1
|
Kang Y, Liu Y, Fu P, Ma L. Peritoneal fibrosis: from pathophysiological mechanism to medicine. Front Physiol 2024; 15:1438952. [PMID: 39301425 PMCID: PMC11411570 DOI: 10.3389/fphys.2024.1438952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Peritoneal dialysis (PD) is currently one of the effective methods for treating end-stage renal disease (ESRD). However, long-term exposure to high concentration glucose in peritoneal dialysis environment could lead to peritoneal fibrosis (PF), impaired peritoneal filtration function, decreased peritoneal dialysis efficiency, and even withdrawal from peritoneal dialysis in patients. Considerable evidence suggests that peritoneal fibrosis after peritoneal dialysis is related to crucial factors such as mesothelial-to-mesenchymal transition (MMT), inflammatory response, and angiogenesis, etc. In our review, we summarize the pathophysiological mechanisms and further illustrate the future strategies against PF.
Collapse
Affiliation(s)
- Yingxi Kang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Liu
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mangoura SA, Ahmed MA, Hamad N, Zaka AZ, Khalaf KA, Mahdy MA. Vildagliptin ameliorates intrapulmonary vasodilatation and angiogenesis in chronic common bile duct ligation-induced hepatopulmonary syndrome in rat. Clin Res Hepatol Gastroenterol 2024; 48:102408. [PMID: 38925324 DOI: 10.1016/j.clinre.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Experimental hepatopulmonary syndrome (HPS) is best reproduced in the rat common bile duct ligation (CBDL) model. Vildagliptin (Vild) is an anti-hyperglycemic drug that exerts beneficial anti-inflammatory, anti-oxidant and anti-fibrotic effects. Therefore, the present search aimed to explore the possible effectiveness of Vild in CBDL-induced HPS model. METHODS Four groups of male Wistar rats which weigh 220-270 g were used, including the normal control group, the sham control group, the CBDL group and CBDL+Vild group. The first three groups received i.p. saline, while the last group was treated with i.p. Vild (10 mg/kg/day) from the 15th to 28th day of the experiment. RESULTS CBDL decreased the survivability and body weight of rats, increased diameter of the pulmonary vessels, and altered the arterial blood gases and the liver function parameters. Additionally, it increased the pulmonary expressions of endothelin-1 (ET-1) and tumor necrosis factor-α (TNF-α) mRNA as well as endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor-A (VEGF-A) proteins. The CBDL rats also exhibited elevation of the pulmonary interleukin-6 (IL-6), dipeptidyl peptidase-4 (DPP-4) and nitric oxide (NO) levels along with reduction of the pulmonary total anti-oxidant capacity and glucagon-like peptide-1 (GLP-1) levels. Vild mitigated these alterations and improved the histopathological abnormalities caused by CBDL. CONCLUSION Vild effectively attenuated CBDL-induced HPS through its anti-oxidant and anti-inflammatory effects along with its modulatory effects on ET-1/NOS/NO and TNF-α/IL-6/VEGF-A signaling implicated in the regulation of intrapulmonary vasodilatation and angiogenesis, respectively.
Collapse
Affiliation(s)
- Safwat A Mangoura
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Marwa A Ahmed
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Nashwa Hamad
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Andrew Z Zaka
- Department of Medical Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Khaled A Khalaf
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | |
Collapse
|
3
|
Liang NE, Parker JB, Lu JM, Januszyk M, Wan DC, Griffin M, Longaker MT. Understanding the Foreign Body Response via Single-Cell Meta-Analysis. BIOLOGY 2024; 13:540. [PMID: 39056733 PMCID: PMC11273435 DOI: 10.3390/biology13070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Foreign body response (FBR) is a universal reaction to implanted biomaterial that can affect the function and longevity of the implant. A few studies have attempted to identify targets for treating FBR through the use of single-cell RNA sequencing (scRNA-seq), though the generalizability of these findings from an individual study may be limited. In our study, we perform a meta-analysis of scRNA-seq data from all available FBR mouse studies and integrate these data to identify gene signatures specific to FBR across different models and anatomic locations. We identify subclusters of fibroblasts and macrophages that emerge in response to foreign bodies and characterize their signaling pathways, gene ontology terms, and downstream mediators. The fibroblast subpopulations enriched in the setting of FBR demonstrated significant signaling interactions in the transforming growth factor-beta (TGF-β) signaling pathway, with known pro-fibrotic mediators identified as top expressed genes in these FBR-derived fibroblasts. In contrast, FBR-enriched macrophage subclusters highly expressed pro-fibrotic and pro-inflammatory mediators downstream of tumor necrosis factor (TNF) signaling. Cell-cell interactions were additionally interrogated using CellChat, with identification of key signaling interactions enriched between fibroblasts and macrophages in FBR. By combining multiple FBR datasets, our meta-analysis study identifies common cell-specific gene signatures enriched in foreign body reactions, providing potential therapeutic targets for patients requiring medical implants across a myriad of devices and indications.
