1
|
Ge Y, Zadeh M, Sharma C, Lin YD, Soshnev AA, Mohamadzadeh M. Controlling functional homeostasis of ileal resident macrophages by vitamin B12 during steady state and Salmonella infection in mice. Mucosal Immunol 2024; 17:1314-1325. [PMID: 39255854 DOI: 10.1016/j.mucimm.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Dietary micronutrients, particularly vitamin B12 (VB12), profoundly influence the physiological maintenance and function of intestinal cells. However, it is still unclear whether VB12 modulates the transcriptional and metabolic programming of ileal macrophages (iMacs), thereby contributing to intestinal homeostasis. Using multiomic approaches, we demonstrated that VB12 primarily supports the cell cycle activity and mitochondrial metabolism of iMacs, resulting in increased cell frequency compared to VB12 deficiency. VB12 also retained the ability to promote maintenance and metabolic regulation of iMacs during intestinal infection with Salmonella Typhimurium (STm). On the contrary, depletion of iMacs by inhibiting CSF1R signaling significantly increased host susceptibility to STm and prevented VB12-mediated pathogen reduction. These results thus suggest that regulation of VB12-dependent iMacs critically controls STm expansion, which may be of new relevance to advance our understanding of this vitamin and to strategically formulate sustainable therapeutic nutritional regimens that improve human gut health.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA.
| | - Mojgan Zadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Cheshta Sharma
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Alexey A Soshnev
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, TX, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health, San Antonio, TX, USA; South Texas Veterans Health Care System (STVHCS), San Antonio, TX, USA.
| |
Collapse
|
2
|
Elshikha A, Ge Y, Choi SC, Park YP, Padilla L, Zhu Y, Clapp WL, Sobel ES, Mohamadzadeh M, Morel L. Glycolysis inhibition functionally reprograms T follicular helper cells and reverses lupus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618563. [PMID: 39464003 PMCID: PMC11507846 DOI: 10.1101/2024.10.15.618563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which the production of pathogenic autoantibodies depends on T follicular helper (T FH ) cells. This study was designed to investigate the mechanisms by which inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reduces the expansion of T FH cells and the associated autoantibody production in lupus-prone mice. Integrated cellular, transcriptomic, epigenetic and metabolic analyses showed that 2DG reversed the enhanced cell expansion and effector functions, as well as mitochondrial and lysosomal defects in lupus T FH cells, which include an increased chaperone-mediated autophagy induced by TLR7 activation. Importantly, adoptive transfer of 2DG-reprogrammed T FH cells protected lupus-prone mice from disease progression. Orthologs of genes responsive to 2DG in murine lupus T FH cells were overexpressed in the T FH cells of SLE patients, suggesting a therapeutic potential of targeting glycolysis to eliminate aberrant T FH cells and curb the production of autoantibodies inducing tissue damage.
Collapse
|
3
|
Pal A, Grossmann D, Glaß H, Zimyanin V, Günther R, Catinozzi M, Boeckers TM, Sterneckert J, Storkebaum E, Petri S, Wegner F, Grill SW, Pan-Montojo F, Hermann A. Glycolic acid and D-lactate-putative products of DJ-1-restore neurodegeneration in FUS - and SOD1-ALS. Life Sci Alliance 2024; 7:e202302535. [PMID: 38760174 PMCID: PMC11101837 DOI: 10.26508/lsa.202302535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) leads to death within 2-5 yr. Currently, available drugs only slightly prolong survival. We present novel insights into the pathophysiology of Superoxide Dismutase 1 (SOD1)- and in particular Fused In Sarcoma (FUS)-ALS by revealing a supposedly central role of glycolic acid (GA) and D-lactic acid (DL)-both putative products of the Parkinson's disease associated glyoxylase DJ-1. Combined, not single, treatment with GA/DL restored axonal organelle phenotypes of mitochondria and lysosomes in FUS- and SOD1-ALS patient-derived motoneurons (MNs). This was not only accompanied by restoration of mitochondrial membrane potential but even dependent on it. Despite presenting an axonal transport deficiency as well, TDP43 patient-derived MNs did not share mitochondrial depolarization and did not respond to GA/DL treatment. GA and DL also restored cytoplasmic mislocalization of FUS and FUS recruitment to DNA damage sites, recently reported being upstream of the mitochondrial phenotypes in FUS-ALS. Whereas these data point towards the necessity of individualized (gene-) specific therapy stratification, it also suggests common therapeutic targets across different neurodegenerative diseases characterized by mitochondrial depolarization.
