1
|
Bellworthy J, Scucchia F, Goodbody-Gringley G, Mass T. Genomic, morphological, and physiological insights into coral acclimation along the depth gradient following an in situ reciprocal transplantation of planulae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172090. [PMID: 38556020 DOI: 10.1016/j.scitotenv.2024.172090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Mesophotic coral reefs have been proposed as refugia for corals, providing shelter and larval propagules for shallow water reefs that are disproportionately challenged by global climate change and local anthropogenic stressors. For mesophotic reefs to be a viable refuge, firstly, deep origin larvae must survive on shallow reefs and, secondly, the two environments must be physically connected. This study tested the first condition. Planulae of the reef-building coral Stylophora pistillata from 5-8 and 40-44 m depth in the Gulf of Aqaba were tested in a long-term reciprocal transplantation experiment for their ability to settle and acclimate to depth in situ. We assessed survival rates, photochemical, physiological, and morphological characteristics in juveniles grown at either their parental origin or transplantation depth. Differences in gene expression patterns were compared between mesophotic and shallow corals at the adult, juvenile, and planula life stages. We found high mortality rates among all mesophotic-origin planulae, irrespective of translocation depth. Gene expression patterns suggested that deep planulae lacked settlement competency and experienced increased developmental stress upon release. For surviving shallow origin juveniles, symbiont photochemical acclimation to depth occurred within 8 days, with symbiont communities showing changes in photochemical traits without algal symbiont shuffling. However, coral host physiological and morphological acclimation towards the typical deep phenotype was incomplete within 60 days. Gene expression was influenced by both life stage and depth. A set of differentially expressed genes (DEGs) associated with initial stress responses following transplantation, latent stress response, and environmental effects of depth was identified. This study therefore refutes the Deep Reef Refugia Hypothesis, as the potential for mesophotic-origin S. pistillata planulae to recruit to the shallow reef is low. The potential remains for shallow planulae to survive at mesophotic depths.
Collapse
Affiliation(s)
- Jessica Bellworthy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Interuniversity Institute of Marine Sciences, Eilat, Israel.
| | - Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Interuniversity Institute of Marine Sciences, Eilat, Israel
| | | | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel; Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| |
Collapse
|
2
|
Slattery M, Lesser MP, Rocha LA, Spalding HL, Smith TB. Function and stability of mesophotic coral reefs. Trends Ecol Evol 2024; 39:585-598. [PMID: 38413283 DOI: 10.1016/j.tree.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
The function and stability of mesophotic coral ecosystems (MCEs) have been extensively studied in recent years. These deep reefs are characterized by local physical processes, particularly the steep gradient in irradiance with increasing depth, and their impact on trophic resources. Mesophotic reefs exhibit distinct zonation patterns that segregate shallow reef biodiversity from ecologically unique deeper communities of endemic species. While mesophotic reefs are hypothesized as relatively stable refuges from anthropogenic stressors and a potential seed bank for degraded shallow reefs, these are site-specific features, if they occur at all. Mesophotic reefs are now known to be susceptible to many of the same stressors that are degrading shallow reefs, suggesting that they require their own specific conservation and management strategies.
Collapse
Affiliation(s)
- Marc Slattery
- Department of BioMolecular Science, University of Mississippi, Oxford, MS 38677, USA.
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Luiz A Rocha
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Tyler B Smith
- University of the Virgin Islands, Center for Marine and Environmental Studies, St Thomas, VI 00802-9990, USA
| |
Collapse
|
3
|
Scucchia F, Wong K, Zaslansky P, Putnam HM, Goodbody-Gringley G, Mass T. Morphological and genetic mechanisms underlying the plasticity of the coral Porites astreoides across depths in Bermuda. J Struct Biol 2023; 215:108036. [PMID: 37832837 DOI: 10.1016/j.jsb.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The widespread decline of shallow-water coral reefs has fueled interest in assessing whether mesophotic reefs can act as refugia replenishing deteriorated shallower reefs through larval exchange. Here we explore the morphological and molecular basis facilitating survival of planulae and adults of the coral Porites astreoides (Lamarck, 1816; Hexacorallia: Poritidae) along the vertical depth gradient in Bermuda. We found differences in micro-skeletal features such as bigger calyxes and coarser surface of the skeletal spines in shallow corals. Yet, tomographic reconstructions reveal an analogous mineral distribution between shallow and mesophotic adults, pointing to similar skeleton growth dynamics. Our study reveals patterns of host genetic connectivity and minimal symbiont depth-zonation across a broader depth range than previously known for this species in Bermuda. Transcriptional variations across life stages showed different regulation of metabolism and stress response functions, unraveling molecular responses to environmental conditions at different depths. Overall, these findings increase our understanding of coral acclimatory capability across broad vertical gradients, ultimately allowing better evaluation of the refugia potential of mesophotic reefs.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel; The Interuniversity Institute of Marine Sciences, Eilat, Israel.
