1
|
Zou G, Ding Y, Xu J, Feng Z, Cao N, Chen H, Liu H, Zheng X, Liu X, Zhang L. Genome-wide dissection of genes shaping inflorescence morphology in 242 Chinese south-north sorghum accessions. Sci Rep 2024; 14:25828. [PMID: 39468118 PMCID: PMC11519468 DOI: 10.1038/s41598-024-76568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
The inflorescences morphology (IM) of sorghum (Sorghum bicolor L. Moench) affects its resistance to pests, diseases, and grain yields. However, the specific genetic factors underlying in IM are not yet fully elucidated. Here we conducted a comprehensive genome-wide association analysis (GWAS) to identify the stable and adaptive Quantitative Trait Loci (QTL) for five IM traits (panicle length, the number of cob nodes, the number of primary branches, the largest length of the primary branch, and panicle type) in a sorghum panel, which adapted to different environments from the south to north in China. Totally, 2,015,850 high quality single nucleotide polymorphisms (SNPs) were obtained. Population structure analysis showed that two distinct genetic sub-populations were divided according to their geographic origin. Seventy-one QTLs distributed in 41 genetic regions on 9 chromosomes were identified. These regions harbored 21 high-confident candidate genes that were homologous to rice domestication genes, including 7 related to IM. Two domestication-related genes (Sobic.003G052700 and Sobic.006G247700) were located into two major QTL regions (QTL3.4721839 and QTL6.58709500) which were identified in multi-environments. Allelic variations in the two genes displayed a geographical pattern, indicating that different IM traits were selected by south and north sorghum breeders, such as south sorghums had long and loose panicles in order to adapt the hot and humid climate, while north sorghums had short and compact panicle to increase planting density and grain yield per unit area due to dry climate. This work provides new breeding strategies and resources for developing locally adapted sorghum varieties.
Collapse
Affiliation(s)
- Guihua Zou
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Yanqing Ding
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Jianxia Xu
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Zhou Feng
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Ning Cao
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Heyun Chen
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Heqin Liu
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Xueqiang Zheng
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Xiuhui Liu
- Institute of Virology and Biotechnology, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Zhejiang Key Laboratory of Digital Dry Land Crops, Hangzhou, 310021, China
| | - Liyi Zhang
- Guizhou Institute of Upland Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
2
|
Ueda Y, Kondo K, Saito H, Pariasca-Tanaka J, Takanashi H, Ranaivo HN, Rakotondramanana M, Wissuwa M. Characterization of quantitative trait loci from DJ123 ( aus) independently affecting panicle structure traits in indica rice cultivar IR64. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:57. [PMID: 39228865 PMCID: PMC11366739 DOI: 10.1007/s11032-024-01494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
The rice panicle is the principal organ to influence productivity and traits affecting panicle architecture determine sink size and yield potential. Improving panicle architecture may be effective in increasing yield under low-input conditions, but which traits are of importance under such conditions and how they are genetically controlled is not well understood. Using recombinant inbred lines (RILs) derived from a cross between a modern variety IR64 and a low fertility tolerant accession DJ123, quantitative trait locus (QTL) mapping was conducted under high soil fertility in Japan and low fertility in Madagascar. Among QTL for panicle length (PL) detected, the DJ123 allele increased rachis length at qCL1 and qPL9, while the IR64 allele increased primary branch length at qPL7. DJ123 further contributed two QTL for grain width whereas IR64 contributed two grain length QTL. Analysis of lines carrying different combinations of detected QTL indicates that rachis and primary branch lengths are independently regulated, explaining strong transgressive segregation for PL. The positive effects of PL-related QTL were further confirmed by a genome-wide analysis of allelic states in two breeding lines that had been selected repeatedly for total panicle weight per plant under low input conditions. This study provides the genetic basis for complex panicle architecture in rice and will aid in designing an ideal panicle architecture that leads to increased yield under low fertility conditions. Supplementary information The online version contains supplementary material available at 10.1007/s11032-024-01494-5.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki Japan
