1
|
Osei-Owusu J, Aidoo OF, Eshun F, Gaikpa DS, Dofuor AK, Vigbedor BY, Turkson BK, Ochar K, Opata J, Opoku MJ, Ninsin KD, Borgemeister C. Buruli ulcer in Africa: Geographical distribution, ecology, risk factors, diagnosis, and indigenous plant treatment options - A comprehensive review. Heliyon 2023; 9:e22018. [PMID: 38034712 PMCID: PMC10686891 DOI: 10.1016/j.heliyon.2023.e22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Buruli ulcer (BU), a neglected tropical disease (NTD), is an infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. The disease has been documented in many South American, Asian, and Western Pacific countries and is widespread throughout much of Africa, especially in West and Central Africa. In rural areas with scarce medical care, BU is a devastating disease that can leave patients permanently disabled and socially stigmatized. Mycobacterium ulcerans is thought to produce a mycolactone toxin, which results in necrosis of the afflicted tissue and may be involved in the etiology of BU. Initially, patients may notice a painless nodule or plaque on their skin; as the disease progresses, however, it may spread to other parts of the body, including the muscles and bones. Clinical signs, microbial culture, and histological analysis of afflicted tissue all contribute to a diagnosis of BU. Though antibiotic treatment and surgical removal of infected tissue are necessary for BU management, plant-derived medicine could be an alternative in areas with limited access to conventional medicine. Herein we reviewed the geographical distribution, socioeconomic, risk factors, diagnosis, biology and ecology of the pathogen. Complex environmental, socioeconomic, and genetic factors that influence BU are discussed. Further, our review highlights future research areas needed to develop strategies to manage the disease through the use of indigenous African plants.
Collapse
Affiliation(s)
- Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Fatima Eshun
- Department of Geography and Earth Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - David Sewordor Gaikpa
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Bright Yaw Vigbedor
- Department of Basic Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Bernard Kofi Turkson
- Department of Herbal Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso, Ghana
| | - John Opata
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr. Opoku
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Christian Borgemeister
- Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany
| |
Collapse
|
2
|
Grosjean I, Roméo B, Domdom MA, Belaid A, D’Andréa G, Guillot N, Gherardi RK, Gal J, Milano G, Marquette CH, Hung RJ, Landi MT, Han Y, Brest P, Von Bergen M, Klionsky DJ, Amos CI, Hofman P, Mograbi B. Autophagopathies: from autophagy gene polymorphisms to precision medicine for human diseases. Autophagy 2022; 18:2519-2536. [PMID: 35383530 PMCID: PMC9629091 DOI: 10.1080/15548627.2022.2039994] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 12/15/2022] Open
Abstract
At a time when complex diseases affect globally 280 million people and claim 14 million lives every year, there is an urgent need to rapidly increase our knowledge into their underlying etiologies. Though critical in identifying the people at risk, the causal environmental factors (microbiome and/or pollutants) and the affected pathophysiological mechanisms are not well understood. Herein, we consider the variations of autophagy-related (ATG) genes at the heart of mechanisms of increased susceptibility to environmental stress. A comprehensive autophagy genomic resource is presented with 263 single nucleotide polymorphisms (SNPs) for 69 autophagy-related genes associated with 117 autoimmune, inflammatory, infectious, cardiovascular, neurological, respiratory, and endocrine diseases. We thus propose the term 'autophagopathies' to group together a class of complex human diseases the etiology of which lies in a genetic defect of the autophagy machinery, whether directly related or not to an abnormal flux in autophagy, LC3-associated phagocytosis, or any associated trafficking. The future of precision medicine for common diseases will lie in our ability to exploit these ATG SNP x environment relationships to develop new polygenetic risk scores, new management guidelines, and optimal therapies for afflicted patients.Abbreviations: ATG, autophagy-related; ALS-FTD, amyotrophic lateral sclerosis-frontotemporal dementia; ccRCC, clear cell renal cell carcinoma; CD, Crohn disease; COPD, chronic obstructive pulmonary disease; eQTL, expression quantitative trait loci; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; GTEx, genotype-tissue expression; GWAS, genome-wide association studies; LAP, LC3-associated phagocytosis; LC3-II, phosphatidylethanolamine conjugated form of LC3; LD, linkage disequilibrium; LUAD, lung adenocarcinoma; MAF, minor allele frequency; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NSCLC, non-small cell lung cancer; OS, overall survival; PtdIns3K CIII, class III phosphatidylinositol 3 kinase; PtdIns3P, phosphatidylinositol-3-phosphate; SLE, systemic lupus erythematosus; SNPs, single-nucleotide polymorphisms; mQTL, methylation quantitative trait loci; ULK, unc-51 like autophagy activating kinase; UTRs, untranslated regions; WHO, World Health Organization.
