1
|
Khan M, Riaz H, Jatala FH, Noor A, Mumtaz S, Zafar S. Prevention of Chronic Diabetic Neuropathy and Diabetes-Associated Cognitive Impairment Using Medicinal Herbs ( Cassia Angustifolia and Nigella Sativa). THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:141-152. [PMID: 38947105 PMCID: PMC11202112 DOI: 10.59249/uqlo8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nodal regions, areas of intensive contact between Schwann cells and axons, may be exceptionally vulnerable to diabetes-induced changes because they are exposed to and impacted by the metabolic implications of diabetes. Insulin receptors, glucose transporters, Na+ and K+ channels, and mitochondria are abundant in nodes, all of which have been linked to the development and progression of Diabetic Peripheral Neuropathy (DPN) and Type 1 Diabetes Mellitus (T1DM)-associated cognitive impairment. Our study aimed to evaluate if the administration of Nigella sativa (NS) and Cassia angustifolia (CA) prevented diabetes-associated nervous system deficits in hyperglycemic mice. We developed T1DM mice through Streptozotocin (STZ) injections and validated the elevations in blood glucose levels. NS and CA were administered immediately upon the induction of diabetes. Behavioral analysis, histopathological evaluations, and assessment of molecular biomarkers (NR2A, MPZ, NfL) were performed to assess neuropathy and cognitive impairment. Improvements in memory, myelin loss, and the expression of synaptic proteins, even with the retention of hyperglycemia, were evident in the mice who were given a dose of herbal products upon the detection of hyperglycemia. NS was more beneficial in preventing memory impairments, demyelination, and synaptic dysfunction. The findings indicate that including these herbs in the diets of diabetic as well as pre-diabetic patients can reduce complications associated with T1DM, notably diabetic peripheral neuropathy and cognitive deficits associated with T1DM.
Collapse
Affiliation(s)
- Mahum Khan
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Hibba Riaz
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Faria Hasan Jatala
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Aneeqa Noor
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
| | - Sara Mumtaz
- Department of Biological Sciences, National University
of Medical Sciences, Rawalpindi, Pakistan
| | - Saima Zafar
- School of Mechanical and Manufacturing Engineering
(SMME), National University of Sciences and Technology (NUST), Islamabad,
Pakistan
- Clinical Department of Neurology, University Medical
Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE),
Göttingen, Germany
| |
Collapse
|
2
|
Tran CM, Ra JS, Rhyu DY, Kim KT. Transcriptome analysis reveals differences in developmental neurotoxicity mechanism of methyl-, ethyl-, and propyl- parabens in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115704. [PMID: 37979356 DOI: 10.1016/j.ecoenv.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Studies on the comparison of developmental (neuro) toxicity of parabens are currently limited, and unharmonized concentrations between phenotypic observations and transcriptome analysis hamper the understanding of their differential molecular mechanisms. Thus, developmental toxicity testing was conducted herein using the commonly used methyl- (MtP), ethyl- (EtP), and propyl-parabens (PrP) in zebrafish embryos. With a benchmark dose of 5%, embryonic-mortality-based point-of-departure (M-POD) values of the three parabens were determined, and changes in locomotor behavior were evaluated at concentrations of 0, M-POD/50, M-POD/10, and M-POD, where transcriptome analysis was conducted to explore the underlying neurotoxicity mechanism. Higher long-chained parabens were more toxic than short-chained parabens, as determined by the M-POD values of 154.1, 72.6, and 24.2 µM for MtP, EtP, and PrP, respectively. Meanwhile, exposure to EtP resulted in hyperactivity, whereas no behavioral effect was observed with MtP and PrP. Transcriptome analysis revealed that abnormal behaviors in the EtP-exposed group were associated with distinctly enriched pathways in signaling, transport, calcium ion binding, and metal binding. In contrast, exposure to MtP and PrP mainly disrupted membranes and transmembranes, which are closely linked to abnormal embryonic development rather than neurobehavioral changes. According to the changes in the expressions of signature mRNAs, tentative transcriptome-based POD values for each paraben were determined as MtP (2.68 µM), EtP (3.85 µM), and PrP (1.4 µM). This suggests that different molecular perturbations initiated at similar concentrations determined the extent and toxicity outcome differently. Our findings provide insight into better understanding the differential developmental neurotoxicity mechanisms of parabens.