| | - Katsuhiko Kondo
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki Japan
- Present Address: Research Institute of Rice Production and Technology Co., Ltd., Toyoake, Aichi Japan
| | - Hiroki Saito
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Okinawa Japan
| | - Juan Pariasca-Tanaka
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Harisoa Nicole Ranaivo
- Rice Research Department, The National Center for Applied Research On Rural Development (FOFIFA), Antananarivo, Madagascar
| | - Mbolatantely Rakotondramanana
- Rice Research Department, The National Center for Applied Research On Rural Development (FOFIFA), Antananarivo, Madagascar
| | - Matthias Wissuwa
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki Japan
- PhenoRob Cluster & Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Yan F, Zhang G, Zhao H, Huang Z, Niu Y, Zhu M. Foliar application of melatonin improve the number of secondary branches and secondary branch grains quality of rice. PLoS One 2024; 19:e0307368. [PMID: 39163308 PMCID: PMC11335105 DOI: 10.1371/journal.pone.0307368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Melatonin plays an important role in plant growth and development. However, little information is available about melatonin regulating rice panicle structure and yield. This study explored the regulatory effects and mechanisms of melatonin spraying before the panicle differentiation stage on rice panicle structure and grain quality. The results showed that spraying melatonin before panicle differentiation increased rice yield, which was mainly reflected in the increase in spikelets per panicle and the percentage of filled grains. In addition, melatonin treatment significantly increased the panicle length. The results of panicle structure analysis showed that the increase in spikelets per panicle caused by melatonin was attributed to the significant increase in the number of secondary branches, total number of secondary branch spikelets, and number of spikelets per secondary branch. The results showed that melatonin can increase the content of zeatin, auxin, and gibberellin, and reduce the content of abscisic acid. These results showed that melatonin affected panicle structure by regulating hormone content, thereby improving yield. In addition, melatonin improves the processing quality, appearance quality, and nutritional quality of secondary branch grains. The above results indicate that application of melatonin improves the number of secondary branches and the quality of grainss on secondary branches.
Collapse
Affiliation(s)
- Feiyu Yan
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Guoliang Zhang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Hongliang Zhao
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Zhiwei Huang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Yuan Niu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai’an, Jiangsu, China
| | - Mingchao Zhu
- Seed Science and Technology Research Center, Huaiyin Agricultural Institute of Xuhuai Prefecture, Huai’an, Jiangsu, China
- Crop Breeding Research Office, Jiangsu Tianfeng Seed Industry Company Limited, Huai’an, Jiangsu, China
| |
Collapse
|
4
|
Cao C, Guo S, Deng P, Yang S, Xu J, Hu T, Hu Z, Chen D, Zhang H, Navea IP, Chin JH, Zhang W, Jing W. The BEL1-like homeodomain protein OsBLH4 regulates rice plant height, grain number, and heading date by repressing the expression of OsGA2ox1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1369-1385. [PMID: 38824648 DOI: 10.1111/tpj.16857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
Gibberellins (GAs) play crucial roles in regulating plant architecture and grain yield of crops. In rice, the inactivation of endogenous bioactive GAs and their precursors by GA 2-oxidases (GA2oxs) regulates stem elongation and reproductive development. However, the regulatory mechanisms of GA2ox gene expression, especially in rice reproductive organs, are unknown. The BEL1-like homeodomain protein OsBLH4, a negative regulatory factor for the rice OsGA2ox1 gene, was identified in this study. Loss of OsBLH4 function results in decreased bioactive GA levels and pleiotropic phenotypes, including reduced plant height, decreased grain number per panicle, and delayed heading date, as also observed in OsGA2ox1-overexpressing plants. Consistent with the mutant phenotype, OsBLH4 was predominantly expressed in shoots and young spikelets; its encoded protein was exclusively localized in the nucleus. Molecular analysis demonstrated that OsBLH4 directly bound to the promoter region of OsGA2ox1 to repress its expression. Genetic assays revealed that OsBLH4 acts upstream of OsGA2ox1 to control rice plant height, grain number, and heading date. Taken together, these results indicate a crucial role for OsBLH4 in regulating rice plant architecture and yield potential via regulation of bioactive GA levels, and provide a potential strategy for genetic improvements of rice.
