.2020.10.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 11/29/2022]
Abstract
AAA+ ATPases are a diverse protein superfamily which power a vast number of cellular processes, from protein degradation to genome replication and ribosome biogenesis. The latest advances in cryo-EM have resulted in a spectacular increase in the number and quality of AAA+ ATPase structures. This abundance of new information enables closer examination of different types of structural insertions into the conserved core, revealing discrepancies in the current classification of AAA+ modules into clades. Additionally, combined with biochemical data, it has allowed rapid progress in our understanding of structure-functional relationships and provided arguments both in favour and against the existence of a unifying molecular mechanism for the ATPase activity and action on substrates, stimulating further intensive research.
Collapse
Affiliation(s)
- Matthew Jessop
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| | - Jan Felix
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044 Grenoble, France.
| |
Collapse
|
17
|
Structural and functional analysis of the Francisella lysine decarboxylase as a key actor in oxidative stress resistance. Sci Rep 2021; 11:972. [PMID: 33441661 PMCID: PMC7806604 DOI: 10.1038/s41598-020-79611-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Francisella tularensis is one of the most virulent pathogenic bacteria causing the acute human respiratory disease tularemia. While the mechanisms underlying F. tularensis pathogenesis are largely unknown, previous studies have shown that a F. novicida transposon mutant with insertions in a gene coding for a putative lysine decarboxylase was attenuated in mouse spleen, suggesting a possible role of its protein product as a virulence factor. Therefore, we set out to structurally and functionally characterize the F. novicida lysine decarboxylase, which we termed LdcF. Here, we investigate the genetic environment of ldcF as well as its evolutionary relationships with other basic AAT-fold amino acid decarboxylase superfamily members, known as key actors in bacterial adaptative stress response and polyamine biosynthesis. We determine the crystal structure of LdcF and compare it with the most thoroughly studied lysine decarboxylase, E. coli LdcI. We analyze the influence of ldcF deletion on bacterial growth under different stress conditions in dedicated growth media, as well as in infected macrophages, and demonstrate its involvement in oxidative stress resistance. Finally, our mass spectrometry-based quantitative proteomic analysis enables identification of 80 proteins with expression levels significantly affected by ldcF deletion, including several DNA repair proteins potentially involved in the diminished capacity of the F. novicida mutant to deal with oxidative stress. Taken together, we uncover an important role of LdcF in F. novicida survival in host cells through participation in oxidative stress response, thereby singling out this previously uncharacterized protein as a potential drug target.
Collapse
|
18
|
Abstract
Bacteria possess a sophisticated arsenal of defense mechanisms that allow them to survive in adverse conditions. Adaptation to acid stress and hypoxia is crucial for the enterobacterial transmission in the gastrointestinal tract of their human host. When subjected to low pH, Escherichia coli and many other enterobacteria activate a proton-consuming resistance system based on the acid stress-inducible lysine decarboxylase LdcI. Here we develop generally applicable tools to uncover the spatial localization of LdcI inside the cell by superresolution fluorescence microscopy and investigate the in vitro supramolecular organization of this enzyme by cryo-EM. We build on these results to propose a mechanistic model for LdcI function and offer tools for further in vivo investigations. Pathogenic and commensal bacteria often have to resist the harsh acidity of the host stomach. The inducible lysine decarboxylase LdcI buffers the cytosol and the local extracellular environment to ensure enterobacterial survival at low pH. Here, we investigate the acid stress-response regulation of Escherichia coli LdcI by combining biochemical and biophysical characterization with negative stain and cryoelectron microscopy (cryo-EM) and wide-field and superresolution fluorescence imaging. Due to deleterious effects of fluorescent protein fusions on native LdcI decamers, we opt for three-dimensional localization of nanobody-labeled endogenous wild-type LdcI in acid-stressed E. coli cells and show that it organizes into distinct patches at the cell periphery. Consistent with recent hypotheses that in vivo clustering of metabolic enzymes often reflects their polymerization as a means of stimulus-induced regulation, we show that LdcI assembles into filaments in vitro at physiologically relevant low pH. We solve the structures of these filaments and of the LdcI decamer formed at neutral pH by cryo-EM and reveal the molecular determinants of LdcI polymerization, confirmed by mutational analysis. Finally, we propose a model for LdcI function inside the enterobacterial cell, providing a structural and mechanistic basis for further investigation of the role of its supramolecular organization in the acid stress response.
Collapse
|
19
|
Niu Y, Suzuki H, Hosford CJ, Walz T, Chappie JS. Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes. Nat Commun 2020; 11:5907. [PMID: 33219217 PMCID: PMC7680126 DOI: 10.1038/s41467-020-19735-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 01/21/2023] Open
Abstract
McrBC complexes are motor-driven nucleases functioning in bacterial self-defense by cleaving foreign DNA. The GTP-specific AAA + protein McrB powers translocation along DNA and its hydrolysis activity is stimulated by its partner nuclease McrC. Here, we report cryo-EM structures of Thermococcus gammatolerans McrB and McrBC, and E. coli McrBC. The McrB hexamers, containing the necessary catalytic machinery for basal GTP hydrolysis, are intrinsically asymmetric. This asymmetry directs McrC binding so that it engages a single active site, where it then uses an arginine/lysine-mediated hydrogen-bonding network to reposition the asparagine in the McrB signature motif for optimal catalytic function. While the two McrBC complexes use different DNA-binding domains, these contribute to the same general GTP-recognition mechanism employed by all G proteins. Asymmetry also induces distinct inter-subunit interactions around the ring, suggesting a coordinated and directional GTP-hydrolysis cycle. Our data provide insights into the conserved molecular mechanisms governing McrB family AAA + motors.
Collapse
Affiliation(s)
- Yiming Niu
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
- Laboratory Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Hiroshi Suzuki
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Christopher J Hosford
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- New England Biolabs, Inc., Ipswich, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA.
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
20
|
Glynn SE, Kardon JR, Mueller-Cajar O, Cho C. AAA+ proteins: converging mechanisms, diverging functions. Nat Struct Mol Biol 2020; 27:515-518. [PMID: 32461632 DOI: 10.1038/s41594-020-0444-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| | - Julia R Kardon
- Department of Biochemistry, Brandeis University, Waltham, MA, USA.
| | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Carol Cho
- Research Center for Natural Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|