Collapse
Affiliation(s)
- Iris Grosjean
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Barnabé Roméo
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Marie-Angela Domdom
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Amine Belaid
- Université Côte d’Azur (UCA), INSERM U1065, C3M, Team 5, F-06204, France
| | - Grégoire D’Andréa
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- ENT and Head and Neck surgery department, Institut Universitaire de la Face et du Cou, CHU de Nice, University Hospital, Côte d’Azur University, Nice, France
| | - Nicolas Guillot
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Romain K Gherardi
- INSERM U955 Team Relais, Faculty of Health, Paris Est University, France
| | - Jocelyn Gal
- University Côte d’Azur, Centre Antoine Lacassagne, Epidemiology and Biostatistics Department, Nice, France
| | - Gérard Milano
- Université Côte d’Azur, Centre Antoine Lacassagne, UPR7497, Nice, France
| | - Charles Hugo Marquette
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, Department of Pulmonary Medicine and Oncology, CHU de Nice, Nice, France
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Brest
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| | - Martin Von Bergen
- Helmholtz Centre for Environmental Research GmbH - UFZ, Dep. of Molecular Systems Biology; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Daniel J. Klionsky
- University of Michigan, Life Sciences Institute, Ann Arbor, MI, 48109, USA
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Paul Hofman
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
- University Côte d’Azur, FHU-OncoAge, CHU de Nice, Laboratory of Clinical and Experimental Pathology (LPCE) Biobank(BB-0033-00025), Nice, France
| | - Baharia Mograbi
- University Côte d’Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Centre Antoine Lacassagne, France
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The aim of this article is to review the most recent evidences concerning mycobacterial skin infections, limiting the period of literature research to 2020--2021. RECENT FINDINGS Mycobacterial skin infections include a heterogeneous group of cutaneous diseases.Cutaneous tuberculosis is usually the result of hematogenous dissemination or spread from underlying foci and it must be distinguished from tuberculids, resulting from the immunological reaction to Mycobacterium tuberculosis antigens. Leprosy prevalence was drastically reduced after introduction of multidrug therapy in the 1980 s, but cases are still reported due to underdiagnosis, and animal and environmental reservoirs. Recent advances concentrate in the diagnostic field. Specific guidelines for the treatment of nontuberculous mycobacteria skin infections are missing and surgical procedures may be required. Prognosis is better as compared to nontuberculous mycobacteria lung disease. Rapid laboratory-confirmed diagnosis of Buruli ulcer may be achieved by the IS2404 PCR. Among new drugs, telacebec is promising in terms of potency, shorter duration and tolerability in animal studies. A clinical trial in humans is planned. SUMMARY Mycobacterial cutaneous lesions are nonpathognomonic and clinical suspicion must be confirmed by culture or molecular detection. Long-course multidrug treatment is required based on susceptibility tests. Surgical intervention may also be required. Rehabilitation and psychosocial support reduce long-term physical and mental consequences mostly in Buruli ulcer and leprosy.