Collapse
Affiliation(s)
- Chengjuan Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuaiqiang Guo
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ping Deng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Xianghu Laboratory, Hangzhou, China
| | - Shiyi Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengfei Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhijuan Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Di Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hongsheng Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ian Paul Navea
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Joong Hyoun Chin
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul, Korea
| | - Wenhua Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wen Jing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
6
|
Ntakirutimana F, Tranchant-Dubreuil C, Cubry P, Chougule K, Zhang J, Wing RA, Adam H, Lorieux M, Jouannic S. Genome-wide association analysis identifies natural allelic variants associated with panicle architecture variation in African rice, Oryza glaberrima Steud. G3 (BETHESDA, MD.) 2023; 13:jkad174. [PMID: 37535690 PMCID: PMC10542218 DOI: 10.1093/g3journal/jkad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
African rice (Oryza glaberrima Steud), a short-day cereal crop closely related to Asian rice (Oryza sativa L.), has been cultivated in Sub-Saharan Africa for ∼ 3,000 years. Although less cultivated globally, it is a valuable genetic resource in creating high-yielding cultivars that are better adapted to diverse biotic and abiotic stresses. While inflorescence architecture, a key trait for rice grain yield improvement, has been extensively studied in Asian rice, the morphological and genetic determinants of this complex trait are less understood in African rice. In this study, using a previously developed association panel of 162 O. glaberrima accessions and new SNP variants characterized through mapping to a new version of the O. glaberrima reference genome, we conducted a genome-wide association study of four major morphological panicle traits. We have found a total of 41 stable genomic regions that are significantly associated with these traits, of which 13 co-localized with previously identified QTLs in O. sativa populations and 28 were unique for this association panel. Additionally, we found a genomic region of interest on chromosome 3 that was associated with the number of spikelets and primary and secondary branches. Within this region was localized the O. sativa ortholog of the PHYTOCHROME B gene (Oglab_006903/OgPHYB). Haplotype analysis revealed the occurrence of natural sequence variants at the OgPHYB locus associated with panicle architecture variation through modulation of the flowering time phenotype, whereas no equivalent alleles were found in O. sativa. The identification in this study of genomic regions specific to O. glaberrima indicates panicle-related intra-specific genetic variation in this species, increasing our understanding of the underlying molecular processes governing panicle architecture. Identified candidate genes and major haplotypes may facilitate the breeding of new African rice cultivars with preferred panicle traits.
Collapse
Affiliation(s)
| | | | - Philippe Cubry
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hélène Adam
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Mathias Lorieux
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Stefan Jouannic
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| |
Collapse
|
7
|
Liu Z, Sun H, Zhang Y, Du M, Xiang J, Li X, Chang Y, Sun J, Cheng X, Xiong M, Zhao Z, Liu E. Mining the candidate genes of rice panicle traits via a genome-wide association study. Front Genet 2023; 14:1239550. [PMID: 37732315 PMCID: PMC10507276 DOI: 10.3389/fgene.2023.1239550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Panicle traits are important for improving the panicle architecture and grain yield of rice. Therefore, we performed a genome-wide association study (GWAS) to analyze and determine the genetic determinants of five panicle traits. A total of 1.29 million single nucleotide polymorphism (SNP) loci were detected in 162 rice materials. We carried out a GWAS of panicle length (PL), total grain number per panicle (TGP), filled grain number per panicle (FGP), seed setting rate (SSR) and grain weight per panicle (GWP) in 2019, 2020 and 2021. Four quantitative trait loci (QTLs) for PL were detected on chromosomes 1, 6, and 9; one QTL for TGP, FGP, and GWP was detected on chromosome 4; two QTLs for FGP were detected on chromosomes 4 and 7; and one QTL for SSR was detected on chromosome 1. These QTLs were detected via a general linear model (GLM) and mixed linear model (MLM) in both years of the study period. In this study, the genomic best linear unbiased prediction (BLUP) method was used to verify the accuracy of the GWAS results. There are nine QTLs were both detected by the multi-environment GWAS method and the BLUP method. Moreover, further analysis revealed that three candidate genes, LOC_Os01g43700, LOC_Os09g25784, and LOC_Os04g47890, may be significantly related to panicle traits of rice. Haplotype analysis indicated that LOC_Os01g43700 and LOC_Os09g25784 are highly associated with PL and that LOC_Os04g47890 is highly associated with TGP, FGP, and GWP. Our results offer essential genetic information for the molecular improvement of panicle traits. The identified candidate genes and elite haplotypes could be used in marker-assisted selection to improve rice yield through pyramid breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erbao Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| |