Collapse
Affiliation(s)
- Arun Pal
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dajana Grossmann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
| | - Vitaly Zimyanin
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - René Günther
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Dresden, Germany
| | - Marica Catinozzi
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, as well as Deutsches Zentrum für Neurodegenerative Erkrankungen, Ulm, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden as well as Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Erik Storkebaum
- Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Francisco Pan-Montojo
- Department of Psychiatrie and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Liu M, He L. Dietary cysteine and methionine promote peroxisome elevation and fat loss by induction of CG33474 expression in Drosophila adipose tissue. Cell Mol Life Sci 2024; 81:190. [PMID: 38649521 PMCID: PMC11035426 DOI: 10.1007/s00018-024-05226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The high-protein diet (HPD) has emerged as a potent dietary approach to curb obesity. Peroxisome, a highly malleable organelle, adapts to nutritional changes to maintain homeostasis by remodeling its structure, composition, and quantity. However, the impact of HPD on peroxisomes and the underlying mechanism remains elusive. Using Drosophila melanogaster as a model system, we discovered that HPD specifically increases peroxisome levels within the adipose tissues. This HPD-induced peroxisome elevation is attributed to cysteine and methionine by triggering the expression of CG33474, a fly homolog of mammalian PEX11G. Both the overexpression of Drosophila CG33474 and human PEX11G result in increased peroxisome size. In addition, cysteine and methionine diets both reduce lipid contents, a process that depends on the presence of CG33474. Furthermore, CG33474 stimulates the breakdown of neutral lipids in a cell-autonomous manner. Moreover, the expression of CG33474 triggered by cysteine and methionine requires TOR signaling. Finally, we found that CG33474 promotes inter-organelle contacts between peroxisomes and lipid droplets (LDs), which might be a potential mechanism for CG33474-induced fat loss. In summary, our findings demonstrate that CG33474/PEX11G may serve as an essential molecular bridge linking HPD to peroxisome dynamics and lipid metabolism.
Collapse
Affiliation(s)
- Meng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
5
|
Susarla G, Kataria P, Kundu A, D'Silva P. Saccharomyces cerevisiae DJ-1 paralogs maintain genome integrity through glycation repair of nucleic acids and proteins. eLife 2023; 12:e88875. [PMID: 37548361 PMCID: PMC10431920 DOI: 10.7554/elife.88875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Reactive carbonyl species (RCS) such as methylglyoxal and glyoxal are potent glycolytic intermediates that extensively damage cellular biomolecules leading to genetic aberration and protein misfolding. Hence, RCS levels are crucial indicators in the progression of various pathological diseases. Besides the glyoxalase system, emerging studies report highly conserved DJ-1 superfamily proteins as critical regulators of RCS. DJ-1 superfamily proteins, including the human DJ-1, a genetic determinant of Parkinson's disease, possess diverse physiological functions paramount for combating multiple stressors. Although S. cerevisiae retains four DJ-1 orthologs (Hsp31, Hsp32, Hsp33, and Hsp34), their physiological relevance and collective requirement remain obscure. Here, we report for the first time that the yeast DJ-1 orthologs function as novel enzymes involved in the preferential scavenge of glyoxal and methylglyoxal, toxic metabolites, and genotoxic agents. Their collective loss stimulates chronic glycation of the proteome, and nucleic acids, inducing spectrum of genetic mutations and reduced mRNA translational efficiency. Furthermore, the Hsp31 paralogs efficiently repair severely glycated macromolecules derived from carbonyl modifications. Also, their absence elevates DNA damage response, making cells vulnerable to various genotoxins. Interestingly, yeast DJ-1 orthologs preserve functional mitochondrial content, maintain ATP levels, and redistribute into mitochondria to alleviate the glycation damage of macromolecules. Together, our study uncovers a novel glycation repair pathway in S. cerevisiae and a possible neuroprotective mechanism of how hDJ-1 confers mitochondrial health during glycation toxicity.