Collapse
|
4
|
Hall BS, Hsieh LTH, Sacre S, Simmonds RE. The One That Got Away: How Macrophage-Derived IL-1β Escapes the Mycolactone-Dependent Sec61 Blockade in Buruli Ulcer. Front Immunol 2022; 12:788146. [PMID: 35154073 PMCID: PMC8826060 DOI: 10.3389/fimmu.2021.788146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is a devastating necrotizing skin disease. Key to its pathogenesis is mycolactone, the exotoxin virulence factor that is both immunosuppressive and cytotoxic. The discovery that the essential Sec61 translocon is the major cellular target of mycolactone explains much of the disease pathology, including the immune blockade. Sec61 inhibition leads to a loss in production of nearly all cytokines from monocytes, macrophages, dendritic cells and T cells, as well as antigen presentation pathway proteins and costimulatory molecules. However, there has long been evidence that the immune system is not completely incapable of responding to M. ulcerans infection. In particular, IL-1β was recently shown to be present in BU lesions, and to be induced from M. ulcerans-exposed macrophages in a mycolactone-dependent manner. This has important implications for our understanding of BU, showing that mycolactone can act as the "second signal" for IL-1β production without inhibiting the pathways of unconventional secretion it uses for cellular release. In this Perspective article, we validate and discuss this recent advance, which is entirely in-line with our understanding of mycolactone's inhibition of the Sec61 translocon. However, we also show that the IL-1 receptor, which uses the conventional secretory pathway, is sensitive to mycolactone blockade at Sec61. Hence, a more complete understanding of the mechanisms regulating IL-1β function in skin tissue, including the transient intra-macrophage stage of M. ulcerans infection, is urgently needed to uncover the double-edged sword of IL-1β in BU pathogenesis, treatment and wound healing.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
5
|
Gnimavo R, Besnard A, Degnonvi H, Pipoli Da Fonseca J, Kempf M, Johnson CR, Boccarossa A, Brou YT, Marsollier L, Marion E. Molecular and epidemiological characterization of recurrent Mycobacterium ulcerans infections in Benin. PLoS Negl Trop Dis 2021; 15:e0010053. [PMID: 34962930 PMCID: PMC8746791 DOI: 10.1371/journal.pntd.0010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/10/2022] [Accepted: 12/04/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Buruli ulcer is a neglected tropical disease caused by Mycobacterium ulcerans, an environmental mycobacterium. Although transmission of M. ulcerans remains poorly understood, the main identified risk factor for acquiring Buruli ulcer is living in proximity of potentially contaminated water sources. Knowledge about the clinical features of Buruli ulcer and its physiopathology is increasing, but little is known about recurrence due to reinfection. METHODOLOGY/PRINCIPAL FINDINGS We describe two patients with Buruli ulcer recurrence due to reinfection with M. ulcerans, as demonstrated by comparisons of DNA from the strains isolated at the time of the first diagnosis and at recurrence. Based on the spatial distribution of M. ulcerans genotypes in this region and a detailed study of the behavior of these two patients with respect to sources of water as well as water bodies and streams, we formulated hypotheses concerning the sites at which they may have been contaminated. CONCLUSIONS/SIGNIFICANCE Second episodes of Buruli ulcer may occur through reinfection, relapse or a paradoxical reaction. We formally demonstrated that the recurrence in these two patients was due to reinfection. Based on the sites at which the patients reported engaging in activities relating to water, we were able to identify possible sites of contamination. Our findings indicate that the non-random distribution of M. ulcerans genotypes in this region may provide useful information about activities at risk.
Collapse
Affiliation(s)
- Ronald Gnimavo
- Centre de Diagnostic et de Traitement de l’ulcère de Buruli, Fondation Raoul Follereau, Pobè, Bénin
| | | | - Horace Degnonvi
- Univ Angers, Inserm, INCIT, Angers, France
- Centre Inter Facultaire de Formation et de Recherche en Environnement pour le Développement Durable (CIFRED), Université d’Abomey Calavi (UAC), Cotonou, Benin
| | | | - Marie Kempf
- Univ Angers, Inserm, CHU Angers, INCIT, Angers, France
| | - Christian Roch Johnson
- Centre Inter Facultaire de Formation et de Recherche en Environnement pour le Développement Durable (CIFRED), Université d’Abomey Calavi (UAC), Cotonou, Benin
| | - Alexandra Boccarossa
- Univ Angers, Inserm, INCIT, Angers, France
- CNRS, UMR ESO, Université d’Angers, Angers, France
| | - Yao Télesphore Brou
- UMR 228 ESPACE-DEV (IRD, UAG, UM, UR), Station SEAS-OI, Saint Pierre, Ile de la Réunion, France
| | | | | |
Collapse
|
6
|
Joshi G, Quadir SS, Yadav KS. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions. J Control Release 2021; 339:51-74. [PMID: 34555491 DOI: 10.1016/j.jconrel.2021.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
Neglected tropical disease (NTD) is a set of 20 deadliest endemic diseases which shows its presence in most of the developing countries worldwide. Nearly 1 billion of the population are affected by it and suffered from poverty yearly. These diseases offer their own unique challenges and limitations towards effective prevention and treatment methods. Neglected tropical diseases are severe infections they may not kill the patient but debilitate the patient by causing severe skin deformities, disfigurement and horrible risks for several infections. Existing therapies for neglected diseases suffer from the loopholes like high degree of toxicity, side effects, low bioavailability, improper targeting and problematic application for affected populations. Progress in the field of nanotechnology in last decades suggested the intervention of nanocarriers to take over and drive the research and development to the next level by incorporating established drugs into the nanocarriers rather than discovering the newer drugs which is an expensive affair. These nanocarriers are believed to be a sure shot technique to fight infections at root level by virtue of its nanosize and ability to reach at cellular level. This article highlights the recent advances, rationale, targets and the challenges that are being faced to fight against NTDs and how the novel therapy tactics are able to contribute to its importance in prevention and treatment of NTDs.