Collapse
|
8
|
Niu F, Liu M, Dong S, Dong X, Wang Y, Cheng C, Chu H, Hu Z, Ma F, Yan P, Lan D, Zhang J, Zhou J, Sun B, Zhang A, Hu J, Zhang X, He S, Cui J, Yuan X, Yang J, Cao L, Luo X. RNA-Seq Transcriptome Analysis and Evolution of OsEBS, a Gene Involved in Enhanced Spikelet Number per Panicle in Rice. Int J Mol Sci 2023; 24:10303. [PMID: 37373450 DOI: 10.3390/ijms241210303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Spikelet number per panicle (SNP) is one of the most important yield components in rice. Rice ENHANCING BIOMASS AND SPIKELET NUMBER (OsEBS), a gene involved in improved SNP and yield, has been cloned from an accession of Dongxiang wild rice. However, the mechanism of OsEBS increasing rice SNP is poorly understood. In this study, the RNA-Seq technology was used to analyze the transcriptome of wildtype Guichao 2 and OsEBS over-expression line B102 at the heading stage, and analysis of the evolution of OsEBS was also conducted. A total of 5369 differentially expressed genes (DEGs) were identified between Guichao2 and B102, most of which were down-regulated in B102. Analysis of the expression of endogenous hormone-related genes revealed that 63 auxin-related genes were significantly down-regulated in B102. Gene Ontogeny (GO) enrichment analysis showed that the 63 DEGs were mainly enriched in eight GO terms, including auxin-activated signaling pathway, auxin polar transport, auxin transport, basipetal auxin transport, and amino acid transmembrane transport, most of which were directly or indirectly related to polar auxin transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis further verified that the down-regulated genes related to polar auxin transport had important effects on increased SNP. Analysis of the evolution of OsEBS found that OsEBS was involved in the differentiation of indica and japonica, and the differentiation of OsEBS supported the multi-origin model of rice domestication. Indica (XI) subspecies harbored higher nucleotide diversity than japonica (GJ) subspecies in the OsEBS region, and XI experienced strong balancing selection during evolution, while selection in GJ was neutral. The degree of genetic differentiation between GJ and Bas subspecies was the smallest, while it was the highest between GJ and Aus. Phylogenetic analysis of the Hsp70 family in O. sativa, Brachypodium distachyon, and Arabidopsis thaliana indicated that changes in the sequences of OsEBS were accelerated during evolution. Accelerated evolution and domain loss in OsEBS resulted in neofunctionalization. The results obtained from this study provide an important theoretical basis for high-yield rice breeding.
Collapse
Affiliation(s)
- Fuan Niu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingyu Liu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shiqing Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xianxin Dong
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Wang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Can Cheng
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huangwei Chu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zejun Hu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Fuying Ma
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Peiwen Yan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dengyong Lan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianming Zhang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jihua Zhou
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Sun
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Anpeng Zhang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jian Hu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xinwei Zhang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shicong He
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinhao Cui
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xinyu Yuan
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinshui Yang
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaojin Luo
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Zhang G, Hu Y, Pan X, Cao R, Hu Q, Fu R, Risalat H, Shang B. Effects of increased ozone on rice panicle morphology. iScience 2023; 26:106471. [PMID: 37096034 PMCID: PMC10122049 DOI: 10.1016/j.isci.2023.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Ground-level ozone threatens rice production, which provides staple food for more than half of the world's population. Improving the adaptability of rice crops to ozone pollution is essential to ending global hunger. Rice panicles not only affect grain yield and grain quality but also the adaptability of plants to environmental changes, but the effects of ozone on rice panicles are not well understood. Through an open top chamber experiment, we investigated the effects of long-term and short-term ozone on the traits of rice panicles, finding that both long-term and short-term ozone significantly reduced the number of panicle branches and spikelets in rice, and especially the fertility of spikelets in hybrid cultivar. The reduction in spikelet quantity and fertility because of ozone exposure is caused by changes in secondary branches and attached spikelet. These results suggest the potential for effective adaptation to ozone by altering breeding targets and developing growth stage-specific agricultural techniques.