Collapse
Affiliation(s)
- Gautam Susarla
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| | - Priyanka Kataria
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| | - Amrita Kundu
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
6
|
Messelmani T, Le Goff A, Soncin F, Gilard F, Souguir Z, Maubon N, Gakière B, Legallais C, Leclerc E, Jellali R. Investigation of the metabolomic crosstalk between liver sinusoidal endothelial cells and hepatocytes exposed to paracetamol using organ-on-chip technology. Toxicology 2023; 492:153550. [PMID: 37209942 DOI: 10.1016/j.tox.2023.153550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Organ-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology. To reproduce the physiology of the sinusoidal barrier, LSECs were separated from hepatocytes by a membrane (culture insert integrated organ-on-chip platform). The tissues were exposed to acetaminophen (APAP), an analgesic drug widely used as a xenobiotic model in liver and HepG2/C3a studies. The differences between the SK-HEP-1, HepG2/C3a monocultures and SK-HEP-1/HepG2/C3a cocultures, treated or not with APAP, were identified from metabolomic profiles using supervised multivariate analysis. The pathway enrichment coupled with metabolite analysis of the corresponding metabolic fingerprints contributed to extracting the specificity of each type of culture and condition. In addition, we analysed the responses to APAP treatment by mapping the signatures with significant modulation of the biological processes of the SK-HEP-1 APAP, HepG2/C3a APAP and SK-HEP-1/HepG2/C3a APAP conditions. Furthermore, our model shows how the presence of the LSECs barrier and APAP first pass can modify the metabolism of HepG2/C3a. Altogether, this study demonstrates the potential of a "metabolomic-on-chip" strategy for pharmaco-metabolomic applications predicting individual response to drugs.
Collapse
Affiliation(s)
- Taha Messelmani
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Anne Le Goff
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Fabrice Soncin
- CNRS/IIS/Centre Oscar Lambret/Lille University SMMiL-E Project, CNRS Délégation Hauts-de-France, 43 Avenue le Corbusier, 59800 Lille, France; CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Zied Souguir
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Nathalie Maubon
- HCS Pharma, 250 rue Salvador Allende, Biocentre Fleming Bâtiment A, 59120 Loos, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Université Paris Saclay, Bâtiment 630 Rue Noetzlin, 91192, Gif-sur-Yvette Cedex, France
| | - Cécile Legallais
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Eric Leclerc
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France; CNRS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Rachid Jellali
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France.
