1
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Sadria M, Layton A, Goyal S, Bader GD. Fatecode enables cell fate regulator prediction using classification-supervised autoencoder perturbation. CELL REPORTS METHODS 2024; 4:100819. [PMID: 38986613 PMCID: PMC11294839 DOI: 10.1016/j.crmeth.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 11/20/2023] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Cell reprogramming, which guides the conversion between cell states, is a promising technology for tissue repair and regeneration, with the ultimate goal of accelerating recovery from diseases or injuries. To accomplish this, regulators must be identified and manipulated to control cell fate. We propose Fatecode, a computational method that predicts cell fate regulators based only on single-cell RNA sequencing (scRNA-seq) data. Fatecode learns a latent representation of the scRNA-seq data using a deep learning-based classification-supervised autoencoder and then performs in silico perturbation experiments on the latent representation to predict genes that, when perturbed, would alter the original cell type distribution to increase or decrease the population size of a cell type of interest. We assessed Fatecode's performance using simulations from a mechanistic gene-regulatory network model and scRNA-seq data mapping blood and brain development of different organisms. Our results suggest that Fatecode can detect known cell fate regulators from single-cell transcriptomics datasets.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.
| | - Anita Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada; Department of Biology, University of Waterloo, Waterloo, ON, Canada; School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
3
|
Wang X, Xie J, Tan L, Lu Y, Shen N, Li J, Hu H, Li H, Li X, Cheng L. N6-methyladenosine-modified circRIMS2 mediates synaptic and memory impairments by activating GluN2B ubiquitination in Alzheimer's disease. Transl Neurodegener 2023; 12:53. [PMID: 38012808 PMCID: PMC10683276 DOI: 10.1186/s40035-023-00386-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Synaptic degeneration occurs in the early stage of Alzheimer's disease (AD) before devastating symptoms, strongly correlated with cognitive decline. Circular RNAs (circRNAs) are abundantly enriched in neural tissues, and aberrant expression of circRNAs precedes AD symptoms, significantly correlated with clinical dementia severity. However, the direct relationship between circRNA dysregulation and synaptic impairment in the early stage of AD remains poorly understood. METHODS Hippocampal whole-transcriptome sequencing was performed to identify dysregulated circRNAs and miRNAs in 4-month-old wild-type and APP/PS1 mice. RNA antisense purification and mass spectrometry were utilized to unveil interactions between circRIMS2 and methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit (METTL3). The roles of circRIMS2/miR-3968 in synaptic targeting of UBE2K-mediated ubiquitination of GluN2B subunit of NMDA receptor were evaluated via numerous lentiviruses followed by morphological staining, co-immunoprecipitation and behavioral testing. Further, a membrane-permeable peptide was used to block the ubiquitination of K1082 on GluN2B in AD mice. RESULTS circRIMS2 was significantly upregulated in 4-month-old APP/PS1 mice, which was mediated by METTL3-dependent N6-methyladenosine (m6A) modification. Overexpression of circRIMS2 led to synaptic and memory impairments in 4-month-old C57BL/6 mice. MiR-3968/UBE2K was validated as the downstream of circRIMS2. Elevated UBE2K induced synaptic dysfunction of AD through ubiquitinating K1082 on GluN2B. Silencing METTL3 or blocking the ubiquitination of K1082 on GluN2B with a short membrane-permeable peptide remarkably rescued synaptic dysfunction in AD mice. CONCLUSIONS In conclusion, our study demonstrated that m6A-modified circRIMS2 mediates the synaptic and memory impairments in AD by activating the UBE2K-dependent ubiquitination and degradation of GluN2B via sponging miR-3968, providing novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jiazhao Xie
- Departments of Pathophysiology, Guangxi Medical University, Nanning, 530021, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu Tan
- Hepatic Biliary Pancreatic Surgery Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Hu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Chai X, Tao Q, Li L. The role of RING finger proteins in chromatin remodeling and biological functions. Epigenomics 2023; 15:1053-1068. [PMID: 37964749 DOI: 10.2217/epi-2023-0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Mammalian DNA duplexes are highly condensed with different components, including histones, enabling chromatin formation. Chromatin remodeling is involved in multiple biological processes, including gene transcription regulation and DNA damage repair. Recent research has highlighted the significant involvement of really interesting new gene (RING) finger proteins in chromatin remodeling, primarily attributed to their E3 ubiquitin ligase activities. In this review, we highlight the pivotal role of RING finger proteins in chromatin remodeling and provide an overview of their capacity to ubiquitinate specific histones, modulate ATP-dependent chromatin remodeling complexes and interact with various histone post-translational modifications. We also discuss the diverse biological effects of RING finger protein-mediated chromatin remodeling and explore potential therapeutic strategies for targeting these proteins.