Collapse
Affiliation(s)
- Norah E. Liang
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer B. Parker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John M. Lu
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C. Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (N.E.L.); (J.B.P.); (J.M.L.); (M.J.); (D.C.W.); (M.G.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Yang CC, Chen YL, Sung PH, Chiang JY, Chen CH, Li YC, Yip HK. Repeated administration of adipose-derived mesenchymal stem cells added on beneficial effects of empagliflozin on protecting renal function in diabetic kidney disease rat. Biomed J 2024; 47:100613. [PMID: 37355087 PMCID: PMC10950825 DOI: 10.1016/j.bj.2023.100613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most significant public health burdens worldwide. This study explored the renal protections of combined adipose-derived mesenchymal stem cells (ADMSCs) and empagliflozin (EMPA) in DKD rats. METHODS Adult-male-SD rats were equally allocated into group 1 (sham-operated-control), group 2 (DKD), group 3 (DKD + EMPA/20 mg/kg/day since day-14 after CKD-induction), group 4 [DKD + ADMSCs (6.0 × 105/intrarenal-arterial-injection/post-day-28, followed by 1.2 × 106/intravenous injection post-days 35 and 42 after CKD-induction, i.e., defined as repeated administration)] and group 5 (DKD + ADMSCs + EMPA) and kidney was harvested post-day-60 CKD-induction. RESULTS The result showed that the blood sugar and circulatory levels of BUN/creatinine and the ratio of urine protein/creatinine at day 60 were greatly increased in group 2 as compared the SC (i.e., group 1), significantly increased in groups 3 and 4 than in groups 5, but these parameters showed the similar manner in groups 3 and 4, except for blood sugar that was significantly lower in group 3 than in group 4 (all p < 0.0001). The protein levels of inflammation (NF-κB/FNF-α/MMP-9)/oxidative-stress (NOX-1/NOX-2/oxidized protein/p22-phox)/apoptosis (cleaved-caspase-3/cleaved-PARP/mitochondrial-Bax)/fibrosis (TGF-β/Smad 3)/mitochondrial/DNA-damaged (p-DRP1/γ-H2AX) biomarkers revealed a similar manner of creatinine level among the groups (all p < 0.0001). Kidney injury score/fibrotic area/oxidative-stress score (8-OHdG) and cellular levels of kidney-damaged biomarkers (KIM-1/γ-H2AX) showed a unanimous manner. In contrast, the cellular expressions of podocyte components (ZO-1/synaptopodin) revealed an antithetical manner of creatinine among the groups (all p < 0.0001). CONCLUSION Combined ADMSCs-EMPA was superior to just one therapy for protecting kidney function and ultra-structural integrity in DKD rodents.