| |
Collapse
|
7
|
Zaderer V, Dichtl S, Posch W, Abiatari I, Bonn GK, Jakschitz T, Huber LA, Kurzchalia TV, Wilflingseder D. GlyPerA™ effectively shields airway epithelia from SARS-CoV-2 infection and inflammatory events. Respir Res 2023; 24:88. [PMID: 36949547 PMCID: PMC10032620 DOI: 10.1186/s12931-023-02397-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
New SARS-CoV-2 variants of concern (VOCs) and waning immunity illustrate that quick and easy-to-use agents are needed to prevent infection. To protect from viral transmission and subsequent inflammatory reactions, we applied GlyperA™, a novel antimicrobial formulation that can be used as mouth gargling solution or as nasal spray, to highly differentiated human airway epithelia prior infection with Omicron VOCs BA.1 and BA.2. This formulation fully protected polarized human epithelium cultured in air-liquid interphase (ALI) from SARS-CoV-2-mediated tissue destruction and infection upon single application up to two days post infection. Moreover, inflammatory reactions induced by the Omicron VOCs were significantly lowered in tissue equivalents either pre-treated with the GlyperA™ solution, or even when added simultaneously. Thus, the GlyperA™ formulation significantly shielded epithelial integrity, successfully blocked infection with Omicron and release of viral particles, and decreased intracellular complement C3 activation within human airway epithelial cell cultures. Crucially, our in vitro data imply that GlyperA™ may be a simple tool to prevent from SARS-CoV-2 infection independent on the circulating variant via both, mouth and nose.
Collapse
Affiliation(s)
- Viktoria Zaderer
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41/R311, 6020, Innsbruck, Austria
| | - Stefanie Dichtl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41/R311, 6020, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41/R311, 6020, Innsbruck, Austria
| | - Ivane Abiatari
- School of Natural Sciences and Medicine Tbilisi, Ilia State University, Tbilisi, Georgia
| | - Günther K Bonn
- Austrian Drug Screening Institute (ADSI), Innsbruck, Austria
| | | | - Lukas A Huber
- Austrian Drug Screening Institute (ADSI), Innsbruck, Austria
- Institute of Cell Biology, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | | | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstrasse 41/R311, 6020, Innsbruck, Austria.
| |
Collapse
|
8
|
Asghar MA, Kulman K, Szalai G, Gondor OK, Mednyánszky Z, Simon-Sarkadi L, Gaudinova A, Dobrev PI, Vanková R, Kocsy G. Effect of ascorbate and hydrogen peroxide on hormone and metabolite levels during post-germination growth in wheat. PHYSIOLOGIA PLANTARUM 2023; 175:e13887. [PMID: 36894826 DOI: 10.1111/ppl.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The modulation of hormone and metabolite levels by ascorbate (ASA) and hydrogen peroxide (H2 O2 ) was compared during post-germination growth in shoots of wheat. Treatment with ASA resulted in a greater reduction of growth than the addition of H2 O2 . ASA also had a larger effect on the redox state of the shoot tissues as shown by the higher ASA and glutathione (GSH) levels, lower glutathione disulfide (GSSG) content and GSSG/GSH ratio compared to the H2 O2 treatment. Apart from common responses (i.e., increase of cis-zeatin and its O-glucosides), the contents of several compounds related to cytokinin (CK) and abscisic acid (ABA) metabolism were greater after ASA application. These differences in the redox state and hormone metabolism following the two treatments may be responsible for their distinct influence on various metabolic pathways. Namely, the glycolysis and citrate cycle were inhibited by ASA and they were not affected by H2 O2 , while the amino acid metabolism was induced by ASA and repressed by H2 O2 based on the changes in the level of the related carbohydrates, organic and amino acids. The first two pathways produce reducing power, while the last one needs it; therefore ASA, as a reductant may suppress and induce them, respectively. H2 O2 as an oxidant had different effect, namely it did not alter glycolysis and citrate cycle, and inhibited the formation of amino acids.