Collapse
Affiliation(s)
- Xiaoxue Chai
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Lee HJ, Alirzayeva H, Koyuncu S, Rueber A, Noormohammadi A, Vilchez D. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. NATURE AGING 2023; 3:546-566. [PMID: 37118550 DOI: 10.1038/s43587-023-00383-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/17/2023] [Indexed: 04/30/2023]
Abstract
Aging is a primary risk factor for neurodegenerative disorders that involve protein aggregation. Because lowering body temperature is one of the most effective mechanisms to extend longevity in both poikilotherms and homeotherms, a better understanding of cold-induced changes can lead to converging modifiers of pathological protein aggregation. Here, we find that cold temperature (15 °C) selectively induces the trypsin-like activity of the proteasome in Caenorhabditis elegans through PSME-3, the worm orthologue of human PA28γ/PSME3. This proteasome activator is required for cold-induced longevity and ameliorates age-related deficits in protein degradation. Moreover, cold-induced PA28γ/PSME-3 diminishes protein aggregation in C. elegans models of age-related diseases such as Huntington's and amyotrophic lateral sclerosis. Notably, exposure of human cells to moderate cold temperature (36 °C) also activates trypsin-like activity through PA28γ/PSME3, reducing disease-related protein aggregation and neurodegeneration. Together, our findings reveal a beneficial role of cold temperature that crosses evolutionary boundaries with potential implications for multi-disease prevention.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amirabbas Rueber
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Anbazhagan R, Kavarthapu R, Dale R, Campbell K, Faucz FR, Dufau ML. miRNA Expression Profiles of Mouse Round Spermatids in GRTH/DDX25-Mediated Spermiogenesis: mRNA-miRNA Network Analysis. Cells 2023; 12:756. [PMID: 36899892 PMCID: PMC10001410 DOI: 10.3390/cells12050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
GRTH/DDX25 is a testis-specific DEAD-box family of RNA helicase, which plays an essential role in spermatogenesis and male fertility. There are two forms of GRTH, a 56 kDa non-phosphorylated form and a 61 kDa phosphorylated form (pGRTH). GRTH-KO and GRTH Knock-In (KI) mice with R242H mutation (lack pGRTH) are sterile with a spermatogenic arrest at step 8 of spermiogenesis due to failure of round spermatids (RS) to elongate. We performed mRNA-seq and miRNA-seq analysis on RS of WT, KI, and KO to identify crucial microRNAs (miRNAs) and mRNAs during RS development by establishing a miRNA-mRNA network. We identified increased levels of miRNAs such as miR146, miR122a, miR26a, miR27a, miR150, miR196a, and miR328 that are relevant to spermatogenesis. mRNA-miRNA target analysis on these DE-miRNAs and DE-mRNAs revealed miRNA target genes involved in ubiquitination process (Ube2k, Rnf138, Spata3), RS differentiation, and chromatin remodeling/compaction (Tnp1/2, Prm1/2/3, Tssk3/6), reversible protein phosphorylation (Pim1, Hipk1, Csnk1g2, Prkcq, Ppp2r5a), and acrosome stability (Pdzd8). Post-transcriptional and translational regulation of some of these germ-cell-specific mRNAs by miRNA-regulated translation arrest and/or decay may lead to spermatogenic arrest in KO and KI mice. Our studies demonstrate the importance of pGRTH in the chromatin compaction and remodeling process, which mediates the differentiation of RS into elongated spermatids through miRNA-mRNA interactions.