| | - Kevin Wong
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin, Berlin, Germany
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, United States
| | - Gretchen Goodbody-Gringley
- Central Caribbean Marine Institute, Little Cayman, Cayman Islands; Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences University of Haifa, Israel.
| |
Collapse
|
4
|
Bellworthy J, Pardo R, Scucchia F, Zaslansky P, Goodbody-Gringley G, Mass T. Physiological and morphological plasticity in Stylophora pistillata larvae from Eilat, Israel, to shallow and mesophotic light conditions. iScience 2023; 26:106969. [PMID: 37534177 PMCID: PMC10391605 DOI: 10.1016/j.isci.2023.106969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/29/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023] Open
Abstract
Mesophotic reefs have been proposed as climate change refugia but are not synonymous ecosystems with shallow reefs and remain exposed to anthropogenic impacts. Planulae from the reef-building coral Stylophora pistillata, Gulf of Aqaba, from 5- and 45-m depth were tested ex situ for capacity to settle, grow, and acclimate to reciprocal light conditions. Skeletons were scanned by phase contrast-enhanced micro-CT to study morphology. Deep planulae had reduced volume, smaller diameter on settlement, and greater algal symbiont density. Light conditions did not have significant impact on settlement or mortality rates. Photosynthetic acclimation of algal symbionts was evident within 21-35 days after settlement but growth rate and polyp development were slower for individuals translocated away from their parental origin compared to controls. Though our data reveal rapid symbiont acclimation, reduced growth rates and limited capacity for skeletal modification likely limit the potential for mesophotic larvae to settle on shallow reefs.
Collapse
Affiliation(s)
- Jessica Bellworthy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Rachel Pardo
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry, Charité Dental School – Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| |
Collapse
|
5
|
Tavakoli-Kolour P, Sinniger F, Morita M, Harii S. Acclimation potential of Acropora to mesophotic environment. MARINE POLLUTION BULLETIN 2023; 188:114698. [PMID: 36860026 DOI: 10.1016/j.marpolbul.2023.114698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mesophotic coral ecosystems may serve as a refuge for reef-building corals to survive the ongoing climate change. Distribution of coral species changes during larval dispersal. However, the acclimation potential in the early life stages of corals at different depths is unknown. This study investigated the acclimation potential of four shallow Acropora species at different depths via the transplantation of larvae and early polyps settled on tiles to 5, 10, 20, and 40 m depths. We then examined physiological parameters, such as size, survival, growth rate, and morphological characteristics. The survival and size of juveniles of A. tenuis and A. valida at 40 m depth were significantly higher than those at other depths. In contrast, A. digitifera and A. hyacinthus showed higher survival rates at shallow depths. The morphology (i.e., size of the corallites) also varied among the depths. Collectively, the shallow coral larvae and juveniles displayed substantial plasticity at depth.
Collapse
Affiliation(s)
| | - Frederic Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
6
|
Prasetia R, Sinniger F, Nakamura T, Harii S. Limited acclimation of early life stages of the coral Seriatopora hystrix from mesophotic depth to shallow reefs. Sci Rep 2022; 12:12836. [PMID: 35896607 PMCID: PMC9329301 DOI: 10.1038/s41598-022-16024-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
Mesophotic coral ecosystems (MCEs, reefs between 30 and 150 m depth) have been hypothesized to contribute to shallow reef recovery through the recruitment of larvae. However, few studies have directly examined this. Here we used mesophotic colonies of Seriatopora hystrix, a depth generalist coral, to investigate the effect of light intensity on larval behavior and settlement through ex situ experiments. We also investigated juvenile survival, growth, and physiological acclimation in situ. Bleached larvae and a significant reduction in settlement rates were found when the mesophotic larvae were exposed to light conditions corresponding to shallow depths (5 and 10 m) ex situ. The in situ experiments showed that mesophotic juveniles survived well at 20 and 40 m, with juveniles in shaded areas surviving longer than three months at 3–5 m during a year of mass bleaching in 2016. Juvenile transplants at 20 m showed a sign of physiological acclimation, which was reflected by a significant decline in maximum quantum yield. These results suggest that light is a significant factor for successful recolonization of depth-generalist corals to shallow reefs. Further, recolonization of shallow reefs may only occur in shaded habitats or potentially through multigenerational recruitments with intermediate depths acting as stepping stones.