Collapse
Affiliation(s)
- Muhammad Ahsan Asghar
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Kitti Kulman
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Gabriella Szalai
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Orsolya Kinga Gondor
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| | - Zsuzsa Mednyánszky
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Livia Simon-Sarkadi
- Department of Nutrition, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, 165 02, Czech Republic
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St., Martonvásár, 2462, Hungary
| |
Collapse
|
9
|
Samir M, Abdelkader RM, Boushehri MS, Mansour S, Lamprecht A, Tammam SN. Enhancement of mitochondrial function using NO releasing nanoparticles; a potential approach for therapy of Alzheimer's disease. Eur J Pharm Biopharm 2023; 184:16-24. [PMID: 36640916 DOI: 10.1016/j.ejpb.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Increasing evidence is showing the important role of mitochondrial dysfunction in AD. Mitochondria based oxidative stress, decrease in respiratory chain activity and ATP production are all associated with AD, hence indicating that the enhancement of mitochondrial function and biogenesis present a promising therapeutic approach for AD. Nitric oxide (NO) is an initiator of mitochondrial biogenesis. However, its gaseous nature and very short half-life limit the realization of its therapeutic potential. Additionally, its uncontrolled in-vivo distribution results in generalized vasodilation, hypotension among other off-target effects. Diazeniumdiolates (NONOates) are NO donors that release NO in physiological temperature and pH. Their encapsulation within a hydrophobic matrix carrier system could control the release of NO, and at the same time enable its delivery to the brain. In this work, PAPANONOate (PN) a NO donor was encapsulated in small (92 ± 7 nm) poly (lactic-co-glycolic acid) (PLGA) NPs. These NPs did not induce hemolysis upon intravenous administration and were able to accumulate in the brains of lipopolysaccharides (LPS) induced neurodegeneration mouse models. The encapsulation of PN within a hydrophobic PLGA matrix enabled the sustained release of NO from NPs (≈ 3 folds slower relative to free PN) and successfully delivered PN to brain. As a result, PN-NPs but not free PN resulted in an enhancement in memory and cognition in animals with neurodegeneration as determined by the Y-maze test. The enhancement in cognition was a result of increased mitochondria function as indicated by the increased production of ATP and Cytochrome C oxidase enzyme activity.
Collapse
Affiliation(s)
- Mirna Samir
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt
| | - Reham M Abdelkader
- Department of Pharmacology, Toxicology and German University in Cairo (GUC), Egypt
| | - Maryam Shetab Boushehri
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Samar Mansour
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France
| | - Salma N Tammam
- Department of Pharmaceutical Technology, German University in Cairo (GUC), Egypt.
| |
Collapse
|
10
|
Ali R, Hameed R, Chauhan D, Sen S, Wahajuddin M, Nazir A, Verma S. Multiple Actions of H 2S-Releasing Peptides in Human β-Amyloid Expressing C. elegans. ACS Chem Neurosci 2022; 13:3378-3388. [PMID: 36351248 DOI: 10.1021/acschemneuro.2c00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressive neurodegenerative disorder characterized by the loss of cognitive function. A major challenge in treating this ailment fully is its multifactorial nature, as it is associated with effects like deposition of Aβ plaques, oxidative distress, inflammation of neuronal cells, and low levels of the neurotransmitter acetylcholine (ACh). In the present work, we demonstrate the design, synthesis, and biological activity of peptide conjugates by coupling a H2S-releasing moiety to the peptides known for their Aβ antiaggregating properties. These conjugates release H2S in a slow and sustained manner, due to the formation of self-assembled structures and delivered a significant amount of H2S within Caenorhabditis elegans. These conjugates are shown to target multiple factors responsible for the progression of AD: notably, we observed reduction in oxidative distress, inhibition of Aβ aggregation, and significantly increased ACh levels in the C. elegans model expressing human Aβ.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Centre for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
11
|
Qu C, Li W, Yang Q, Xia Y, Lu P, Hu M. Metabolic mechanism of nitrogen modified atmosphere storage on delaying quality deterioration of rice grains. Food Chem X 2022; 16:100519. [DOI: 10.1016/j.fochx.2022.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
|
12
|
Vora M, Pyonteck SM, Popovitchenko T, Matlack TL, Prashar A, Kane NS, Favate J, Shah P, Rongo C. The hypoxia response pathway promotes PEP carboxykinase and gluconeogenesis in C. elegans. Nat Commun 2022; 13:6168. [PMID: 36257965 PMCID: PMC9579151 DOI: 10.1038/s41467-022-33849-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2022] [Indexed: 12/31/2022] Open
