1
|
Li C, Wang X, Tian M, Zhang M, Zhang X, Fu Q, Liu L, Zhang L, Wang H. The JNK-associated leucine zipper protein exerts a protective effect on renal parenchymal injury by limiting the inflammatory secretome in tubular cells. Cell Signal 2024; 124:111428. [PMID: 39307375 DOI: 10.1016/j.cellsig.2024.111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
JNK-associated leucine zipper protein (JLP) is a newly identified renal endogenous anti-fibrotic factor that is selectively enriched in renal tubular epithelial cells (TECs). The loss of JLP by TECs is a landmark event that heralds the progression of kidney fibrosis. JLP deficiency ensues a series of pathogenetic cellular processes that are conducive to fibrotic injury. Inflammatory injury is functionally relevant in fibrotic kidneys, and TECs play an essential role in fueling inflammation through aberrant secretions. It is speculated that the loss of JLP in TECs is associated with the relentless inflammation during the development of kidney fibrosis. This study examined the alteration of a panel of inflammatory signatures in TECs under kidney fibrotic circumstances using a Jlp gene-modified unilateral ureteral obstruction (UUO) mouse model or cultured HK-2 cells. It was found that a deficiency of JLP in TECs led to a significant increase in the secretion of inflammatory cytokines including interleukin-1β (IL-1β), tumor necrosis factor (TNF-α), and monocyte chemotactic protein-1 (MCP-1), overactivation of the nuclear factor (NF)-κB/c-Jun N-terminal kinase (JNK) pathway, as well as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis in response to pro-fibrotic damage. Additionally, the absence of JLP resulted in enhanced macrophage migration and fibroblast activation as paracrine effects elicited by injured TECs. In conclusion, the loss of JLP in TECs catalyses inflammatory injuries in the development of kidney fibrosis.
Collapse
Affiliation(s)
- Chen Li
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaofei Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maoqing Tian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Fu
- Paediatric Department, Central Hospital of Jingzhou City, Jingzhou, China
| | - Lunzhi Liu
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Minda Hospital of Hubei Minzu University, Enshi, China.
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Yao Z, Lu Y, Wang P, Chen Z, Zhou L, Sang X, Yang Q, Wang K, Hao M, Cao G. The role of JNK signaling pathway in organ fibrosis. J Adv Res 2024:S2090-1232(24)00431-4. [PMID: 39366483 DOI: 10.1016/j.jare.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Fibrosis is a tissue damage repair response caused by multiple pathogenic factors which could occur in almost every apparatus and leading to the tissue structure damage, physiological abnormality, and even organ failure until death. Up to now, there is still no specific drugs or strategies can effectively block or changeover tissue fibrosis. JNKs, a subset of mitogen-activated protein kinases (MAPK), have been reported that participates in various biological processes, such as genetic expression, DNA damage, and cell activation/proliferation/death pathways. Increasing studies indicated that abnormal regulation of JNK signal pathway has strongly associated with tissue fibrosis. AIM OF REVIEW This review designed to sum up the molecular mechanism progresses in the role of JNK signal pathway in organ fibrosis, hoping to provide a novel therapy strategy to tackle tissue fibrosis. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent evidence shows that JNK signaling pathway could modulates inflammation, immunoreaction, oxidative stress and Multiple cell biological functions in organ fibrosis. Therefore, targeting the JNK pathway may be a useful strategy in cure fibrosis.
Collapse
Affiliation(s)
- Zhouhui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yandan Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Pingping Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ziyan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Licheng Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xianan Sang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Kuilong Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Min Hao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Songyang Research Institute of Zhejiang Chinese Medical University, Songyang, 323400, China.