Collapse
Affiliation(s)
- Chih-Chao Yang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science & Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Jo CH, Kim S, Ha TK, Kang DH, Kim GH. Effects of sitagliptin on peritoneal membrane: The potential role of mesothelial cell tight junction proteins. Perit Dial Int 2023; 43:448-456. [PMID: 36998201 DOI: 10.1177/08968608231158224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The roles of tight junction (TJ) proteins in peritoneal membrane transport and peritoneal dialysis (PD) require further characterisation. Dipeptidyl peptidase-4 is expressed in mesothelial cells, and its activity may affect peritoneal membrane function and morphology. METHODS Human peritoneal mesothelial cells (HPMCs) were isolated and cultured from omentum obtained during abdominal surgery, and paracellular transport functions were evaluated by measuring transmesothelial electrical resistance (TMER) and dextran flux. Sprague-Dawley rats were infused daily with 4.25% peritoneal dialysate with and without sitagliptin administration for 8 weeks. At the end of this period, rat peritoneal mesothelial cells (RPMCs) were isolated to evaluate TJ protein expression. RESULTS In HPMCs, the protein expression of claudin-1, claudin-15, occludin and E-cadherin was decreased by TGF-β treatment but reversed by sitagliptin co-treatment. TMER was decreased by TGF-β treatment but improved by sitagliptin co-treatment. Consistent with this, dextran flux was increased by TGF-β treatment and reversed by sitagliptin co-treatment. In the animal experiment, sitagliptin-treated rats had a lower D2/D0 glucose ratio and a higher D2/P2 creatinine ratio than PD controls during the peritoneal equilibration test. Protein expression of claudin-1, claudin-15 and E-cadherin decreased in RPMCs from PD controls but was not affected in those from sitagliptin-treated rats. Peritoneal fibrosis was induced in PD controls but ameliorated in sitagliptin-treated rats. CONCLUSION The expression of TJ proteins including claudin-1 and claudin-15 was associated with transport function both in HPMCs and in a rat model of PD. Sitagliptin prevents peritoneal fibrosis in PD and can potentially restore peritoneal mesothelial cell TJ proteins.
Collapse
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tae Kyung Ha
- Department of Surgery, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Duk-Hee Kang
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ko SF, Li YC, Shao PL, Chiang JY, Sung PH, Chen YL, Yip HK. Interplay Between Inflammatory-immune and Interleukin-17 Signalings Plays a Cardinal Role on Liver Ischemia-reperfusion Injury-Synergic Effect of IL-17Ab, Tacrolimus and ADMSCs on Rescuing the Liver Damage. Stem Cell Rev Rep 2023; 19:2852-2868. [PMID: 37632641 DOI: 10.1007/s12015-023-10611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND This study tested the hypothesis that inflammatory and interleukin (IL)-17 signalings were essential for acute liver ischemia (1 h)-reperfusion (72 h) injury (IRI) that was effectively ameliorated by adipose-derived mesenchymal stem cells (ADMSCs) and tacrolimus. METHODS Adult-male SD rats (n = 50) were equally categorized into groups 1 (sham-operated-control), 2 (IRI), 3 [IRI + IL-17-monoclonic antibody (Ab)], 4 (IRI + tacrolimus), 5 (IRI + ADMSCs) and 6 (IRI + tacrolimus-ADMSCs) and liver was harvested at 72 h. RESULTS The main findings included: (1) circulatory levels: inflammatory cells, immune cells, and proinflammatory cytokines as well as liver-damage enzyme at the time point of 72 h were highest in group 2, lowest in group 1 and significantly lower in group 6 than in groups 3 to 5 (all p < 0.0001), but they did not differ among these three latter groups; (2) histopathology: the liver injury score, fibrosis, inflammatory and immune cell infiltration in liver immunity displayed an identical pattern of inflammatory cells among the groups (all p < 0.0001); and (3) protein levels: upstream and downstream inflammatory signalings, oxidative-stress, apoptotic and mitochondrial-damaged biomarkers exhibited an identical pattern of inflammatory cells among the groups (all p < 0.0001). CONCLUSION Our results obtained from circulatory, pathology and molecular-cellular levels delineated that acute IRI was an intricate syndrome that elicited complex upstream and downstream inflammatory and immune signalings to damage liver parenchyma that greatly suppressed by combined tacrolimus and ADMSCs therapy.
Collapse
Affiliation(s)
- Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung, 41354, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.