Collapse
Affiliation(s)
- Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai 400056, India.
| |
Collapse
|
7
|
Silwal P, Kim IS, Jo EK. Autophagy and Host Defense in Nontuberculous Mycobacterial Infection. Front Immunol 2021; 12:728742. [PMID: 34552591 PMCID: PMC8450401 DOI: 10.3389/fimmu.2021.728742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is critically involved in host defense pathways through targeting and elimination of numerous pathogens via autophagic machinery. Nontuberculous mycobacteria (NTMs) are ubiquitous microbes, have become increasingly prevalent, and are emerging as clinically important strains due to drug-resistant issues. Compared to Mycobacterium tuberculosis (Mtb), the causal pathogen for human tuberculosis, the roles of autophagy remain largely uncharacterized in the context of a variety of NTM infections. Compelling evidence suggests that host autophagy activation plays an essential role in the enhancement of antimicrobial immune responses and controlling pathological inflammation against various NTM infections. As similar to Mtb, it is believed that NTM bacteria evolve multiple strategies to manipulate and hijack host autophagy pathways. Despite this, we are just beginning to understand the molecular mechanisms underlying the crosstalk between pathogen and the host autophagy system in a battle with NTM bacteria. In this review, we will explore the function of autophagy, which is involved in shaping host–pathogen interaction and disease outcomes during NTM infections. These efforts will lead to the development of autophagy-based host-directed therapeutics against NTM infection.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, South Korea
| |
Collapse
|
8
|
Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges. One Health 2021; 13:100311. [PMID: 34485670 PMCID: PMC8403752 DOI: 10.1016/j.onehlt.2021.100311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Buruli ulcer (BU), the second most common mycobacterial disease in West Africa, is a necrotizing skin disease that can lead to high morbidity in affected patients. The disease is caused by Mycobacterium ulcerans (MU), whose major virulence factor is mycolactone. Although early infection can be treated with antibiotics, an effective preventative strategy is challenging due to unknown reservoir(s) and unresolved mode(s) of transmission. Further, disease occurrence in remote locations with limited access to health facilities further complicates disease burden and associated costs. We discuss here MU transmission hypotheses and investigations into environmental reservoirs and discuss successes and challenges of studying MU and Buruli ulcer across human, animal, and environmental interfaces. We argue that a One Health approach is needed to advance the understanding of MU transmission and designing management scenarios that prevent and respond to epidemics. Although previous work has provided significant insights into risk factors, epidemiology and clinical perspectives of disease, understanding the bacterial ecology, environmental niches and role of mycolactone in natural environments and during infection of the human host remains equally important to better understanding and preventing this mysterious disease.