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
3
|
Zhang L, Tian M, Zhang M, Li C, Wang X, Long Y, Wang Y, Hu J, Chen C, Chen X, Liang W, Ding G, Gan H, Liu L, Wang H. Forkhead Box Protein K1 Promotes Chronic Kidney Disease by Driving Glycolysis in Tubular Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405325. [PMID: 39083268 PMCID: PMC11423168 DOI: 10.1002/advs.202405325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Indexed: 09/26/2024]
Abstract
Renal tubular epithelial cells (TECs) undergo an energy-related metabolic shift from fatty acid oxidation to glycolysis during chronic kidney disease (CKD) progression. However, the mechanisms underlying this burst of glycolysis remain unclear. Herein, a new critical glycolysis regulator, the transcription factor forkhead box protein K1 (FOXK1) that is expressed in TECs during renal fibrosis and exhibits fibrogenic and metabolism-rewiring capacities is reported. Genetic modification of the Foxk1 locus in TECs alters glycolytic metabolism and fibrotic lesions. A surge in the expression of a set of glycolysis-related genes following FOXK1 protein activation contributes to the energy-related metabolic shift. Nuclear-translocated FOXK1 forms condensate through liquid-liquid phase separation (LLPS) to drive the transcription of target genes. Core intrinsically disordered regions within FOXK1 protein are mapped and validated. A therapeutic strategy is explored by targeting the Foxk1 locus in a murine model of CKD by the renal subcapsular injection of a recombinant adeno-associated virus 9 vector encoding Foxk1-short hairpin RNA. In summary, the mechanism of a FOXK1-mediated glycolytic burst in TECs, which involves the LLPS to enhance FOXK1 transcriptional activity is elucidated.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| | - Maoqing Tian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Meng Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Chen Li
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Xiaofei Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yuyu Long
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Yujuan Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| | - Jijia Hu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| | - Cheng Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| | - Xinghua Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| | - Wei Liang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lunzhi Liu
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Minda Hospital of Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Hubei Provincial Clinical Research Center for Kidney Disease, Wuhan, Hubei, 430060, China
| |
Collapse
|
4
|
Shi YS, Yang TN, Wang YX, Ma XY, Liu S, Zhao Y, Li JL. Melatonin Mitigates Atrazine-Induced Renal Tubular Epithelial Cell Senescence by Promoting Parkin-Mediated Mitophagy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0378. [PMID: 38766643 PMCID: PMC11098712 DOI: 10.34133/research.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The accumulation of senescent cells in kidneys is considered to contribute to age-related diseases and organismal aging. Mitochondria are considered a regulator of cell senescence process. Atrazine as a triazine herbicide poses a threat to renal health by disrupting mitochondrial homeostasis. Melatonin plays a critical role in maintaining mitochondrial homeostasis. The present study aims to explore the mechanism by which melatonin alleviates atrazine-induced renal injury and whether parkin-mediated mitophagy contributes to mitigating cell senescence. The study found that the level of parkin was decreased after atrazine exposure and negatively correlated with senescent markers. Melatonin treatment increased serum melatonin levels and mitigates atrazine-induced renal tubular epithelial cell senescence. Mechanistically, melatonin maintains the integrity of mitochondrial crista structure by increasing the levels of mitochondrial contact site and cristae organizing system, mitochondrial transcription factor A (TFAM), adenosine triphosphatase family AAA domain-containing protein 3A (ATAD3A), and sorting and assembly machinery 50 (Sam50) to prevent mitochondrial DNA release and subsequent activation of cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase pathway. Furthermore, melatonin activates Sirtuin 3-superoxide dismutase 2 axis to eliminate the accumulation of reactive oxygen species in the kidney. More importantly, the antisenescence role of melatonin is largely determined by the activation of parkin-dependent mitophagy. These results offer novel insights into measures against cell senescence. Parkin-mediated mitophagy is a promising drug target for alleviating renal tubular epithelial cell senescence.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Tian-Ning Yang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Xiang Wang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Yu Ma
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi Zhao
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
5
|