Collapse
Affiliation(s)
- Cong Minh Tran
- Department of Energy and Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jin-Sung Ra
- Eco-testing and Risk Assessment Center, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea
| | - Dong Young Rhyu
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Energy and Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; Department of Environmental Engineering, Seoul National University of Sciences and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
3
|
Yang X, Huang X, Lu W, Yan F, Ye Y, Wang L, Tang X, Zeng W, Huang J, Xie J. Transcriptome Profiling of miRNA-mRNA Interactions and Associated Mechanisms in Chemotherapy-Induced Neuropathic Pain. Mol Neurobiol 2023; 60:5672-5690. [PMID: 37332017 DOI: 10.1007/s12035-023-03398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023]
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a dose-limiting adverse event affecting 40% of chemotherapy patients. MiRNA-mRNA interaction plays an important role in various processes. However, detailed profiling of miRNA-mRNA interactions in CINP remains unclear. Here, a rat-based CINP model was established using paclitaxel, followed by nociceptive behavioral tests related to mechanical allodynia, thermal hyperalgesia, and cold allodynia. The landscape of miRNA-mRNA interaction in the spinal dorsal horn was investigated through mRNA transcriptomics and small RNA sequencing. Under CINP condition, 86 differentially expressed mRNAs and 56 miRNAs were identified. Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated the activity of Odorant binding, postsynaptic specialization and synaptic density, extracellular matrix, mitochondrial matrix, retrograde endocannabinoid signaling, and GTPase activity. Protein-protein interaction (PPI), networks of circRNA-miRNA-mRNA, lncRNA-miRNA-mRNA, and TF-genes were demonstrated. We next explored the immune infiltration microenvironment and found a higher infiltration abundance of Th17 and a lower abundance of MDSC in CINP. RT-qPCR and dual-luciferase assays were used to verify the sequencing results, and single-cell analysis based on the SekSeeq database was conducted. Combined with bioinformatics analyses and experimental validations, Mpz, a protein-coding gene specifically expressed in Schwann cells, was found critical in maintaining CINP under miRNA regulation. Therefore, these data highlight the expression patterns of miRNA-mRNA, and the underlying mechanism in the spinal dorsal horn under CINP condition, and Mpz may serve as a promising therapeutic target for patients with CINP.
Collapse
Affiliation(s)
- Xiaohua Yang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiqiang Huang
- Department of Anesthesiology, Zhongshan People's Hospital, Zhongshan, 528400, Guangdong, China
| | - Weicheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Fang Yan
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yaqi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Linjie Wang
- Department of Human Anatomy and Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, Guangdong, China
| | - Xiaole Tang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Weian Zeng
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Jingxiu Huang
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Jingdun Xie
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
4
|
Ishihara H, Otani Y, Tanaka K, Miyajima H, Ngo HX, Fujitani M. Blocking insulin-like growth factor 1 receptor signaling pathway inhibits neuromuscular junction regeneration after botulinum toxin-A treatment. Cell Death Dis 2023; 14:609. [PMID: 37717026 PMCID: PMC10505167 DOI: 10.1038/s41419-023-06128-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Botulinum toxin-A (BTX) administration into muscle is an established treatment for conditions with excessive muscle contraction. However, botulinum therapy has short-term effectiveness, and high-dose injection of BTX could induce neutralizing antibodies against BTX. Therefore, prolonging its effects could be beneficial in a clinical situation. Insulin-like growth factor-1 receptor (IGF1R) and its ligands, insulin-like growth factor (IGF) -I and II, regulate the physiological and pathological processes of the nervous system. It has been suggested that IGF1R is involved in the process after BTX administration, but the specific regeneration mechanism remains unclear. Therefore, this study aimed to determine how inhibition of IGF1R signaling pathway affects BTX-induced muscle paralysis. The results showed that anti-IGF1R antibody administration inhibited the recovery from BTX-induced neurogenic paralysis, and the synaptic components at the neuromuscular junction (NMJ), mainly post-synaptic components, were significantly affected by the antibody. In addition, the wet weight or frequency distribution of the cross-sectional area of the muscle fibers was regulated by IGF1R, and sequential antibody administration following BTX treatment increased the number of Pax7+-satellite cells in the gastrocnemius (GC) muscle, independent of NMJ recovery. Moreover, BTX treatment upregulated mammalian target of rapamycin (mTOR)/S6 kinase signaling pathway, HDAC4, Myog, Fbxo32/MAFbx/Atrogin-1 pathway, and transcription of synaptic components, but not autophagy. Finally, IGF1R inhibition affected only mTOR/S6 kinase translational signaling in the GC muscle. In conclusion, the IGF1R signaling pathway is critical for NMJ regeneration via specific translational signals. IGF1R inhibition could be highly beneficial in clinical practice by decreasing the number of injections and total dose of BTX due to the prolonged duration of the effect.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Yoshinori Otani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Kazuki Tanaka
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Rehabilitation, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Hisao Miyajima
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Huy Xuan Ngo
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan
| | - Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi, Shimane, 693-8501, Japan.
