1
|
Peshkova AD, Brysgel TV, Mody P, Nong J, Wang Z, Myerson JW, Litvinov RI, Weisel JW, Brenner JS, Glassman PM, Marcos-Contreras OA, Muzykantov VR. Biomechanical and Functional Features of the Carrier Erythrocytes Prolonging Circulation Time of Biotherapeutic Targeted to Glycophorin A. Bioconjug Chem 2025; 36:263-275. [PMID: 39869932 DOI: 10.1021/acs.bioconjchem.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2025]
Abstract
Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119. The goal of this study was to characterize the activity of the FIX-Ter119 conjugate and efficacy of its loading on RBCs, as well as to investigate the biodistribution, pharmacokinetics, and various biological properties of the loaded RBCs. Mouse RBCs were incubated with the Ter119-FIX conjugate, where adding 10,000 molecules per RBC resulted in 37% binding (4K/RBC), and 50,000 molecules per RBC resulted in 34% binding (17K/RBC). The pharmacokinetics (PK) profile showed that more than 90% of the Ter119-FIX conjugate was associated with RBCs and circulated stably bound to the RBCs for 24 h, increasing the area under the PK curve 7.6 times vs free FIX. Ter119-FIX loaded RBCs have specific procoagulant FIXa activity, including promotion of thrombin generation and acceleration of clotting in FIX-deficient plasma. Morphological characterization shows that Ter119-FIX-loaded RBCs undergo a shape change, with an increased fraction of echinocytes and spheroidal RBCs. Ektacytometry and electron microscopy assessment of RBC compressibility reveal a dose-dependent reduction in the deformability of RBCs loaded with Ter119-FIX. In conclusion, RBCs loaded with Ter119-FIX have the potential to serve as prohemostatic agents, but their reduced deformability warrants further engineering of Ter119-FIX to improve the safety profile.
Collapse
Affiliation(s)
- Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States
| | - Taylor V Brysgel
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States
| | - Parth Mody
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States
| | - Jia Nong
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States
| | - Zhicheng Wang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States
| | - Jacob W Myerson
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4863, United States
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4863, United States
| | - Jacob S Brenner
- Division of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6118, United States
| | - Patrick M Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, Pennsylvania 19140-5101, United States
| | - Oscar A Marcos-Contreras
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, 3400 Civic Center Blvd, TRC 10-131, Philadelphia, Pennsylvania 19104-5158, United States
| | - Vladimir R Muzykantov
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States
| |
Collapse
|
2
|
Popp NA, Powell RL, Wheelock MK, Holmes KJ, Zapp BD, Sheldon KM, Fletcher SN, Wu X, Fayer S, Rubin AF, Lannert KW, Chang AT, Sheehan JP, Johnsen JM, Fowler DM. Multiplex, multimodal mapping of variant effects in secreted proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.01.587474. [PMID: 39975210 PMCID: PMC11838247 DOI: 10.1101/2024.04.01.587474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 02/21/2025]
Abstract
Despite widespread advances in DNA sequencing, the functional consequences of most genetic variants remain poorly understood. Multiplexed Assays of Variant Effect (MAVEs) can measure the function of variants at scale, and are beginning to address this problem. However, MAVEs cannot readily be applied to the ~10% of human genes encoding secreted proteins. We developed a flexible, scalable human cell surface display method, Multiplexed Surface Tethering of Extracellular Proteins (MultiSTEP), to measure secreted protein variant effects. We used MultiSTEP to study the consequences of missense variation in coagulation factor IX (FIX), a serine protease where genetic variation can cause hemophilia B. We combined MultiSTEP with a panel of antibodies to detect FIX secretion and post-translational modification, measuring a total of 44,816 effects for 436 synonymous variants and 8,528 of the 8,759 possible missense variants. 49.6% of possible F9 missense variants impacted secretion, post-translational modification, or both. We also identified functional constraints on secretion within the signal peptide and for nearly all variants that caused gain or loss of cysteine. Secretion scores correlated strongly with FIX levels in hemophilia B and revealed that loss of secretion variants are particularly likely to cause severe disease. Integration of the secretion and post-translational modification scores enabled reclassification of 63.1% of F9 variants of uncertain significance in the My Life, Our Future hemophilia genotyping project. Lastly, we showed that MultiSTEP can be applied to a wide variety of secreted proteins. Thus, MultiSTEP is a multiplexed, multimodal, and generalizable method for systematically assessing variant effects in secreted proteins at scale.
Collapse
Affiliation(s)
- Nicholas A. Popp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Rachel L. Powell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Melinda K. Wheelock
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Kristen J. Holmes
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Brendan D. Zapp
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn M. Sheldon
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | - Xiaoping Wu
- Cell Marker Laboratory, Seattle Children’s Hospital, Seattle, WA
| | - Shawn Fayer
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Alan F. Rubin
- Bioinformatics Division, WEHI, Parkville, VIC, AU
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, AU
| | - Kerry W. Lannert
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alexis T. Chang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - John P. Sheehan
- Division of Hematology, Medical Oncology, and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Jill M. Johnsen
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington School of Medicine, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Bloodworks Northwest, Seattle, WA, USA
- Washington Center for Bleeding Disorders, Seattle, WA
| | - Douglas M. Fowler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
3
|
Pegg CL, Modhiran N, Parry RH, Liang B, Amarilla AA, Khromykh AA, Burr L, Young PR, Chappell K, Schulz BL, Watterson D. The role of N-glycosylation in spike antigenicity for the SARS-CoV-2 gamma variant. Glycobiology 2024; 34:cwad097. [PMID: 38048640 PMCID: PMC10969516 DOI: 10.1093/glycob/cwad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity towards the viral spike protein, whether acquired from infection or vaccination. Mutations that impact N-glycosylation of spike may be particularly important in influencing antigenicity, but their consequences are difficult to predict. Here, we compare the glycosylation profiles and antigenicity of recombinant viral spike of ancestral Wu-1 and the Gamma strain, which has two additional N-glycosylation sites due to amino acid substitutions in the N-terminal domain (NTD). We found that a mutation at residue 20 from threonine to asparagine within the NTD caused the loss of NTD-specific antibody COVA2-17 binding. Glycan site-occupancy analyses revealed that the mutation resulted in N-glycosylation switching to the new sequon at N20 from the native N17 site. Site-specific glycosylation profiles demonstrated distinct glycoform differences between Wu-1, Gamma, and selected NTD variant spike proteins, but these did not affect antibody binding. Finally, we evaluated the specificity of spike proteins against convalescent COVID-19 sera and found reduced cross-reactivity against some mutants, but not Gamma spike compared to Wuhan spike. Our results illustrate the impact of viral divergence on spike glycosylation and SARS-CoV-2 antibody binding profiles.