- , Taoyuan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
7
|
Suryantoro SD, Thaha M, Sutanto H, Firdausa S. Current Insights into Cellular Determinants of Peritoneal Fibrosis in Peritoneal Dialysis: A Narrative Review. J Clin Med 2023; 12:4401. [PMID: 37445436 DOI: 10.3390/jcm12134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Peritoneal fibrosis is the final process of progressive changes in the peritoneal membrane due to chronic inflammation and infection. It is one of the main causes of discontinuation of peritoneal dialysis (PD), apart from peritonitis and cardiovascular complications. Over time, morphological changes occur in the peritoneal membranes of patients who use PD. Of those are mesothelial-to-mesenchymal transition (MMT), neoangiogenesis, sub-mesothelial fibrosis, and hyalinizing vasculopathy. Several key molecules are involved in the complex pathophysiology of peritoneal fibrosis, including advanced glycosylation end products (AGEs), transforming growth factor beta (TGF-β), and vascular endothelial growth factor (VEGF). This narrative review will first discuss the physiology of the peritoneum and PD. Next, the multifaceted pathophysiology of peritoneal fibrosis, including the effects of hyperglycemia and diabetes mellitus on the peritoneal membrane, and the promising biomarkers of peritoneal fibrosis will be reviewed. Finally, the current and future management of peritoneal fibrosis will be discussed, including the potential benefits of new-generation glucose-lowering medications to prevent or slow down the progression of peritoneal fibrosis.
Collapse
Affiliation(s)
- Satriyo Dwi Suryantoro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Mochammad Thaha
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Universitas Airlangga Hospital, Surabaya 60115, Indonesia
| | - Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Sarah Firdausa
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
8
|
Huang CW, Lee SY, Du CX, Ku HC. Soluble dipeptidyl peptidase-4 induces epithelial-mesenchymal transition through tumor growth factor-β receptor. Pharmacol Rep 2023:10.1007/s43440-023-00496-y. [PMID: 37233949 DOI: 10.1007/s43440-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Kidney fibrosis is the final manifestation of chronic kidney disease, a condition mainly caused by diabetic nephropathy. Persistent tissue damage leads to chronic inflammation and excessive deposition of extracellular matrix (ECM) proteins. Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibrosis and is a process during which epithelial cells transform into mesenchymal-like cells and lose their epithelial functionality and characteristics Dipeptidyl peptidase-4 (DPP4) is widely expressed in tissues, especially those of the kidney and small intestine. DPP4 exists in two forms: a plasma membrane-bound and a soluble form. Serum-soluble DPP4 (sDPP4) levels are altered in many pathophysiological conditions. Elevated circulating sDPP4 is correlated with metabolic syndrome. Because the role of sDPP4 in EMT remains unclear, we examined the effect of sDPP4 on renal epithelial cells. METHODS The influences of sDPP4 on renal epithelial cells were demonstrated by measuring the expression of EMT markers and ECM proteins. RESULTS sDPP4 upregulated the EMT markers ACTA2 and COL1A1 and increased total collagen content. sDPP4 activated SMAD signaling in renal epithelial cells. Using genetic and pharmacological methods to target TGFBR, we observed that sDPP4 activated SMAD signaling through TGFBR in epithelial cells, whereas genetic ablation and treatment with TGFBR antagonist prevented SMAD signaling and EMT. Linagliptin, a clinically available DPP4 inhibitor, abrogated sDPP4-induced EMT. CONCLUSIONS This study indicated that sDPP4/TGFBR/SMAD axis leads to EMT in renal epithelial cells. Elevated circulating sDPP4 levels may contribute to mediators that induce renal fibrosis.
Collapse
Affiliation(s)
- Cheng-Wei Huang
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Shih-Yi Lee
- Division of Pulmonary and Critical Care Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chen-Xuan Du
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan
| | - Hui-Chun Ku
- Department of Life Science, Fu Jen Catholic University, No.510, Zhongzheng Road, Xinzhuang District, New Taipei City, 242, Taiwan.