Collapse
Affiliation(s)
- Rajakumar Anbazhagan
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fabio R. Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Xiao J, Zhou YN, Yang YL, He L, Wang KK, Chen M. Study on the pathogenesis of MiR-6324 regulating diarrheal irritable bowel syndrome and bioinformatics analysis. Front Pharmacol 2023; 14:1044330. [PMID: 36873998 PMCID: PMC9975503 DOI: 10.3389/fphar.2023.1044330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Objective: To investigate the pathogenesis of IBS-D by bioinformatics analysis of the differential microRNAs in rat colon tissue and to analyze and predict the function of their target genes. Methods: Twenty male Wistar rats of SPF class were randomly divided into two groups, the model group was manipulated using the colorectal dilatation method + chronic restraint stress method to establish the IBS-D model; while the blank group stroked the perineum at the same frequency. Screening of differential miRNAs after High-throughput sequencing of rat colon tissue. GO and KEGG analysis of target genes using the DAVID website, further mapping using RStudio software; the STRING database and the Cytoscape software were used to obtain the protein interaction network (PPI) of the target genes as well as the core genes. Finally, qPCR was used to detect the expression of target genes in the colon tissue of two groups of rats. Results: After the screening, miR-6324 was obtained as the key of this study. The GO analysis of target genes of miR-6324 is mainly involved in protein phosphorylation, positive regulation of cell proliferation, and intracellular signal transduction; it affects a variety of cellular components such as cytoplasm, nucleus, and organelles on the intracellular surface; it is also involved in molecular functions such as protein binding, ATP binding, and DNA binding. KEGG analysis showed that the intersecting target genes were mainly enriched in cancer pathways, proteoglycans in cancer, neurotrophic signaling pathway, etc. The protein-protein interaction network screened out the core genes mainly Ube2k, Rnf41, Cblb, Nek2, Nde1, Cep131, Tgfb2, Qsox1, and Tmsb4x. The qPCR results showed that the expression of miR-6324 decreased in the model group, but the decrease was not significant. Conclusion: miR-6324 may be involved in the pathogenesis of IBS-D as a potential biological target and provide further ideas for research on the pathogenesis of the disease or treatment options.
Collapse
Affiliation(s)
- Jin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan-ni Zhou
- Sichuan Hospital of Integrative Medicine TCM, Chengdu, Sichuan, China
| | - Yan-lin Yang
- Zigong Fifth People’s Hospital, Zigong, Sichuan, China
| | - Li He
- Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ke-kai Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Guo J, Zhao J. N6-Methyladenosine Modification and Prognostic Analysis of UBE2K in Hepatocellular Carcinoma: A Potential Target. Crit Rev Eukaryot Gene Expr 2023; 33:41-55. [PMID: 37606163 DOI: 10.1615/critreveukaryotgeneexpr.2023048801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The treatment of hepatocellular carcinoma (HCC) is still relatively lacking, the prognosis is poor, and the potential mechanism of carcinogenesis has not been thoroughly studied. In this study, Ubiquitin-conjugating enzyme E2K (UBE2K) transcript levels in HCC patients were up-regulated in two databases, GEO and TCGA. External validation was performed using Western blot experiments. Compared to normal liver cells, UBE2K was upregulated in HCC cell lines. The survival curve and prognosis model revealed that the expression of UBE2K was of high prognostic value in patients with HCC. Transwell assay, wound healing assay and sphere formation assay were used to evaluate the effects of knockdown and overexpression of UBE2K on HCC cells. Overexpression of UBE2K promoted the invasion, migration and stemness of HCC cells, while knocking down UBE2K attenuated the invasion, migration and stemness of HCC cells. Then, through a series of functional analysis (GO and KEEG), it was found that UBE2K played an important role in mRNA processing. We speculate that UBE2K may be involved in HCC progression through its own N6-methyladenosine modification. We therefore used a global methylation inhibitor (3-deazaadenosine) to treat HCC cells and found a gradient increase in the mRNA level of UBE2K. Collectively, the results suggest that UBE2K may be a promising molecular target for the treatment of HCC.
Collapse
Affiliation(s)
- Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao 266071, China
| | - Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Zhao S, Zhang C, Xu J, Liu S, Yu L, Chen S, Wen H, Li Z, Liu N. Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Res Ther 2022; 13:169. [PMID: 35477484 PMCID: PMC9044575 DOI: 10.1186/s13287-022-02846-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Developmental pluripotency-associated 3 (Dppa3, also called Stella or PGC7) is a principal maternal protein specially expressed in pre-implantation embryos, embryonic stem cells (ES cells) and primordial germ cells (PGCs). It plays critical role in the regulating of DNA methylation in zygotes and oocytes. However, the effect of Dppa3 in ES cells on the stability of proteins is still unclear. METHODS In this study, we first identified the potential interacting proteins with Dppa3 using immunoprecipitation-mass spectrometry (IP-MS). After GO analysis, we further constructed Dppa3-silenced ES cells and ES cell lines overexpressing with different lengths of Dppa3 to explore the mechanisms of Dppa3 on protein stability. RESULTS IP-MS results showed that Dppa3 interacted with quite a few subunits of 26S proteasome. Full length of Dppa3 stabilized Uhrf1 and Nanog by inhibiting its degradation. Silencing Dppa3 promoted degradation of Nanog protein. CONCLUSIONS Our results indicated that Dppa3 safeguard the stability of Uhrf1 and Nanog by inhibiting proteasome-associated degradation in ES cells. These findings shed light on new function of Dppa3 in maintaining stability of proteins and provides a valuable resource for understanding the roles of Dppa3 in embryonic stem cells.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chuanyu Zhang
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Jia Xu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Siying Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Lu Yu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Shang Chen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Hang Wen
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China
| | - Zongjin Li
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China.,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Na Liu
- School of Medicine, Nankai University, 94# Weijin Road, Tianjin, 300071, China. .,Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
Abstract
Hepatic fibrosis is a reversible wound healing process following liver injury. Although this process is necessary for maintaining liver integrity, severe excessive extracellular matrix accumulation (ECM) could lead to permanent scar formation and destroy the liver structure. The activation of hepatic stellate cells (HSCs) is a key event in hepatic fibrosis. Previous studies show that most antifibrotic therapies focus on the apoptosis of HSCs and the prevention of HSC activation. Noncoding RNAs (ncRNAs) play a substantial role in HSC activation and are likely to be biomarkers or therapeutic targets for the treatment of hepatic fibrosis. This review summarizes and discusses the previously reported ncRNAs, including the microRNAs, long noncoding RNAs, and circular RNAs, highlighting their regulatory roles and interactions in the signaling pathways that regulate HSC activation in hepatic fibrosis.