Collapse
|
9
|
Hall BS, Dos Santos SJ, Hsieh LTH, Manifava M, Ruf MT, Pluschke G, Ktistakis N, Simmonds RE. Inhibition of the SEC61 translocon by mycolactone induces a protective autophagic response controlled by EIF2S1-dependent translation that does not require ULK1 activity. Autophagy 2021; 18:841-859. [PMID: 34424124 PMCID: PMC9037441 DOI: 10.1080/15548627.2021.1961067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium ulcerans exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR). Here we show mycolactone increased canonical markers of selective macroautophagy/autophagy LC3B-II, ubiquitin and SQSTM1/p62 in diverse disease-relevant primary cells and cell lines. Increased formation of puncta positive for the early autophagy markers WIPI2, RB1CC1/FIP200 and ATG16L1 indicates increased initiation of autophagy. The mycolactone response was SEC61A1-dependent and involved a pathway that required RB1CC1 but not ULK. Deletion of Sqstm1 reduced cell survival in the presence of mycolactone, suggesting this response protects against the increased cytosolic protein burden caused by the toxin. However, reconstitution of baseline SQSTM1 expression in cells lacking all autophagy receptor proteins could not rescue viability. Translational regulation by EIF2S1 in the ISR plays a key role in the autophagic response to mycolactone. Mycolactone-dependent induction of SQSTM1 was reduced in eif2ak3−/-/perk−/- cells while the p-EIF2S1 antagonist ISRIB reversed the upregulation of SQSTM1 and reduced RB1CC1, WIPI2 and LC3B puncta formation. Increased SQSTM1 staining could be seen in Buruli ulcer patient skin biopsy samples, reinforcing genetic data that suggests autophagy is relevant to disease pathology. Since selective autophagy and the ISR are both implicated in neurodegeneration, cancer and inflammation, the pathway uncovered here may have a broad relevance to human disease. Abbreviations: ATF4: activating transcription factor 4; ATG: autophagy related; BAF: bafilomycin A1; ATG16L1: autophagy related 16 like 1; BU: Buruli ulcer; CQ: chloroquine; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; CALCOCO2: calcium binding and coiled-coil domain 2; DMSO: dimethyl sulfoxide; EIF2S1: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; GFP: green fluorescent protein; HDMEC: human dermal microvascular endothelial cells; HFFF: human fetal foreskin fibroblasts; ISR: integrated stress response; ISRIB: integrated stress response inhibitor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Myco: mycolactone; NBR1: NBR1 autophagy cargo receptor; NFE2L2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PFA: paraformaldehyde; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1: RB1-inducible coiled coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase; UPS: ubiquitin-proteasome system; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Scott J Dos Santos
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Marie-Thérèse Ruf
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | | | - Rachel E Simmonds
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
10
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Fevereiro J, Fraga AG, Capela C, Sopoh GE, Dossou A, Ayelo GA, Peixoto MJ, Cunha C, Carvalho A, Rodrigues F, Pedrosa J. Genetic variants in human BCL2L11 ( BIM) are associated with ulcerative forms of Buruli ulcer. Emerg Microbes Infect 2021; 10:223-225. [PMID: 33467983 PMCID: PMC7889264 DOI: 10.1080/22221751.2021.1878936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Buruli ulcer (BU) is a devastating skin mycobacterial infection characterized by extensive cell death, which was previously suggested to be mediated by Bcl2-like protein 11 (BIM, encoded by the BCL2L11 gene). We here report the association of genetic variants in BCL2L11 with ulcerative forms of the disease in a cohort of 618 Beninese individuals. Our results show that regulation of apoptosis in humans contributes to BU lesions associated with worse prognosis, prompting for further investigation on the implementation of novel methods for earlier identification of at-risk patients.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Carlos Capela
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ghislain E Sopoh
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli d'Allada, Ministry of Health, Allada, Bénin.,Institut Régional de Santé Publique, University of Abomey-Calavi, Ouidah, Bénin
| | - Ange Dossou
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli d'Allada, Ministry of Health, Allada, Bénin
| | - Gilbert Adjimon Ayelo
- Centre de Dépistage et de Traitement de l'Ulcère de Buruli d'Allada, Ministry of Health, Allada, Bénin
| | - Maria João Peixoto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Strong EJ, Lee S. Targeting Autophagy as a Strategy for Developing New Vaccines and Host-Directed Therapeutics Against Mycobacteria. Front Microbiol 2021; 11:614313. [PMID: 33519771 PMCID: PMC7840607 DOI: 10.3389/fmicb.2020.614313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mycobacterial disease is an immense burden worldwide. This disease group includes tuberculosis, leprosy (Hansen's disease), Buruli Ulcer, and non-tuberculous mycobacterial (NTM) disease. The burden of NTM disease, both pulmonary and ulcerative, is drastically escalating globally, especially in developed countries such as America and Australia. Mycobacteria's ability to inhibit or evade the host immune system has contributed significantly to its continued prevalence. Pre-clinical studies have highlighted promising candidates that enhance endogenous pathways and/or limit destructive host responses. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents, small molecules, and autophagy-activating vaccines may be beneficial in restricting intracellular mycobacterial infection, even with multidrug-resistant strains. This review will examine how mycobacteria evade autophagy and discusses how autophagy could be exploited to design novel TB treatment strategies, such as host-directed therapeutics and vaccines, against Mycobacterium tuberculosis and NTMs.