Collapse
Affiliation(s)
- Guoyou Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yaxin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoya Pan
- College of Environmental Science and Engineering, Donghua University, ShangHai 201620, China
- Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rong Cao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinan Hu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Rao Fu
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hamdulla Risalat
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Bo Shang
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
10
|
Agata A, Ashikari M, Sato Y, Kitano H, Hobo T. Designing rice panicle architecture via developmental regulatory genes. BREEDING SCIENCE 2023; 73:86-94. [PMID: 37168816 PMCID: PMC10165343 DOI: 10.1270/jsbbs.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/03/2022] [Indexed: 05/13/2023]
Abstract
Rice panicle architecture displays remarkable diversity in branch number, branch length, and grain arrangement; however, much remains unknown about how such diversity in patterns is generated. Although several genes related to panicle branch number and panicle length have been identified, how panicle branch number and panicle length are coordinately regulated is unclear. Here, we show that panicle length and panicle branch number are independently regulated by the genes Prl5/OsGA20ox4, Pbl6/APO1, and Gn1a/OsCKX2. We produced near-isogenic lines (NILs) in the Koshihikari genetic background harboring the elite alleles for Prl5, regulating panicle rachis length; Pbl6, regulating primary branch length; and Gn1a, regulating panicle branching in various combinations. A pyramiding line carrying Prl5, Pbl6, and Gn1a showed increased panicle length and branching without any trade-off relationship between branch length or number. We successfully produced various arrangement patterns of grains by changing the combination of alleles at these three loci. Improvement of panicle architecture raised yield without associated negative effects on yield-related traits except for panicle number. Three-dimensional (3D) analyses by X-ray computed tomography (CT) of panicles revealed that differences in panicle architecture affect grain filling. Importantly, we determined that Prl5 improves grain filling without affecting grain number.
Collapse
Affiliation(s)
- Ayumi Agata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yutaka Sato
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
11
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
12
|
Taniguchi S, Sakamoto T, Imase R, Nonoue Y, Tsunematsu H, Goto A, Matsushita K, Ohmori S, Maeda H, Takeuchi Y, Ishii T, Yonemaru JI, Ogawa D. Prediction of heading date, culm length, and biomass from canopy-height-related parameters derived from time-series UAV observations of rice. FRONTIERS IN PLANT SCIENCE 2022; 13:998803. [PMID: 36582650 PMCID: PMC9792801 DOI: 10.3389/fpls.2022.998803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Unmanned aerial vehicles (UAVs) are powerful tools for monitoring crops for high-throughput phenotyping. Time-series aerial photography of fields can record the whole process of crop growth. Canopy height (CH), which is vertical plant growth, has been used as an indicator for the evaluation of lodging tolerance and the prediction of biomass and yield. However, there have been few attempts to use UAV-derived time-series CH data for field testing of crop lines. Here we provide a novel framework for trait prediction using CH data in rice. We generated UAV-based digital surface models of crops to extract CH data of 30 Japanese rice cultivars in 2019, 2020, and 2021. CH-related parameters were calculated in a non-linear time-series model as an S-shaped plant growth curve. The maximum saturation CH value was the most important predictor for culm length. The time point at the maximum CH contributed to the prediction of days to heading, and was able to predict stem and leaf weight and aboveground weight, possibly reflecting the association of biomass with duration of vegetative growth. These results indicate that the CH-related parameters acquired by UAV can be useful as predictors of traits typically measured by hand.