| |
Collapse
|
5
|
Van Lent J, Vendredy L, Adriaenssens E, Da Silva Authier T, Asselbergh B, Kaji M, Weckhuysen S, Van Den Bosch L, Baets J, Timmerman V. Downregulation of PMP22 ameliorates myelin defects in iPSC-derived human organoid cultures of CMT1A. Brain 2023; 146:2885-2896. [PMID: 36511878 PMCID: PMC10316758 DOI: 10.1093/brain/awac475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 10/11/2023] Open
Abstract
Charcot-Marie-Tooth disease is the most common inherited disorder of the PNS. CMT1A accounts for 40-50% of all cases and is caused by a duplication of the PMP22 gene on chromosome 17, leading to dysmyelination in the PNS. Patient-derived models to study such myelination defects are lacking as the in vitro generation of human myelinating Schwann cells has proved to be particularly challenging. Here, we present an induced pluripotent stem cell-derived organoid culture, containing various cell types of the PNS, including myelinating human Schwann cells, which mimics the human PNS. Single-cell analysis confirmed the PNS-like cellular composition and provides insight into the developmental trajectory. We used this organoid model to study disease signatures of CMT1A, revealing early ultrastructural myelin alterations, including increased myelin periodic line distance and hypermyelination of small axons. Furthermore, we observed the presence of onion-bulb-like formations in a later developmental stage. These hallmarks were not present in the CMT1A-corrected isogenic line or in a CMT2A iPSC line, supporting the notion that these alterations are specific to CMT1A. Downregulation of PMP22 expression using short-hairpin RNAs or a combinatorial drug consisting of baclofen, naltrexone hydrochloride and D-sorbitol was able to ameliorate the myelin defects in CMT1A-organoids. In summary, this self-organizing organoid model can capture biologically meaningful features of the disease and capture the physiological complexity, forms an excellent model for studying demyelinating diseases and supports the therapeutic approach of reducing PMP22 expression.