Liu X, Liu G, Tan Y, Liu P, Li L. Upregulation of miR-200a improves ureteral obstruction-induced renal fibrosis via GAB1/Wnt/β-catenin signaling. Nefrologia 2023; 43 Suppl 2:21-31. [PMID: 37179212 DOI: 10.1016/j.nefroe.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Renal fibrosis is a basic pathological change of almost all chronic kidney disorders. Epithelial-mesenchymal transition (EMT) and excessive extracellular matrix (ECM) accumulation play a crucial role in the process of fibrosis. METHODS Western blot and qRT-PCR were accomplished to analyze the expression levels of target proteins and genes, respectively. The fibrotic levels in the renal tissues of rats were confirmed utilizing Masson staining. Expression of ECM-related α-SMA in the renal tissues was determined by immunohistochemistry assay. The combination of GRB2 associated binding protein 1 (GAB1) and miR-200a was ensured by starBase database and luciferase reporter assay. RESULTS Our data uncovered that miR-200a was downregulated, but GAB1 was upregulated in the renal tissues of the rat experienced unilateral ureteral obstruction (UUO). Overexpression of miR-200a improved tissues fibrosis, suppressed GAB1 expression and ECM deposition, and inactivated Wnt/β-catenin in UUO rats. Moreover, miR-200a expression was inhibited, while GAB1 expression was facilitated in the TGF-β1-induced HK-2 cells. In TGF-β1-induced HK-2 cells, miR-200a overexpression inhibited GAB1 expression, also declined ECM-related proteins and mesenchymal markers expression. Oppositely, miR-200a overexpression facilitated epithelial marker expression in the TGF-β1-induced HK-2 cells. Next, the data revealed that miR-200a inhibited GAB1 expression through binding to the mRNA 3'-UTR of GAB1. Increasing of GAB1 reversed the regulation of miR-200a to GAB1 expression, Wnt/β-catenin signaling activation, EMT and ECM accumulation. CONCLUSION Overall, miR-200a increasing improved renal fibrosis through attenuating EMT and ECM accumulation by limiting Wnt/β-catenin signaling via sponging GAB1, indicating miR-200a may be a promising objective for renal disease therapy.
Collapse
Affiliation(s)
- XuKai Liu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou 412007, Hunan Province, PR China
| | - GeXin Liu
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou 412007, Hunan Province, PR China
| | - YuZhen Tan
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou 412007, Hunan Province, PR China
| | - Pan Liu
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou 412007, Hunan Province, PR China.
| | - Le Li
- Department of Emergency, Zhuzhou Central Hospital, Zhuzhou 412007, Hunan Province, PR China.
| |
Collapse
|
6
|
Zhu K, Li X, Gao L, Ji M, Huang X, Zhao Y, Diao W, Fan Y, Chen X, Luo P, Shen L, Li L. Identification of Hub Genes Correlated with the Initiation and Development in Chronic Kidney Disease via Bioinformatics Analysis. Kidney Blood Press Res 2023; 48:79-91. [PMID: 36603559 PMCID: PMC9979271 DOI: 10.1159/000528870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Chronic kidney disease (CKD) is a major public health issue worldwide, which is characterized by irreversible loss of nephron and renal function. However, the molecular mechanism of CKD remains underexplored. METHODS This study integrated three transcriptional profile datasets to investigate the molecular mechanism of CKD. The differentially expressed genes (DEGs) between Sham control (Con) and unilateral ureteral obstruction (UUO)-operated mice were analyzed by utilizing the limma package in R. The shared DEGs were analyzed by Gene Ontology and functional enrichment. Protein-protein interactions (PPIs) were constructed by utilizing the STRING database. Hub genes were analyzed by MCODE and Cytohubba. We further validated the gene expression by using the other dataset and mouse UUO model. RESULTS A total of 315 shared DEGs between Con and UUO samples were identified. Gene function and KEGG pathway enrichment revealed that DEGs were mainly enriched in inflammatory response, immune system process, and chemokine signaling pathway. Two modules were clustered based on PPI network analysis. Module 1 contained 13 genes related to macrophage activation, migration, and chemotaxis. Ten hub genes were identified by PPI network analysis. Subsequently, the expression levels of hub genes were validated with the other dataset. Finally, these four validated hub genes were further confirmed by our UUO mice. Three validated hub genes, Gng2, Pf4, and Ccl9, showed significant response to UUO. CONCLUSION Our study reveals the coordination of genes during UUO and provides a promising gene panel for CKD treatment. GNG2 and PF4 were identified as potential targets for developing CKD drugs.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinxin Li
- Department of Urology, Tongren Hospital of Wuhan University, Wuhan Third Hospital, Wuhan, China
| | - Likun Gao
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengyao Ji