Collapse
Affiliation(s)
| | - Sunhee Lee
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
13
|
Gzara C, Dallmann-Sauer M, Orlova M, Van Thuc N, Thai VH, Fava VM, Bihoreau MT, Boland A, Abel L, Alcaïs A, Schurr E, Cobat A. Family-based genome-wide association study of leprosy in Vietnam. PLoS Pathog 2020; 16:e1008565. [PMID: 32421744 PMCID: PMC7259797 DOI: 10.1371/journal.ppat.1008565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/29/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Leprosy is a chronic infectious disease of the skin and peripheral nerves with a strong genetic predisposition. Recent genome-wide approaches have identified numerous common variants associated with leprosy, almost all in the Chinese population. We conducted the first family-based genome-wide association study of leprosy in 622 affected offspring from Vietnam, followed by replication in an independent sample of 1181 leprosy cases and 668 controls of the same ethnic origin. The most significant results were observed within the HLA region, in which six SNPs displayed genome-wide significant associations, all of which were replicated in the independent case/control sample. We investigated the signal in the HLA region in more detail, by conducting a multivariate analysis on the case/control sample of 319 GWAS-suggestive HLA hits for which evidence for replication was obtained. We identified three independently associated SNPs, two located in the HLA class I region (rs1265048: OR = 0.69 [0.58-0.80], combined p-value = 5.53x10-11; and rs114598080: OR = 1.47 [1.46-1.48], combined p-value = 8.77x10-13), and one located in the HLA class II region (rs3187964 (OR = 1.67 [1.55-1.80], combined p-value = 8.35x10-16). We also validated two previously identified risk factors for leprosy: the missense variant rs3764147 in the LACC1 gene (OR = 1.52 [1.41-1.63], combined p-value = 5.06x10-14), and the intergenic variant rs6871626 located close to the IL12B gene (OR = 0.73 [0.61-0.84], combined p-value = 6.44x10-8). These results shed new light on the genetic control of leprosy, by dissecting the influence of HLA SNPs, and validating the independent role of two additional variants in a large Vietnamese sample.
Collapse
Affiliation(s)
- Chaima Gzara
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
| | - Monica Dallmann-Sauer
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine and Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marianna Orlova
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine and Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Nguyen Van Thuc
- Hospital for Dermato-Venereology, District, Ho Chi Minh City, Vietnam
| | - Vu Hong Thai
- Hospital for Dermato-Venereology, District, Ho Chi Minh City, Vietnam
| | - Vinicius M. Fava
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marie-Thérèse Bihoreau
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, United States of America
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
| | - Erwin Schurr
- McGill International TB Centre, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Medicine and Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Université de Paris, Imagine Institute, Paris, France
- * E-mail:
| |
Collapse
|
14
|
Abstract
Buruli ulcer, the third most common mycobacterial disease worldwide, is caused by Mycobacterium ulcerans and characterized by devastating necrotizing skin lesions. Susceptibility to Buruli ulcer is thought to depend on host genetics, but very few genetic studies have been performed. The identification of a microdeletion on chromosome 8 in a familial form of severe Buruli ulcer suggested a monogenic basis of susceptibility. The role of common host genetic variants in Buruli ulcer development has been investigated in only three candidate-gene studies targeting genes involved in mycobacterial diseases. A recent genome-wide association study suggested a probable role for long non-coding RNAs and strengthened the contribution of autophagy as a major defense mechanism against mycobacteria. In this review, we summarize the history, epidemiological and clinical aspects of Buruli ulcer, focusing particularly on genetic findings relating to susceptibility to this disease. Finally, we discuss exciting new genetic avenues arising, in particular, from studies of mouse models, and the need for different disciplines to work together, to benefit from the extensive work on other mycobacterial diseases, mostly tuberculosis and leprosy. We are convinced that such pooling of effort will lead to the development of efficient novel strategies for combatting Buruli ulcer.
Collapse
|