Collapse
Affiliation(s)
- Shoji Taniguchi
- Research Center for Agricultural Information Technology, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Toshihiro Sakamoto
- Institute for Agro-Environmental Sciences, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Ryoji Imase
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Yasunori Nonoue
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Hiroshi Tsunematsu
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Akitoshi Goto
- Research Center for Agricultural Information Technology, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Kei Matsushita
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Sinnosuke Ohmori
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Hideo Maeda
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Yoshinobu Takeuchi
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Takuro Ishii
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Jun-ichi Yonemaru
- Research Center for Agricultural Information Technology, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| | - Daisuke Ogawa
- Institute of Crop Science, National Agricultural and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
13
|
Manipulating GA-Related Genes for Cereal Crop Improvement. Int J Mol Sci 2022; 23:ijms232214046. [PMID: 36430524 PMCID: PMC9696284 DOI: 10.3390/ijms232214046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global population is projected to experience a rapid increase in the future, which poses a challenge to global food sustainability. The "Green Revolution" beginning in the 1960s allowed grain yield to reach two billion tons in 2000 due to the introduction of semi-dwarfing genes in cereal crops. Semi-dwarfing genes reduce the gibberellin (GA) signal, leading to short plant stature, which improves the lodging resistance and harvest index under modern fertilization practices. Here, we reviewed the literature on the function of GA in plant growth and development, and the role of GA-related genes in controlling key agronomic traits that contribute to grain yield in cereal crops. We showed that: (1) GA is a significant phytohormone in regulating plant development and reproduction; (2) GA metabolism and GA signalling pathways are two key components in GA-regulated plant growth; (3) GA interacts with other phytohormones manipulating plant development and reproduction; and (4) targeting GA signalling pathways is an effective genetic solution to improve agronomic traits in cereal crops. We suggest that the modification of GA-related genes and the identification of novel alleles without a negative impact on yield and adaptation are significant in cereal crop breeding for plant architecture improvement. We observed that an increasing number of GA-related genes and their mutants have been functionally validated, but only a limited number of GA-related genes have been genetically modified through conventional breeding tools and are widely used in crop breeding successfully. New genome editing technologies, such as the CRISPR/Cas9 system, hold the promise of validating the effectiveness of GA-related genes in crop development and opening a new venue for efficient and accelerated crop breeding.
Collapse
|
14
|
Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture. FRONTIERS IN PLANT SCIENCE 2022; 13:1010138. [PMID: 36247571 PMCID: PMC9554555 DOI: 10.3389/fpls.2022.1010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Rice inflorescence is one of the major organs in determining grain yield. The genetic and molecular regulation on rice inflorescence architecture has been well investigated over the past years. In the present review, we described genes regulating rice inflorescence architecture based on their roles in meristem activity maintenance, meristem identity conversion and branch elongation. We also introduced the emerging regulatory pathways of phytohormones involved in rice inflorescence development. These studies show the intricacies and challenges of manipulating inflorescence architecture for rice yield improvement.
Collapse
Affiliation(s)
- Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ashmit Kumar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fisheries and Forestry, Fiji National University, Nausori, Fiji
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Teramoto S, Yamasaki M, Uga Y. Identification of a unique allele in the quantitative trait locus for crown root number in japonica rice from Japan using genome-wide association studies. BREEDING SCIENCE 2022; 72:222-231. [PMID: 36408322 PMCID: PMC9653191 DOI: 10.1270/jsbbs.22010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
To explore the genetic resources that could be utilized to help improve root system architecture phenotypes in rice (Oryza sativa), we have conducted genome-wide association studies to investigate maximum root length and crown root number in 135 10-day-old Japanese rice accessions grown hydroponically. We identified a quantitative trait locus for crown root number at approximately 32.7 Mbp on chromosome 4 and designated it qNCR1 (quantitative trait locus for Number of Crown Root 1). A linkage disequilibrium map around qNCR1 suggested that three candidate genes are involved in crown root number: a cullin (LOC_Os04g55030), a gibberellin 20 oxidase 8 (LOC_Os04g55070), and a cyclic nucleotide-gated ion channel (LOC_Os04g55080). The combination of haplotypes for each gene was designated as a haploblock, and haploblocks 1, 2, and 3 were defined. Compared to haploblock 1, the accessions with haploblocks 2 and 3 had fewer crown roots; approximately 5% and 10% reductions in 10-day-old plants and 15% and 25% reductions in 42-day-old plants, respectively. A Japanese leading variety Koshihikari and its progenies harbored haploblock 3. Their crown root number could potentially be improved using haploblocks 1 and 2.