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenxiu Diao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqin Fan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinghua Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Department of Urology, Tongren Hospital of Wuhan University, Wuhan Third Hospital, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lili Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Zhou Z, Wang H, Zhang X, Song M, Yao S, Jiang P, Liu D, Wang Z, Lv H, Li R, Hong Y, Dai J, Hu Y, Zhao G. Defective autophagy contributes to endometrial epithelial-mesenchymal transition in intrauterine adhesions. Autophagy 2022; 18:2427-2442. [PMID: 35196191 PMCID: PMC9542425 DOI: 10.1080/15548627.2022.2038994] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intrauterine adhesions (IUA), characterized by endometrial fibrosis, is a common cause of uterine infertility. We previously demonstrated that partial epithelial-mesenchymal transition (EMT) and the loss of epithelial homeostasis play a vital role in the development of endometrial fibrosis. As a pro-survival strategy in maintaining cell and tissue homeostasis, macroautophagy/autophagy, conversely, may participate in this process. However, the role of autophagy in endometrial fibrosis remains unknown. Here, we demonstrated that autophagy is defective in endometria of IUA patients, which aggravates EMT and endometrial fibrosis, and defective autophagy is related to DIO2 (iodothyronine deiodinase 2) downregulation. In endometrial epithelial cells (EECs), pharmacological inhibition of autophagy by chloroquine (CQ) promoted EEC-EMT, whereas enhanced autophagy by rapamycin extenuated this process. Mechanistically, silencing DIO2 in EECs blocked autophagic flux and promoted EMT via the MAPK/ERK-MTOR pathway. Inversely, overexpression of DIO2 or triiodothyronine (T3) treatment could restore autophagy and partly reverse EEC-EMT. Furthermore, in an IUA-like mouse model, the autophagy in endometrium was defective accompanied by EEC-EMT, and CQ could inhibit autophagy and aggravate endometrial fibrosis, whereas rapamycin or T3 treatment could improve the autophagic levels and blunt endometrial fibrosis. Together, we demonstrated that defective autophagy played an important role in EEC-EMT in IUA via the DIO2-MAPK/ERK-MTOR pathway, which provided a potential target for therapeutic implications.Abbreviations: ACTA2/α-SMA: actin alpha 2, smooth muscle; AMPK: adenosine 5'-monophosphate-activated protein kinase; AKT/protein kinase B: AKT serine/threonine kinase; ATG: autophagy related; CDH1/E-cadherin: cadherin 1; CDH2/N-cadherin: cadherin 2; CQ: chloroquine; CTSD: cathepsin D; DIO2: iodothyronine deiodinase 2; DEGs: differentially expressed genes; EECs: endometrial epithelial cells; EMT: epithelial-mesenchymal transition; FN1: fibronectin 1; IUA: intrauterine adhesions; LAMP1: lysosomal associated membrane protein 1; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; T3: triiodothyronine; T4: tetraiodothyronine; TFEB: transcription factor EB; PBS: phosphate-buffered saline; TEM: transmission electron microscopy; TGFB/TGFβ: transforming growth factor beta.
Collapse
Affiliation(s)
- Zhenhua Zhou
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Huiyan Wang
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiwen Zhang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Minmin Song
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Simin Yao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Peipei Jiang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haining Lv
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruotian Li
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ying Hong
- Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China,Jianwu Dai Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100190, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China,Yali Hu
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China,Department of Obstetrics and Gynecology, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China,CONTACT Guangfeng Zhao Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
8
|
Dai R, Zhang L, Jin H, Wang D, Cheng M, Sang T, Peng C, Li Y, Wang Y. Autophagy in renal fibrosis: Protection or promotion? Front Pharmacol 2022; 13:963920. [PMID: 36105212 PMCID: PMC9465674 DOI: 10.3389/fphar.2022.963920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a process that degrades endogenous cellular protein aggregates and damaged organelles via the lysosomal pathway to maintain cellular homeostasis and energy production. Baseline autophagy in the kidney, which serves as a quality control system, is essential for cellular metabolism and organelle homeostasis. Renal fibrosis is the ultimate pathological manifestation of progressive chronic kidney disease. In several experimental models of renal fibrosis, different time points, stimulus intensities, factors, and molecular mechanisms mediating the upregulation or downregulation of autophagy may have different effects on renal fibrosis. Autophagy occurring in a single lesion may also exert several distinct biological effects on renal fibrosis. Thus, whether autophagy prevents or facilitates renal fibrosis remains a complex and challenging question. This review explores the different effects of the dual regulatory function of autophagy on renal fibrosis in different renal fibrosis models, providing ideas for future work in related basic and clinical research.