Abstract
Actively dividing cells, including some cancers, rely on aerobic glycolysis rather than oxidative phosphorylation to generate energy, a phenomenon termed the Warburg effect. Constitutive activation of the Hypoxia Inducible Factor (HIF-1), a transcription factor known for mediating an adaptive response to oxygen deprivation (hypoxia), is a hallmark of the Warburg effect. HIF-1 is thought to promote glycolysis and suppress oxidative phosphorylation. Here, we instead show that HIF-1 can promote gluconeogenesis. Using a multiomics approach, we reveal the genomic, transcriptomic, and metabolomic landscapes regulated by constitutively active HIF-1 in C. elegans. We use RNA-seq and ChIP-seq under aerobic conditions to analyze mutants lacking EGL-9, a key negative regulator of HIF-1. We integrate these approaches to identify over two hundred genes directly and functionally upregulated by HIF-1, including the PEP carboxykinase PCK-1, a rate-limiting mediator of gluconeogenesis. This activation of PCK-1 by HIF-1 promotes survival in response to both oxidative and hypoxic stress. Our work identifies functional direct targets of HIF-1 in vivo, comprehensively describing the metabolome induced by HIF-1 activation in an organism.
Collapse
Affiliation(s)
- Mehul Vora
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Stephanie M Pyonteck
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tatiana Popovitchenko
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tarmie L Matlack
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Aparna Prashar
- The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Nanci S Kane
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - John Favate
- The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Premal Shah
- The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christopher Rongo
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA. .,The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
13
|
Begelman DV, Woods G, Bhaumik D, Angeli S, Foulger AC, Lucanic M, Lan J, Andersen JK, Lithgow GJ. An aco-2::gfp knock-in enables the monitoring of mitochondrial morphology throughout C. elegans lifespan. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000599. [PMID: 35903774 PMCID: PMC9315405 DOI: 10.17912/micropub.biology.000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
Abstract
We used CRISPR/Cas9 gene editing in C. elegans in order to fluorescently tag endogenous aconitase-2 (ACO-2). ACO-2 is a mitochondrially localized protein, and the aco-2::gfp strain enabled the examination of native mitochondrial morphology in live animals. Here we validate that the aco-2::gfp strain displays the prototypic changes in mitochondrial morphology known to occur during aging and upon paraquat (PQ) induced mitochondrial stress. We also provide evidence that the ACO-2::GFP reporter can serve as a superior means for tracking mitochondrial morphology than conventional MitoTracker dyes-especially in aged-worms.
Collapse
Affiliation(s)
| | | | | | - Suzanne Angeli
- The Buck Institute for Research on Aging
,
University of Maine, Molecular & Biomedical Sciences
| | | | - Mark Lucanic
- The Buck Institute for Research on Aging
,
GeroStateAlpha
| | - Jianfeng Lan
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Julie K. Andersen
- The Buck Institute for Research on Aging
,
Correspondence to: Julie K. Andersen (
)
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging
,
Correspondence to: Gordon J. Lithgow (
)
| |
Collapse
|
14
|
Activating Parkin-dependent mitophagy alleviates oxidative stress, apoptosis, and promotes random-pattern skin flaps survival. Commun Biol 2022; 5:616. [PMID: 35732814 PMCID: PMC9217959 DOI: 10.1038/s42003-022-03556-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
The random-pattern skin flap is a crucial technique in reconstructive surgery and flap necrosis caused by ischemia/reperfusion injury is a major postoperative complication. Herein, we investigated the mechanism of mitophagy induced by Melatonin (ML) and its effect on the survival of skin flaps. Our results demonstrated that ML could activate mitophagy, ameliorate oxidative stress and alleviate apoptosis in Tert-Butyl hydroperoxide solution (TBHP)-stimulated human umbilical vein endothelial cells in vitro. Inhibiting ML-induced mitophagy considerably abolished its protective effects. Moreover, knockdown of Parkin by siRNA inhibited ML-induced mitophagy, and subsequently exacerbated oxidative stress and apoptosis. Further study demonstrated that inhibition of AMPK reversed these protective effects of ML and downregulated the expression of TFEB. In the vivo study, ML effectively promoted flap survival by activating mitophagy and subsequently ameliorating oxidative stress and mitigating apoptosis. These results established that ML is a potent agent capable for increasing random-pattern skin flap survival by activating Parkin-dependent mitophagy through the AMPK-TFEB signaling pathway.