Collapse
Affiliation(s)
- Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Leen Vendredy
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Elias Adriaenssens
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Tatiana Da Silva Authier
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Marcus Kaji
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, Leuven Brain Institute, KU Leuven—University of Leuven, Leuven 3000, Belgium
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven 3000, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp 2610, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, and Translational Neurosciences, Faculty of Medicine, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
6
|
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1739. [PMID: 35570338 DOI: 10.1002/wrna.1739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
Recognition of a stop codon by translation machinery as a sense codon results in translational readthrough instead of termination. This recoding process, termed stop codon readthrough (SCR) or translational readthrough, is found in all domains of life including mammals. The context of the stop codon, local mRNA topology, and molecules that interact with the mRNA region downstream of the stop codon determine SCR. The products of SCR can have localization, stability, and function different from those of the canonical isoforms. In this review, we discuss how recent technological and computational advances have increased our understanding of the SCR process in the mammalian system. Based on the known molecular events that occur during SCR of multiple mRNAs, we propose transient molecular roadblocks on an mRNA downstream of the stop codon as a possible mechanism for the induction of SCR. We argue, with examples, that the insights gained from the natural SCR events can guide us to develop novel strategies for the treatment of diseases caused by premature stop codons. This article is categorized under: Translation > Regulation.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Baba H. [Introduction to Myelin Research]. YAKUGAKU ZASSHI 2022; 142:837-853. [PMID: 35908945 DOI: 10.1248/yakushi.21-00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myelin is a multilamellar membrane structure formed by oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). It has been recognized as an insulator that is essential for the rapid and efficient propagation of action potentials by saltatory conduction. However, recently many studies have shown that myelin and myelin-forming cells interact with axons and regulate the nervous system far more actively than previously thought. For example, myelination changes axons dynamically and divides them into four distinct functional domains: node of Ranvier, paranode, juxtaparanode, and internode. Voltage-gated Na+ channels are clustered at the node, while K+ channels are at the juxtaparanode, and segregation of these channels by paranodal axoglial junction is necessary for proper axonal function. My research experience began at the neurology ward of the Niigata University Medical Hospital, where I saw a patient with peripheral neuropathy of unknown etiology more than 37 years ago. In the patient's serum, we found an autoantibody against a glycolipid enriched in the PNS. Since then, I have been interested in myelin because of its beautiful structure and unique roles in the nervous system. In this review, our recent studies related to CNS and PNS myelin are presented.
Collapse
Affiliation(s)
- Hiroko Baba
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
8
|
Sahoo S, Singh D, Singh A, Pandit M, Vasu K, Som S, Pullagurla NJ, Laha D, Eswarappa SM. Identification and functional characterization of mRNAs that exhibit stop codon readthrough in Arabidopsis thaliana. J Biol Chem 2022; 298:102173. [PMID: 35752360 PMCID: PMC9293766 DOI: 10.1016/j.jbc.2022.102173] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022] Open
Abstract
Stop codon readthrough (SCR) is the process of continuation of translation beyond the stop codon, generating protein isoforms with C-terminal extensions. SCR has been observed in viruses, fungi, and multicellular organisms, including mammals. However, SCR is largely unexplored in plants. In this study, we have analyzed ribosome profiling datasets to identify mRNAs that exhibit SCR in Arabidopsis thaliana. Analyses of the ribosome density, ribosome coverage, and three-nucleotide periodicity of the ribosome profiling reads in the mRNA region downstream of the stop codon provided strong evidence for SCR in mRNAs of 144 genes. We show that SCR generated putative evolutionarily conserved nuclear localization signals, transmembrane helices, and intrinsically disordered regions in the C-terminal extensions of several of these proteins. Furthermore, gene ontology (GO) functional enrichment analysis revealed that these 144 genes belong to three major functional groups - translation, photosynthesis, and abiotic stress tolerance. Using a luminescence-based readthrough assay, we experimentally demonstrated SCR in representative mRNAs belonging to each of these functional classes. Finally, using microscopy, we show that the SCR product of one gene that contains a nuclear localization signal at the C-terminal extension, CURT1B, localizes to the nucleus as predicted. Based on these observations, we propose that SCR plays an important role in plant physiology by regulating protein localization and function.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bengaluru, India; Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Divyoj Singh