| |
Collapse
|
9
|
Muacevic A, Adler JR, Shukla TS, Gutlapalli SD, Farhat H, Muthiah K, Pallipamu N, Hamid P. A Review on Major Pathways Leading to Peritoneal Fibrosis in Patients Receiving Continuous Peritoneal Dialysis. Cureus 2022; 14:e31799. [PMID: 36579194 PMCID: PMC9788797 DOI: 10.7759/cureus.31799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Peritoneal fibrosis (PF) is the most important complication of peritoneal dialysis (PD) that may arise among patients receiving continuous ambulatory peritoneal dialysis (CAPD). PF is a complex process, and many factors contribute to the formation of fibrosis. PD solutions with high glucose content, chronic inflammation, inflammatory cytokines, angiogenesis, and mesothelial to mesenchymal transition (MMT) are factors contributing to the fibrosis of the peritoneum. These factors, as well as stress-induced fibrosis, are going to be discussed further in this article. Although most experimental models are promising in preventing or delaying PD-related fibrosis, most of these recommended treatment options require further research. The lack of sufficient data from real PD patients and many inconclusive data make clinicians depend on conservative treatment. New therapeutics are indeed required for the management of patients undergoing PD to prevent the dreaded complication that may arise from continuous PD. Newer PD solutions are needed to improve survival and minimize the complication associated with PD. Recently, newer PD solutions have been shown to improve patient survival and peritoneal viability and reduce this complication that may arise as a result of continuous PD.
Collapse
|
10
|
Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of Dipeptidyl Peptidase 4 Inhibitors in Antidiabetic Treatment. Molecules 2022; 27:3055. [PMID: 35630534 PMCID: PMC9147686 DOI: 10.3390/molecules27103055] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, important changes have occurred in the field of diabetes treatment. The focus of the treatment of diabetic patients has shifted from the control of blood glucose itself to the overall management of risk factors, while adjusting blood glucose goals according to individualization. In addition, regulators need to approve new antidiabetic drugs which have been tested for cardiovascular safety. Thus, the newest class of drugs has been shown to reduce major adverse cardiovascular events, including sodium-glucose transporter 2 (SGLT2) and some glucagon like peptide 1 receptor (GLP1) analog. As such, they have a prominent place in the hyperglycemia treatment algorithms. In recent years, the role of DPP4 inhibitors (DPP4i) has been modified. DPP4i have a favorable safety profile and anti-inflammatory profile, do not cause hypoglycemia or weight gain, and do not require dose escalation. In addition, it can also be applied to some types of chronic kidney disease patients and elderly patients with diabetes. Overall, DPP4i, as a class of safe oral hypoglycemic agents, have a role in the management of diabetic patients, and there is extensive experience in their use.
Collapse
Affiliation(s)
| | | | | | | | - Dong Zhao
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China; (R.Y.); (Y.X.); (X.W.); (L.Y.)
| |
Collapse
|
11
|
Huang J, Liu X, Wei Y, Li X, Gao S, Dong L, Rao X, Zhong J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front Immunol 2022; 13:830863. [PMID: 35309368 PMCID: PMC8931313 DOI: 10.3389/fimmu.2022.830863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl-peptidase IV (DPP4), originally identified as an aminopeptidase in 1960s, is an ubiquitously expressed protease presented as either a membrane-bound or soluble form. DPP4 cleaves dipeptide off from the N-terminal of its substrates, altering the bioactivity of its substrates. Subsequent studies reveal that DPP4 is also involved in various cellular processes by directly binding to a number of ligands, including adenosine deaminase, CD45, fibronectin, plasminogen, and caveolin-1. In recent years, many novel functions of DPP4, such as promoting fibrosis and mediating virus entry, have been discovered. Due to its implication in fibrotic response and immunoregulation, increasing studies are focusing on the potential role of DPP4 in inflammatory disorders. As a moonlighting protein, DPP4 possesses multiple functions in different types of cells, including both enzymatic and non-enzymatic functions. However, most of the review articles on the role of DPP4 in autoimmune disease were focused on the association between DPP4 enzymatic inhibitors and the risk of autoimmune disease. An updated comprehensive summary of DPP4’s immunoregulatory actions including both enzymatic dependent and independent functions is needed. In this article, we will review the recent advances of DPP4 in immune regulation and autoimmune rheumatic disease.