Collapse
|
11
|
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm (Vienna) 2021; 129:141-172. [PMID: 34689261 PMCID: PMC8541819 DOI: 10.1007/s00702-021-02431-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin–proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.
Collapse
Affiliation(s)
- Franziska Hommen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Saygın Bilican
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. .,Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Koyuncu S, Loureiro R, Lee HJ, Wagle P, Krueger M, Vilchez D. Rewiring of the ubiquitinated proteome determines ageing in C. elegans. Nature 2021; 596:285-290. [PMID: 34321666 PMCID: PMC8357631 DOI: 10.1038/s41586-021-03781-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Ageing is driven by a loss of cellular integrity1. Given the major role of ubiquitin modifications in cell function2, here we assess the link between ubiquitination and ageing by quantifying whole-proteome ubiquitin signatures in Caenorhabditis elegans. We find a remodelling of the ubiquitinated proteome during ageing, which is ameliorated by longevity paradigms such as dietary restriction and reduced insulin signalling. Notably, ageing causes a global loss of ubiquitination that is triggered by increased deubiquitinase activity. Because ubiquitination can tag proteins for recognition by the proteasome3, a fundamental question is whether deficits in targeted degradation influence longevity. By integrating data from worms with a defective proteasome, we identify proteasomal targets that accumulate with age owing to decreased ubiquitination and subsequent degradation. Lowering the levels of age-dysregulated proteasome targets prolongs longevity, whereas preventing their degradation shortens lifespan. Among the proteasomal targets, we find the IFB-2 intermediate filament4 and the EPS-8 modulator of RAC signalling5. While increased levels of IFB-2 promote the loss of intestinal integrity and bacterial colonization, upregulation of EPS-8 hyperactivates RAC in muscle and neurons, and leads to alterations in the actin cytoskeleton and protein kinase JNK. In summary, age-related changes in targeted degradation of structural and regulatory proteins across tissues determine longevity.
Collapse
Affiliation(s)
- Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rute Loureiro
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krueger
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Pecori F, Kondo N, Ogura C, Miura T, Kume M, Minamijima Y, Yamamoto K, Nishihara S. Site-specific O-GlcNAcylation of Psme3 maintains mouse stem cell pluripotency by impairing P-body homeostasis. Cell Rep 2021; 36:109361. [PMID: 34260942 DOI: 10.1016/j.celrep.2021.109361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/09/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Mouse embryonic stem cell (ESC) pluripotency is tightly regulated by a complex network composed of extrinsic and intrinsic factors that allow proper organismal development. O-linked β-N-acetylglucosamine (O-GlcNAc) is the sole glycosylation mark found on cytoplasmic and nuclear proteins and plays a pivotal role in regulating fundamental cellular processes; however, its function in ESC pluripotency is still largely unexplored. Here, we identify O-GlcNAcylation of proteasome activator subunit 3 (Psme3) protein as a node of the ESC pluripotency network. Mechanistically, O-GlcNAc modification of serine 111 (S111) of Psme3 promotes degradation of Ddx6, which is essential for processing body (P-body) assembly, resulting in the maintenance of ESC pluripotent state. Conversely, loss of Psme3 S111 O-GlcNAcylation stabilizes Ddx6 and increases P-body levels, culminating in spontaneous exit of ESC from the pluripotent state. Our findings establish O-GlcNAcylation at S111 of Psme3 as a switch that regulates ESC pluripotency via control of P-body homeostasis.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Nanako Kondo
- Laboratory of Cell Biology, Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Chika Ogura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masahiko Kume
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Youhei Minamijima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan; Laboratory of Cell Biology, Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan; Glycan & Life System Integration Center (GaLSIC), Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
14
|
Revisiting Ehrlichia ruminantium Replication Cycle Using Proteomics: The Host and the Bacterium Perspectives. Microorganisms 2021; 9:microorganisms9061144. [PMID: 34073568 PMCID: PMC8229282 DOI: 10.3390/microorganisms9061144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium–host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.