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Madhuparna Pandit
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kirtana Vasu
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | | | - Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
9
|
Influence of novel readthrough agents on myelin protein zero translation in the peripheral nervous system. Neuropharmacology 2022; 211:109059. [DOI: 10.1016/j.neuropharm.2022.109059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
|
10
|
Hao X, Li C, Lv Y, Zhou T, Tian H, Ma Y, Ding J, Li X, Wang Y, Wang L, Yang P. MPZ gene variant site in Chinese patients with Charcot-Marie-Tooth disease. Mol Genet Genomic Med 2022; 10:e1890. [PMID: 35174662 PMCID: PMC9000946 DOI: 10.1002/mgg3.1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/15/2022] Open
Abstract
Background Charcot–Marie–Tooth disease (CMT) is a hereditary monogenic peripheral nerve disease. Variants in the gene encoding myelin protein zero (MPZ) lead to CMT, and different variants have different clinical phenotypes. A variant site, namely, c.389A > G (p.Lys130Arg), in the MPZ gene has been found in Chinese people. The pathogenicity of this variant has been clarified through pedigrees, and peripheral blood‐related functional studies have been conducted. Method Whole‐exome sequencing and Sanger sequencing were used to detect the c.389A > G (p.Lys130Arg) variant in the MPZ gene in family members of the proband. Physical examination was performed in the case group to assess the clinical characteristics of MPZ site variants. The expression of MPZ and phosphorylated MPZ in the blood of 12 cases and 12 randomly selected controls was compared by RT–qPCR, Western blotting, and ELISA. Results The proband and 12 of her family members presented the AG genotype with different clinical manifestations. The expression of MPZ mRNA in the case group was increased compared with that in the control group, and the levels of MPZ and phosphorylated MPZ in peripheral blood were higher than those in normal controls. Conclusion The heterozygous genotype of the c.389A > G (p.Lys130Arg) variant in the MPZ gene mediated the increase in MPZ and phosphorylated MPZ levels in peripheral blood and was found to be involved with CMT.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Chong Li
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Yunguo Lv
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Tongtong Zhou
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Hao Tian
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Yaru Ma
- Department of Neurology, Ningxia Medical University, Yinchuan, China
| | - Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Xinxiao Li
- Department of Neurosurgery, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Yinchuan, China.,Department of Neurosurgery, Ningxia Medical University, Yinchuan, China
| | - Ping Yang
- Department of Neurology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
11
|
Zhao Y, Lindberg BG, Esfahani SS, Tang X, Piazza S, Engström Y. Stop codon readthrough alters the activity of a POU/Oct transcription factor during Drosophila development. BMC Biol 2021; 19:185. [PMID: 34479564 PMCID: PMC8417969 DOI: 10.1186/s12915-021-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background A number of cellular processes have evolved in metazoans that increase the proteome repertoire in relation to the genome, such as alternative splicing and translation recoding. Another such process, translational stop codon readthrough (SCR), generates C-terminally extended protein isoforms in many eukaryotes, including yeast, plants, insects, and humans. While comparative genome analyses have predicted the existence of programmed SCR in many species including humans, experimental proof of its functional consequences are scarce. Results We show that SCR of the Drosophila POU/Oct transcription factor Ventral veins lacking/Drifter (Vvl/Dfr) mRNA is prevalent in certain tissues in vivo, reaching a rate of 50% in the larval prothoracic gland. Phylogenetically, the C-terminal extension is conserved and harbors intrinsically disordered regions and amino acid stretches implied in transcriptional activation. Elimination of Vvl/Dfr translational readthrough by CRISPR/Cas9 mutagenesis changed the expression of a large number of downstream genes involved in processes such as chromatin regulation, neurogenesis, development, and immune response. As a proof-of-principle, we demonstrate that the C-terminal extension of Vvl/Dfr is necessary for correct timing of pupariation, by increasing the capacity to regulate its target genes. The extended Vvl/Dfr isoform acts in synergy with the transcription factor Molting defective (Mld) to increase the expression and biosynthesis of the steroid hormone ecdysone, thereby advancing pupariation. Consequently, late-stage larval development was prolonged and metamorphosis delayed in vvl/dfr readthrough mutants. Conclusions We demonstrate that translational recoding of a POU/Oct transcription factor takes place in a highly tissue-specific and temporally controlled manner. This dynamic and regulated recoding is necessary for normal expression of a large number of genes involved in many cellular and developmental processes. Loss of Vvl/Dfr translational readthrough negatively affects steroid hormone biosynthesis and delays larval development and progression into metamorphosis. Thus, this study demonstrates how SCR of a transcription factor can act as a developmental switch in a spatiotemporal manner, feeding into the timing of developmental transitions between different life-cycle stages. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01106-0.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Department of Molecular Biology, Umeå University, SE-901 87, Umeå, SE, Sweden