Collapse
|
15
|
Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022; 30:1569-1596. [PMID: 35665873 PMCID: PMC9167428 DOI: 10.1007/s10787-022-01011-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Melatonin is an indole hormone secreted primarily by the pineal gland that showing anti-oxidant, anti-inflammatory and anti-apoptotic capacity. It can play an important role in the pathophysiological mechanisms of various diseases. In this regard, different studies have shown that there is a relationship between Melatonin and Multiple Sclerosis (MS). MS is a chronic immune-mediated disease of the Central Nervous System. AIM The objective of this review was to evaluate the mechanisms of action of melatonin on oxidative stress, inflammation and intestinal dysbiosis caused by MS, as well as its interaction with different hormones and factors that can influence the pathophysiology of the disease. RESULTS Melatonin causes a significant increase in the levels of catalase, superoxide dismutase, glutathione peroxidase, glutathione and can counteract and inhibit the effects of the NLRP3 inflammasome, which would also be beneficial during SARS-CoV-2 infection. In addition, melatonin increases antimicrobial peptides, especially Reg3β, which could be useful in controlling the microbiota. CONCLUSION Melatonin could exert a beneficial effect in people suffering from MS, running as a promising candidate for the treatment of this disease. However, more research in human is needed to help understand the possible interaction between melatonin and certain sex hormones, such as estrogens, to know the potential therapeutic efficacy in both men and women.
Collapse
|
16
|
Concerns with Male Infertility Induced by Exposure to Titanium Nanoparticles and the Supporting Impact of Pelargonium graveolens Essential Oil: Morphometric Records in Male-Wistar Rats. Life (Basel) 2022; 12:life12050639. [PMID: 35629307 PMCID: PMC9143165 DOI: 10.3390/life12050639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Due to the increased use of titanium dioxide nanoparticles (TiO2 NPs), the risks of their reprotoxic effect arise. This study anticipated examining the potential protective effects of GEO (geranium essential oil) components screened via GC/MS analysis against the reprotoxic impacts of TiO2 NPs on male rats. Methods: Thirty-two adult male rats were randomly assigned to four groups: control, GEO (75 mg/kg bwt/orally/day/60 days), TiO2 NPs (100 ppm/rat/IP/day/60 days), and TiO2 NPs + GEO. After 60 days, hormonal assay, semen appraisal, lipid peroxidation, antioxidant enzymes, testis and prostate morphometry, and the steroidogenesis-related genes’ mRNA expressions were assessed. Results: The TEM and DLS results demonstrated that synthesized TiO2 NPs are spherical with minimal aggregations polydispersed and varying in size from 50 to 100 nm. TiO2 NPs IP injection-induced sperm abnormalities decreased the percent of motile sperms in the sperm count, reduced sex hormone levels, altered the testicular oxidant/antioxidant status and mRNA expression of steroid-related genes, and induced architectural alterations in testicular, epididymal, and prostate gland tissues. GEO significantly rescued the TiO2 NPs-altered spermiogram, sex hormones, and antioxidant capacity, restored the tissue architectures, and enhanced steroidogenesis-related gene mRNA expression. Conclusions: These findings may significantly contribute to developing combinatorial treatments for infertility associated with various environmental and industrial xenobiotic exposures.
Collapse
|