Collapse
|
15
|
Shmueli MD, Sheban D, Eisenberg-Lerner A, Merbl Y. Histone degradation by the proteasome regulates chromatin and cellular plasticity. FEBS J 2021; 289:3304-3316. [PMID: 33914417 PMCID: PMC9292675 DOI: 10.1111/febs.15903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 11/27/2022]
Abstract
Histones constitute the primary protein building blocks of the chromatin and play key roles in the dynamic control of chromatin compaction and epigenetic regulation. Histones are regulated by intricate mechanisms that alter their functionality and stability, thereby expanding the regulation of chromatin‐transacting processes. As such, histone degradation is tightly regulated to provide spatiotemporal control of cellular histone abundance. While several mechanisms have been implicated in controlling histone stability, here, we discuss proteasome‐dependent degradation of histones and the protein modifications that are associated with it. We then highlight specific cellular and physiological states that are associated with altered histone degradation by cellular proteasomes.
Collapse
Affiliation(s)
- Merav D Shmueli
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daoud Sheban
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Pluska L, Jarosch E, Zauber H, Kniss A, Waltho A, Bagola K, von Delbrück M, Löhr F, Schulman BA, Selbach M, Dötsch V, Sommer T. The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63-branched ubiquitin chains. EMBO J 2021; 40:e106094. [PMID: 33576509 PMCID: PMC7957398 DOI: 10.15252/embj.2020106094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
The assembly of a specific polymeric ubiquitin chain on a target protein is a key event in the regulation of numerous cellular processes. Yet, the mechanisms that govern the selective synthesis of particular polyubiquitin signals remain enigmatic. The homologous ubiquitin-conjugating (E2) enzymes Ubc1 (budding yeast) and Ube2K (mammals) exclusively generate polyubiquitin linked through lysine 48 (K48). Uniquely among E2 enzymes, Ubc1 and Ube2K harbor a ubiquitin-binding UBA domain with unknown function. We found that this UBA domain preferentially interacts with ubiquitin chains linked through lysine 63 (K63). Based on structural modeling, in vitro ubiquitination experiments, and NMR studies, we propose that the UBA domain aligns Ubc1 with K63-linked polyubiquitin and facilitates the selective assembly of K48/K63-branched ubiquitin conjugates. Genetic and proteomics experiments link the activity of the UBA domain, and hence the formation of this unusual ubiquitin chain topology, to the maintenance of cellular proteostasis.
Collapse
Affiliation(s)
- Lukas Pluska
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Ernst Jarosch
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Henrik Zauber
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Andreas Kniss
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Anita Waltho
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | - Katrin Bagola
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
| | | | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Brenda A Schulman
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Selbach
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Charité – Universitätsmedizin BerlinBerlinGermany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic ResonanceGoethe UniversityFrankfurt am MainGermany
| | - Thomas Sommer
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz AssociationBerlin‐BuchGermany
- Institute for BiologyHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
17
|
The intrinsic proteostasis network of stem cells. Curr Opin Cell Biol 2020; 67:46-55. [PMID: 32890906 DOI: 10.1016/j.ceb.2020.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 01/03/2023]
Abstract
The proteostasis network adjusts protein composition and maintains protein integrity, which are essential processes for cell function and viability. Current efforts, given their intrinsic characteristics, regenerative potential and fundamental biological functions, have been directed to define proteostasis of stem cells. These insights demonstrate that embryonic stem cells and induced pluripotent stem cells exhibit an endogenous proteostasis network that not only modulates their pluripotency and differentiation but also provides a striking ability to suppress aggregation of disease-related proteins. Moreover, recent findings establish a central role of enhanced proteostasis to prevent the aging of somatic stem cells in adult organisms. Notably, proteostasis is also required for the biological purpose of adult germline stem cells, that is to be passed from one generation to the next. Beyond these links between proteostasis and stem cell function, we also discuss the implications of these findings for disease, aging, and reproduction.
Collapse
|