Collapse
Affiliation(s)
- Rian Prasetia
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa, 905-0227, Japan
| | - Frederic Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa, 905-0227, Japan
| | - Takashi Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa, 905-0227, Japan.,Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa, 905-0227, Japan.
| |
Collapse
|
7
|
van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R, Crandall E, DeCarlo TM, Donovan MK, Eirin‐Lopez J, Harrison HB, Heron SF, Huang D, Humanes A, Krueger T, Madin JS, Manzello D, McManus LC, Matz M, Muller EM, Rodriguez‐Lanetty M, Vega‐Rodriguez M, Voolstra CR, Zaneveld J. Coral-bleaching responses to climate change across biological scales. GLOBAL CHANGE BIOLOGY 2022; 28:4229-4250. [PMID: 35475552 PMCID: PMC9545801 DOI: 10.1111/gcb.16192] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/26/2023]
Abstract
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
Collapse
Affiliation(s)
- Robert van Woesik
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | - Tom Shlesinger
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | | | - Rob J. Toonen
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | | | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Ann Marie Hulver
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leila Chapron
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Rowan H. McLachlan
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
| | | | - Eric Crandall
- Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Jose Eirin‐Lopez
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Physics and Marine Geophysical LaboratoryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Adriana Humanes
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Thomas Krueger
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Joshua S. Madin
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Derek Manzello
- Center for Satellite Applications and ResearchSatellite Oceanography & Climate DivisionNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Lisa C. McManus
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Mikhail Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | | | | | | | - Jesse Zaneveld
- Division of Biological SciencesUniversity of WashingtonBothellWashingtonUSA
| |
Collapse
|
8
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
9
|
Population Genomics, Transcriptional Response to Heat Shock, and Gut Microbiota of the Hong Kong Oyster Magallana hongkongensis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hong Kong oyster Magallana hongkongensis, previously known as Crassostrea hongkongensis, is a true oyster species native to the estuarine-coast of the Pearl River Delta in southern China. The species—with scientific, ecological, cultural, and nutritional importance—has been farmed for hundreds of years. However, there is only limited information on its genetics, stress adaptation mechanisms, and gut microbiota, restricting the sustainable production and use of oyster resources. Here, we present population structure analysis on M. hongkongensis oysters collected from Deep Bay and Lantau Island in Hong Kong, as well as transcriptome analysis on heat shock responses and the gut microbiota profile of M. hongkongensis oysters collected from Deep Bay. Single nucleotide polymorphisms (SNPs), including those on the homeobox genes and heat shock protein genes, were revealed by the whole genome resequencing. Transcriptomes of oysters incubated at 25 °C and 32 °C for 24 h were sequenced which revealed the heat-induced regulation of heat shock protein pathway genes. Furthermore, the gut microbe community was detected by 16S rRNA sequencing which identified Cyanobacteria, Proteobacteria and Spirochaetes as the most abundant phyla. This study reveals the molecular basis for the adaptation of the oyster M. hongkongensis to environmental conditions.
Collapse
|
10
|
de Palmas S, Soto D, Ho MJ, Denis V, Chen CA. Strong horizontal and vertical connectivity in the coral Pocillopora verrucosa from Ludao, Taiwan, a small oceanic island. PLoS One 2021; 16:e0258181. [PMID: 34634065 PMCID: PMC8504772 DOI: 10.1371/journal.pone.0258181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Mesophotic habitats could be sheltered from natural and anthropogenic disturbances and act as reproductive refuges, providing propagules to replenish shallower populations. Molecular markers can be used as proxies evaluating the connectivity and inferring population structure and larval dispersal. This study characterizes population structure as well as horizontal and vertical genetic connectivity of the broadcasting coral Pocillopora verrucosa from Ludao, a small oceanic island off the eastern coast of Taiwan. We genotyped 75 P. verrucosa specimens from three sites (Gongguan, Dabaisha, and Guiwan) at three depth ranges (Shallow: 7-15 m, Mid-depth: 23-30 m, and Deep: 38-45 m), spanning shallow to upper mesophotic coral reefs, with eight microsatellite markers. F-statistics showed a moderate differentiation (FST = 0.106, p<0.05) between two adjacent locations (Dabaisha 23-30 and Dabaisha 38-45 m), but no differentiation elsewhere, suggesting high levels of connectivity among sites and depths. STRUCTURE analysis showed no genetic clustering among sites or depths, indicating that all Pocillopora individuals could be drawn from a single panmictic population. Simulations of recent migration assigned 30 individuals (40%) to a different location from where they were collected. Among them, 1/3 were assigned to deeper locations, 1/3 to shallower populations and 1/3 were assigned to the right depth but a different site. These results suggest high levels of vertical and horizontal connectivity, which could enhance the recovery of P. verrucosa following disturbances around Ludao, a feature that agrees with demographic studies portraying this species as an opportunistic scleractinian.