Collapse
Affiliation(s)
- Shota Teramoto
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kasai, Hyogo 675-2103, Japan
| | - Yusaku Uga
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
16
|
Koppolu R, Chen S, Schnurbusch T. Evolution of inflorescence branch modifications in cereal crops. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102168. [PMID: 35016076 DOI: 10.1016/j.pbi.2021.102168] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Grasses are ubiquitous in our daily lives, with gramineous cereal crops such as maize, rice, and wheat constituting a large proportion of our daily staple food intake. Evolutionary forces, especially over the past ∼20 million years, have shaped grass adaptability, inflorescence architecture, and reproductive success. Here, we provide basic information on grass evolution and inflorescence structures mainly related to two inflorescence types: branched panicle- and spike-type inflorescences, the latter of which has highly modified branching. We summarize and compare known genetic pathways underlying each infloresecence type and discuss how the maize RAMOSA, rice ABERRANT PANICLE ORGANIZATION, and Triticeae COMPOSITUM pathways are regulated. Our analyses might lay the foundation for understanding species-specific gene regulatory networks that could result in improved sink capacities.
Collapse
Affiliation(s)
- Ravi Koppolu
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany.
| | - Shulin Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Thorsten Schnurbusch
- Independent HEISENBERG Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany; Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
17
|
Khong GN, Le NT, Pham MT, Adam H, Gauron C, Le HQ, Pham DT, Colonges K, Pham XH, Do VN, Lebrun M, Jouannic S. A cluster of Ankyrin and Ankyrin-TPR repeat genes is associated with panicle branching diversity in rice. PLoS Genet 2021; 17:e1009594. [PMID: 34097698 PMCID: PMC8211194 DOI: 10.1371/journal.pgen.1009594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/17/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
The number of grains per panicle is an important yield-related trait in cereals which depends in part on panicle branching complexity. One component of this complexity is the number of secondary branches per panicle. Previously, a GWAS site associated with secondary branch and spikelet numbers per panicle in rice was identified. Here we combined gene capture, bi-parental genetic population analysis, expression profiling and transgenic approaches in order to investigate the functional significance of a cluster of 6 ANK and ANK-TPR genes within the QTL. Four of the ANK and ANK-TPR genes present a differential expression associated with panicle secondary branch number in contrasted accessions. These differential expression patterns correlate in the different alleles of these genes with specific deletions of potential cis-regulatory sequences in their promoters. Two of these genes were confirmed through functional analysis as playing a role in the control of panicle architecture. Our findings indicate that secondary branching diversity in the rice panicle is governed in part by differentially expressed genes within this cluster encoding ANK and ANK-TPR domain proteins that may act as positive or negative regulators of panicle meristem’s identity transition from indeterminate to determinate state. Grain yield is one of the most important indexes in rice breeding, which is controlled in part by panicle branching complexity. A new QTL with co-location of spikelet number (SpN) and secondary branch number (SBN) traits was identified by genome-wide association study in a Vietnamese rice landrace panel. A set of four Ankyrin and Tetratricopeptide repeat domain-encoding genes was identified from this QTL based on their difference of expression levels between two contrasted haplotypes for the SpN and SBN traits. The differential expression is correlated with deletions in the promoter regions of these genes. Two of the genes act as negative regulators of the panicle meristem’s identity transition from indeterminate to determinate state while the other two act as positive regulators of this meristem fate transition. Based on the different phenotypes between overexpressed and mutant plants, two of these genes were confirmed as playing a role in the control of panicle architecture. These findings can be directly used to assist selection for grain yield improvement.