Collapse
Affiliation(s)
- Rong Dai
- Department of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Zhang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hua Jin
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Dong Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Tian Sang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Chuyi Peng
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Li
- Blood Purification Center, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Yiping Wang,
| |
Collapse
|
9
|
Tian M, Zhang L, Wang Y, Deng M, Peng C, Liang W, Ding G, Shen B, Wang H. Loss of JNK-Associated Leucine Zipper Protein Promotes Peritoneal Dialysis-Related Peritoneal Fibrosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:168-179. [PMID: 35527988 PMCID: PMC9021628 DOI: 10.1159/000521564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Peritoneal dialysis-related peritoneal fibrosis is the leading cause of peritoneal ultrafiltration failure. Multitude factors and pathological processes have been implicated in peritoneal fibrosis development and progression, whereas the intrinsic anti-fibrotic mechanism has rarely been explored. JNK-associated leucine zipper protein (JLP) has been recently found possessing powerful anti-fibrotic merits of overall antagonizing TGF-β-induced profibrotic effects. OBJECTIVES We wondered whether JLP is expressed in the peritoneum, and if so, whether it exerts the anti-fibrotic effects similar to those in the kidney. METHOD Here, we examined and confirmed JLP expression in peritoneum tissue of mice. Then, we established a peritoneal fibrosis model in Jlp wild-type and Jlp global deficient mice and observed the different effects of Jlp on peritoneal fibrosis progression. In vitro studies were performed on peritoneal mesothelial HMrSV5 cells with or without Jlp knockdown to investigate the underlying mechanism by which Jlp exerts anti-fibrotic effects. RESULTS We found that the expression of JLP decreased in a high-glucose peritoneal dialysis solution (HGPDS)-induced peritoneal fibrosis mouse model and in HGPDS-treated peritoneal mesothelial cell HMrSV5. JLP deletion exacerbated HGPDS-induced peritoneal fibrosis in peritoneal fibrosis mice, and knockdown of JLP resulted in an increased profibrotic response to HGPDS stimulation in HMrSV5 cells, which was associated with epithelial-to-mesenchymal transition, elevated autophagy, and apoptosis, as well as enhanced TGF-β1/Smad signaling activation. CONCLUSIONS Our findings revealed a new anti-fibrotic factor of Jlp involved in peritoneal fibrosis induction and shed light on novel therapeutic targets in peritoneal ultrafiltration failure.
Collapse
Affiliation(s)
- Maoqing Tian
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yujuan Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meili Deng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cancan Peng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guohua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Effect of NAD+ boosting on kidney ischemia-reperfusion injury. PLoS One 2021; 16:e0252554. [PMID: 34061900 PMCID: PMC8168908 DOI: 10.1371/journal.pone.0252554] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is associated with a very high mortality and an increased risk for progression to chronic kidney disease (CKD). Ischemia-reperfusion injury (IRI) is a model for AKI, which results in tubular damage, dysfunction of the mitochondria and autophagy, and in decreased cellular nicotinamide adenine dinucleotide (NAD+) with progressing fibrosis resulting in CKD. NAD+ is a co-enzyme for several proteins, including the NAD+ dependent sirtuins. NAD+ augmentation, e.g. by use of its precursor nicotinamide riboside (NR), improves mitochondrial homeostasis and organismal metabolism in many species. In the present investigation the effects of prophylactic administration of NR on IRI-induced AKI were studied in the rat. Bilateral IRI reduced kidney tissue NAD+, caused tubular damage, reduced α-Klotho (klotho), and altered autophagy flux. AKI initiated progression to CKD, as shown by induced profibrotic Periostin (postn) and Inhibin subunit beta-A, (activin A / Inhba), both 24 hours and 14 days after surgery. NR restored tissue NAD+ to that of the sham group, increased autophagy (reduced p62) and sirtuin1 (Sirt1) but did not ameliorate renal tubular damage and profibrotic genes in the 24 hours and 14 days IRI models. AKI induced NAD+ depletion and impaired autophagy, while augmentation of NAD+ by NR restored tissue NAD+ and increased autophagy, possibly serving as a protective response. However, prophylactic administration of NR did not ameliorate tubular damage of the IRI rats nor rescued the initiation of fibrosis in the long-term AKI to CKD model, which is a pivotal event in CKD pathogenesis.
Collapse
|