| | - Bo Gustav Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Shiva Seyedoleslami Esfahani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Stefano Piazza
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, 38010, San Michele a/Adige, Italy
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
12
|
Yamazaki R, Osanai Y, Kouki T, Shinohara Y, Huang JK, Ohno N. Macroscopic detection of demyelinated lesions in mouse PNS with neutral red dye. Sci Rep 2021; 11:16906. [PMID: 34413421 PMCID: PMC8377033 DOI: 10.1038/s41598-021-96395-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Lysophosphatidylcholine (LPC)-induced demyelination is a versatile animal model that is frequently used to identify and examine molecular pathways of demyelination and remyelination in the central (CNS) and peripheral nervous system (PNS). However, identification of focally demyelinated lesion had been difficult and usually required tissue fixation, sectioning and histological analysis. Recently, a method for labeling and identification of demyelinated lesions in the CNS by intraperitoneal injection of neutral red (NR) dye was developed. However, it remained unknown whether NR can be used to label demyelinated lesions in PNS. In this study, we generated LPC-induced demyelination in sciatic nerve of mice, and demonstrated that the demyelinated lesions at the site of LPC injection were readily detectable at 7 days postlesion (dpl) by macroscopic observation of NR labeling. Moreover, NR staining gradually decreased from 7 to 21 dpl over the course of remyelination. Electron microscopy analysis of NR-labeled sciatic nerves at 7 dpl confirmed demyelination and myelin debris in lesions. Furthermore, fluorescence microscopy showed NR co-labeling with activated macrophages and Schwann cells in the PNS lesions. Together, NR labeling is a straightforward method that allows the macroscopic detection of demyelinated lesions in sciatic nerves after LPC injection.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiaki Shinohara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
13
|
Peinado A, Asche-Godin SL, Freidin MM, Abrams CK. Effects of early crush on aging wild type and Connexin 32 knockout mice: Evidence for a neuroprotective state in CMT1X mouse nerve. J Peripher Nerv Syst 2021; 26:167-176. [PMID: 33624350 DOI: 10.1111/jns.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/19/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
The long-term sequelae of nerve injury as well as age-related neurodegeneration have been documented in numerous studies, however the role of Cx32 in these processes is not well understood. There is a need for better understanding of the molecular mechanisms that underlie long-term suboptimal nerve function and for approaches to prevent or improve it. In this communication we describe our studies using whole animal electrophysiology to examine the long-term sequelae of sciatic nerve crush in both WT and Cx32KO mice, a model of X-linked Charcot Marie Tooth disease, a subtype of inherited peripheral neuropathies. We present results from electrical nerve recordings done 14 to 27 days and 18 to 20 months after a unilateral sciatic nerve crush performed on 35 to 37-day old mice. Contrary to expectations, we find that whereas crush injury leads to a degradation of WT nerve function relative to uninjured nerves at 18 to 20 months, previously crushed Cx32KO nerves perform at the same level as their uninjured counterparts. Thus, 18 to 20 months after injury, WT nerves perform below the level of normal (uninjured) WT nerves in both motor and sensory nerve function. In contrast, measures of nerve function in Cx32KO mice are degraded for sensory axons but exhibit no additional dysfunction in motor axons. Early nerve injury has no negative electrophysiologic effect on the Cx32 KO motor nerves. Based on our prior demonstration that the transcriptomic profile of uninjured Cx32KO and injured WT sciatic nerves are very similar, the lack of an additional effect of crush on Cx32KO motor nerve parameters suggests that Cx32 knockout may implement a form of neuroprotection that limits the effects of subsequent injury.
Collapse
Affiliation(s)
- Alejandro Peinado
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Samantha L Asche-Godin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY and The Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Manjunath LE, Singh A, Sahoo S, Mishra A, Padmarajan J, Basavaraju CG, Eswarappa SM. Stop codon read-through of mammalian MTCH2 leading to an unstable isoform regulates mitochondrial membrane potential. J Biol Chem 2020; 295:17009-17026. [PMID: 33028634 PMCID: PMC7863902 DOI: 10.1074/jbc.ra120.014253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3' UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3' UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through-deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sarthak Sahoo
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ashutosh Mishra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Jinsha Padmarajan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|