Collapse
Affiliation(s)
- Giang Ngan Khong
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- * E-mail: (GNK); (SJ)
| | - Nhu Thi Le
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Mai Thi Pham
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Helene Adam
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| | - Carole Gauron
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
| | - Hoa Quang Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Dung Tien Pham
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Kelly Colonges
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Xuan Hoi Pham
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Vinh Nang Do
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
| | - Michel Lebrun
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- UMR LSTM, University of Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France
| | - Stefan Jouannic
- LMI RICE, National Key Laboratory for Plant Cell Biotechnology, Agronomical Genetics Institute, Hanoi, Vietnam
- UMR DIADE, University of Montpellier, IRD, Montpellier, France
- * E-mail: (GNK); (SJ)
| |
Collapse
|
18
|
Luong AM, Adam H, Gauron C, Affortit P, Ntakirutimana F, Khong NG, Le QH, Le TN, Fournel M, Lebrun M, Tregear J, Jouannic S. Functional Diversification of euANT/PLT Genes in Oryza sativa Panicle Architecture Determination. FRONTIERS IN PLANT SCIENCE 2021; 12:692955. [PMID: 34305984 PMCID: PMC8302143 DOI: 10.3389/fpls.2021.692955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 05/13/2023]
Abstract
Grain yield, which is one of the most important traits in rice breeding, is controlled in part by panicle branching patterns. Numerous genes involved in the control of panicle architecture have been identified through mutant and QTL characterization. Previous studies suggested the importance of several AP2/ERF transcription factor-encoding genes in the control of panicle development, including the AINTEGUMENTA/PLETHORA-like (euANT/PLT) genes. The ANT gene was specifically considered to be a key regulator of shoot and floral development in Arabidopsis thaliana. However, the likely importance of paralogous euANT/PLT genes in the regulation of meristem identities and activities during panicle architecture development has not to date been fully addressed in rice. In this study, we observed that the rice euANT/PLT genes displayed divergent temporal expression patterns during the branching stages of early panicle development, with spatial localization of expression in meristems for two of these genes. Moreover, a functional analysis of rice ANT-related genes using genome editing revealed their importance in the control of panicle architecture, through the regulation of axillary meristem (AM) establishment and meristem fate transition. Our study suggests that the paralogous euANT/PLT genes have become partially diversified in their functions, with certain opposing effects, since they arose from ancestral gene duplication events, and that they act in regulating the branching of the rice panicle.
Collapse
Affiliation(s)
- Ai My Luong
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Hélène Adam
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Carole Gauron
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Pablo Affortit
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | | | - Ngan Giang Khong
- LMI RICE, National Key Laboratory for Plant CellBiotechnology, Agronomical Genetics Institute, University of Montpellier, IRD, CIRAD, University of Science and Technologyof Hanoi, Hanoi, Vietnam
| | - Quang Hoa Le
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Thi Nhu Le
- LMI RICE, National Key Laboratory for Plant CellBiotechnology, Agronomical Genetics Institute, University of Montpellier, IRD, CIRAD, University of Science and Technologyof Hanoi, Hanoi, Vietnam
| | - Marie Fournel
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Michel Lebrun
- LMI RICE, National Key Laboratory for Plant CellBiotechnology, Agronomical Genetics Institute, University of Montpellier, IRD, CIRAD, University of Science and Technologyof Hanoi, Hanoi, Vietnam
- LSTM, University of Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France
| | - James Tregear
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Stefan Jouannic
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
- *Correspondence: Stefan Jouannic,
| |
Collapse
|
19
|
Deveshwar P, Prusty A, Sharma S, Tyagi AK. Phytohormone-Mediated Molecular Mechanisms Involving Multiple Genes and QTL Govern Grain Number in Rice. Front Genet 2020; 11:586462. [PMID: 33281879 PMCID: PMC7689023 DOI: 10.3389/fgene.2020.586462] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Increasing the grain number is the most direct route toward enhancing the grain yield in cereals. In rice, grain number can be amplified through increasing the shoot branching (tillering), panicle branching, panicle length, and seed set percentage. Phytohormones have been conclusively shown to control the above characteristics by regulating molecular factors and their cross-interactions. The dynamic equilibrium of cytokinin levels in both shoot and inflorescence meristems, maintained by the regulation of its biosynthesis, activation, and degradation, determines the tillering and panicle branching, respectively. Auxins and gibberellins are known broadly to repress the axillary meristems, while jasmonic acid is implicated in the determination of reproductive meristem formation. The balance of auxin, gibberellin, and cytokinin determines meristematic activities in the inflorescence. Strigolactones have been shown to repress the shoot branching but seem to regulate panicle branching positively. Ethylene, brassinosteroids, and gibberellins regulate spikelet abortion and grain filling. Further studies on the optimization of endogenous hormonal levels can help in the expansion of the grain yield potential of rice. This review focuses on the molecular machinery, involving several genes and quantitative trait loci (QTL), operational in the plant that governs hormonal control and, in turn, gets governed by the hormones to regulate grain number and yield in rice.
Collapse
Affiliation(s)
- Priyanka Deveshwar
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|