Collapse
Affiliation(s)
- Jie Huang
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinxin Liu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Wei
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinlu Li
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shupei Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Xiaoquan Rao
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jixin Zhong, ; Xiaoquan Rao, ; Lingli Dong,
| |
Collapse
|
12
|
Li YC, Chen CH, Chang CL, Chiang JYW, Chu CH, Chen HH, Yip HK. Melatonin and hyperbaric oxygen therapies suppress colorectal carcinogenesis through pleiotropic effects and multifaceted mechanisms. Int J Biol Sci 2021; 17:3728-3744. [PMID: 34671196 PMCID: PMC8495382 DOI: 10.7150/ijbs.62280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Colorectal carcinogenesis is frequently induced by hypoxia to trigger the reprogramming of cellular metabolism and gain of malignant phenotypes. Previously, hyperbaric oxygen (HBO) therapy and melatonin have been reported to alter the hypoxic microenvironment, resulting in inhibiting cancer cell survival. Accordingly, this study tested the hypothesis whether HBO and melatonin effectively inhibited CRC carcinogenesis. In vitro results indicated that melatonin therapy significantly suppressed the malignant phenotypes, including colony formation, growth, invasion, migration and cancer stemness with dose-dependent manners in CRC cell lines through multifaceted mechanisms. Similar to in vitro study, in vivo findings further demonstrated the melatonin, HBO and combined treatments effectively promoted apoptosis (cleaved-caspase 3/ cleaved-PARP) and arrested tumor proliferation, followed by inhibiting colorectal tumorigenesis in CRC xenograft tumor model. Moreover, melatonin, HBO and combined treatments modulated multifaceted mechanisms, including decreasing HIF-1α expression, alleviating AKT activation, repressing glycolytic metabolism (HK-2/PFK1/PKM2/LDH), restraining cancer stemness pathway (TGF-β/p-Smad3/Oct4/Nanog), reducing inflammation (p-NFκB/ COX-2), diminishing immune escape (PD-L1), and reversing expression of epithelial mesenchymal transition (E-cadherin/N-cadherin/MMP9). In conclusion, melatonin and HBO therapies suppressed colorectal carcinogenesis through the pleiotropic effects and multifaceted mechanisms, suggesting melatonin and HBO treatments could be novel therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.,Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.,Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chih-Hung Chen
- Divisions of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - John Yi-Wu Chiang
- Department of Computer Science & Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chi-Hsiang Chu
- Department of Statistics, Tunghai University, Taichung 40704, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.,Department of Nursing, Asia University, Taichung 41354, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, Fujian, China
| |
Collapse
|
13
|
Immunomodulatory Therapies for the Treatment of Graft-versus-host Disease. Hemasphere 2021; 5:e581. [PMID: 34095764 PMCID: PMC8171375 DOI: 10.1097/hs9.0000000000000581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies, and its therapeutic success is based on the graft-versus-leukemia (GvL) effect. Severe acute and chronic graft-versus-host disease (GvHD) are life-threatening complications after allo-HCT. To date, most of the approved treatment strategies for GvHD rely on broadly immunosuppressive regimens, which limit the beneficial GvL effect by reducing the cytotoxicity of anti-leukemia donor T-cells. Therefore, novel therapeutic strategies that rely on immunomodulatory rather than only immunosuppressive effects could help to improve patient outcomes. Treatments should suppress severe GvHD while preserving anti-leukemia immunity. New treatment strategies include the blockade of T-cell activation via inhibition of dipeptidyl peptidase 4 and cluster of differentiation 28-mediated co-stimulation, reduction of proinflammatory interleukin (IL)-2, IL-6 and tumor necrosis factor-α signaling, as well as kinase inhibition. Janus kinase (JAK)1/2 inhibition acts directly on T-cells, but also renders antigen presenting cells more tolerogenic and blocks dendritic cell-mediated T-cell activation and proliferation. Extracorporeal photopheresis, hypomethylating agent application, and low-dose IL-2 are powerful approaches to render the immune response more tolerogenic by regulatory T-cell induction. The transfer of immunomodulatory and immunosuppressive cell populations, including mesenchymal stromal cells and regulatory T-cells, showed promising results in GvHD treatment. Novel experimental procedures are based on metabolic reprogramming of donor T-cells by reducing glycolysis, which is crucial for cytotoxic T-cell proliferation and activity.
Collapse
|