Collapse
Affiliation(s)
- Stéphane de Palmas
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Derek Soto
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Jay Ho
- Green Island Marine Research Station, Marine Science Thematic Centre, Biodiversity Research Center, Academia Sinica, Green Island, Taitung, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Sciences, Tunghai University, Taichung, Taiwan
| |
Collapse
|
11
|
Martinez S, Bellworthy J, Ferrier-Pagès C, Mass T. Selection of mesophotic habitats by Oculina patagonica in the Eastern Mediterranean Sea following global warming. Sci Rep 2021; 11:18134. [PMID: 34518595 PMCID: PMC8438053 DOI: 10.1038/s41598-021-97447-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
Globally, species are migrating in an attempt to track optimal isotherms as climate change increasingly warms existing habitats. Stony corals are severely threatened by anthropogenic warming, which has resulted in repeated mass bleaching and mortality events. Since corals are sessile as adults and with a relatively old age of sexual maturity, they are slow to latitudinally migrate, but corals may also migrate vertically to deeper, cooler reefs. Herein we describe vertical migration of the Mediterranean coral Oculina patagonica from less than 10 m depth to > 30 m. We suggest that this range shift is a response to rapidly warming sea surface temperatures on the Israeli Mediterranean coastline. In contrast to the vast latitudinal distance required to track temperature change, this species has migrated deeper where summer water temperatures are up to 2 °C cooler. Comparisons of physiology, morphology, trophic position, symbiont type, and photochemistry between deep and shallow conspecifics revealed only a few depth-specific differences. At this study site, shallow colonies typically inhabit low light environments (caves, crevices) and have a facultative relationship with photosymbionts. We suggest that this existing phenotype aided colonization of the mesophotic zone. This observation highlights the potential for other marine species to vertically migrate.
Collapse
Affiliation(s)
- Stephane Martinez
- grid.18098.380000 0004 1937 0562Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel ,grid.18098.380000 0004 1937 0562Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel ,grid.452353.60000 0004 0550 8241Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco City, 98000 Monaco
| | - Jessica Bellworthy
- grid.18098.380000 0004 1937 0562Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel ,grid.440849.50000 0004 0496 208XThe Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Christine Ferrier-Pagès
- grid.452353.60000 0004 0550 8241Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco City, 98000 Monaco
| | - Tali Mass
- grid.18098.380000 0004 1937 0562Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel ,grid.18098.380000 0004 1937 0562Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| |
Collapse
|
12
|
Rippe JP, Dixon G, Fuller ZL, Liao Y, Matz M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol Ecol 2021; 30:3468-3484. [PMID: 33894013 DOI: 10.1111/mec.15931] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
Broadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys. To this end, we generated a de novo genome assembly for M. cavernosa and used 2bRAD to genotype 20 juveniles and 20 adults of both species from each of the three reef zones to identify signatures of selection occurring within a single generation. Unexpectedly, each species was found to be composed of four genetically distinct lineages, with gene flow between them still ongoing but highly reduced in 13.0%-54.7% of the genome. Each species includes two sympatric lineages that are only found in the deep (20 m) habitat, while the other lineages are found almost exclusively on the shallower reefs (3-10 m). The two "shallow" lineages of M. cavernosa are also specialized for either nearshore or offshore: comparison between adult and juvenile cohorts indicates that cross-shelf migrants are more than twice as likely to die before reaching adulthood than local recruits. S. siderea and M. cavernosa are among the most ecologically successful species on the Florida Keys Reef Tract, and this work offers important insight into the genomic background of divergent selection and environmental specialization that may in part explain their resilience and broad environmental range.
Collapse
Affiliation(s)
- John P Rippe
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|