Collapse
Affiliation(s)
- Cassandra L Pegg
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Rhys H Parry
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Services, Raymond Terrace, South Brisbane, Queensland 4101, Australia
| | - Paul R Young
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Keith Chappell
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Bioscience, Chemistry Building 68, Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, Building 75, Corner College Road and Cooper Road, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4006, Australia
| |
Collapse
|
4
|
Beauglehole AC, Roche Recinos D, Pegg CL, Lee YY, Turnbull V, Herrmann S, Marcellin E, Howard CB, Schulz BL. Recent advances in the production of recombinant factor IX: bioprocessing and cell engineering. Crit Rev Biotechnol 2022; 43:484-502. [PMID: 35430942 DOI: 10.1080/07388551.2022.2036691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.
Collapse
Affiliation(s)
- Aiden C. Beauglehole
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Cassandra L. Pegg
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Victor Turnbull
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Susann Herrmann
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Christopher B. Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L. Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
5
|
Wilhelm C, Kiessig ST, Mandago M, Wittke S. Detection and differentiation of active and inactive isoforms of coagulation factors II, VII, IX, and X in prothrombin complex concentrate by mass spectrometry. J Pharm Biomed Anal 2021; 209:114475. [PMID: 34839053 DOI: 10.1016/j.jpba.2021.114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Prothrombin complex concentrates (PCCs) are plasma products containing a mixture of four inactive/proactive coagulation factors. The activated forms of human coagulation factors, like Thrombin (FIIa), Convertin (FVIIa), activated Christmas factor (FIXa) and the activated Stuart-Prower factor (FXa), are impurities in PCCs. Until now no valid assay exists to differentiate the non activated proform (inactive) from active coagulation factor isoforms in PCCs in one measurement. Therefore, the aim of this study was to establish a mass spectrometry (LC-MS/MS)-based assay to address this issue in the ready to use medicinal product. METHODS Bottom-up proteomics combining double digestion (Glu-C & Lys-C) and LC-MS/MS, was used to differentiate the inactive and active forms of the coagulation factors Prothrombin (FII), Proconvertin (FVII), Christmas factor (FIX) and the Stuart-Prower-factor (FX) in PCCs. RESULTS AND CONCLUSIONS A targeted pseudo-multiple reaction monitoring (pMRM-LC-MS/MS)-assay was developed for the specific detection of four different coagulation factors in PCCs. Proteotypic peptides for the inactive/active isoforms (zymogen) of the four coagulation factors were identified and validated by the investigation of six investigational and one commercially available PCCs. In conclusion, the semi-quantitative determination and the distinction between the active and the inactive isoform of the respective coagulation factors were possible in one liquid chromatography tandem mass spectrometry (LC-MS/MS) run.
Collapse
Affiliation(s)
- C Wilhelm
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany
| | - S T Kiessig
- PreviPharma Consulting GmbH, CUBEX41, Universitätsmedizin Mannheim, Haus 41, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - M Mandago
- PreviPharma Consulting GmbH, CUBEX41, Universitätsmedizin Mannheim, Haus 41, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - S Wittke
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568 Bremerhaven, Germany.
| |
Collapse
|
6
|
Factors affecting the quality of therapeutic proteins in recombinant Chinese hamster ovary cell culture. Biotechnol Adv 2021; 54:107831. [PMID: 34480988 DOI: 10.1016/j.biotechadv.2021.107831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2021] [Revised: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian host cells for the commercial production of therapeutic proteins. Fed-batch culture is widely used to produce therapeutic proteins, including monoclonal antibodies, because of its operational simplicity and high product titer. Despite technical advances in the development of culture media and cell cultures, it is still challenging to maintain high productivity in fed-batch cultures while also ensuring good product quality. In this review, factors that affect the quality attributes of therapeutic proteins in recombinant CHO (rCHO) cell culture, such as glycosylation, charge variation, aggregation, and degradation, are summarized and categorized into three groups: culture environments, chemical additives, and host cell proteins accumulated in culture supernatants. Understanding the factors that influence the therapeutic protein quality in rCHO cell culture will facilitate the development of large-scale, high-yield fed-batch culture processes for the production of high-quality therapeutic proteins.
Collapse
|
7
|
Abstract
Mass spectrometry (MS) is a powerful technique for protein identification, quantification and characterization that is widely applied in biochemical studies, and which can provide data on the quantity, structural integrity and post-translational modifications of proteins. It is therefore a versatile and widely used analytic tool for quality control of biopharmaceuticals, especially in quantifying host-cell protein impurities, identifying post-translation modifications and structural characterization of biopharmaceutical proteins. Here, we summarize recent advances in MS-based analyses of these key quality attributes of the biopharmaceutical development and manufacturing processes.
Collapse
|