1
|
Tien AH, Sadar MD. Treatments Targeting the Androgen Receptor and Its Splice Variants in Breast Cancer. Int J Mol Sci 2024; 25:1817. [PMID: 38339092 PMCID: PMC10855698 DOI: 10.3390/ijms25031817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is a major cause of death worldwide. The complexity of endocrine regulation in breast cancer may allow the cancer cells to escape from a particular treatment and result in resistant and aggressive disease. These breast cancers usually have fewer treatment options. Targeted therapies for cancer patients may offer fewer adverse side effects because of specificity compared to conventional chemotherapy. Signaling pathways of nuclear receptors, such as the estrogen receptor (ER), have been intensively studied and used as therapeutic targets. Recently, the role of the androgen receptor (AR) in breast cancer is gaining greater attention as a therapeutic target and as a prognostic biomarker. The expression of constitutively active truncated AR splice variants in breast cancer is a possible mechanism contributing to treatment resistance. Therefore, targeting both the full-length AR and AR variants, either through the activation or suppression of AR function, depending on the status of the ER, progesterone receptor, or human epidermal growth factor receptor 2, may provide additional treatment options. Studies targeting AR in combination with other treatment strategies are ongoing in clinical trials. The determination of the status of nuclear receptors to classify and identify patient subgroups will facilitate optimized and targeted combination therapies.
Collapse
Affiliation(s)
- Amy H. Tien
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Marianne D. Sadar
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| |
Collapse
|
2
|
Riley CM, Elwood JML, Henry MC, Hunter I, Daniel Lopez-Fernandez J, McEwan IJ, Jamieson C. Current and emerging approaches to noncompetitive AR inhibition. Med Res Rev 2023; 43:1701-1747. [PMID: 37062876 DOI: 10.1002/med.21961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.
Collapse
Affiliation(s)
- Christopher M Riley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Jessica M L Elwood
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Martyn C Henry
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
Ke S, Dang F, Wang L, Chen JY, Naik MT, Thavamani A, Liu Y, Li W, Kim N, Naik NM, Sui H, Tang W, Qiu C, Koikawa K, Batalini F, Wang X, Clohessy JG, Heng YJ, Lahav G, Gray NS, Zho XZ, Wei W, Wulf GM, Lu KP. Reciprocal inhibition of PIN1 and APC/C CDH1 controls timely G1/S transition and creates therapeutic vulnerability. RESEARCH SQUARE 2023:rs.3.rs-2447544. [PMID: 36711754 PMCID: PMC9882653 DOI: 10.21203/rs.3.rs-2447544/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cyclin-dependent kinases (CDKs) mediated phosphorylation inactivates the anaphase-promoting complex (APC/CCDH1), an E3 ubiquitin ligase that contains the co-activator CDH1, to promote G1/S transition. PIN1 is a phosphorylation-directed proline isomerase and a master cancer signaling regulator. However, little are known about APC/CCDH1 regulation after phosphorylation and about PIN1 ubiquitin ligases. Here we uncover a domain-oriented reciprocal inhibition that controls the timely G1/S transition: The non-phosphorylated APC/CCDH1 E3 ligase targets PIN1 for degradation in G1 phase, restraining G1/S transition; APC/CCDH1 itself, after phosphorylation by CDKs, is inactivated by PIN1-catalyzed isomerization, promoting G1/S transition. In cancer, PIN1 overexpression and APC/CCDH1 inactivation reinforce each other to promote uncontrolled proliferation and tumorigenesis. Importantly, combined PIN1- and CDK4/6-inhibition reactivates APC/CCDH1 resulting in PIN1 degradation and an insurmountable G1 arrest that translates into synergistic anti-tumor activity against triple-negative breast cancer in vivo. Reciprocal inhibition of PIN1 and APC/CCDH1 is a novel mechanism to control timely G1/S transition that can be harnessed for synergistic anti-cancer therapy.
Collapse
Affiliation(s)
- Shizhong Ke
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center and Cancer Research Institute, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Lin Wang
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Jia-Yun Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Mandar T Naik
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Abhishek Thavamani
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| | - Wenxue Li
- Yale Cancer Biology Institute, West Haven, CT 06516, USA
| | - Nami Kim
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nandita M Naik
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Huaxiu Sui
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Wei Tang
- Data Science & Artificial Intelligence, R&D, AstraZeneca, Gaithersburg, USA
| | - Chenxi Qiu
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kazuhiro Koikawa
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Felipe Batalini
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Division of Medical Oncology, Mayo Clinic, Arizona, USA
| | - Xiaodong Wang
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - John G Clohessy
- Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yujing Jan Heng
- Department of Pathology, Beth Israel Deaconess Medical Center and Cancer Research Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiao Zhen Zho
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Departments of Biochemistry & Oncology, Schulich School of Medicine and Dentistry, and Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center and Cancer Research Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Gerburg M Wulf
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Hematology/Oncology, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Departments of Biochemistry & Oncology, Schulich School of Medicine and Dentistry, and Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
- Lead Contact
| |
Collapse
|
4
|
Naito M, Ikeda K, Aoyama S, Kanamoto M, Akasaka Y, Kido Y, Nakanishi M, Kanna M, Yamamotoya T, Matsubara A, Hinata N, Asano T, Nakatsu Y. Par14 interacts with the androgen receptor, augmenting both its transcriptional activity and prostate cancer proliferation. Cancer Med 2022; 12:8464-8475. [PMID: 36583514 PMCID: PMC10134346 DOI: 10.1002/cam4.5587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a major cause of cancer morbidity and mortality for men globally, and androgen signaling clearly drives its onset and progression. Androgen receptor (AR) regulation is complex and remains elusive, despite several studies tackling these issues. Therefore, elucidating the mechanism(s) underlying AR regulation is a potentially promising approach to suppressing PCa. METHODS We report that Par14, one isoform of the prolyl isomerases homologous to Pin1, is a critical regulator of AR transcriptional activity and is essential for PCa cell growth. RESULTS Par14 was shown to be overexpressed in PCa, based on analyses of deposited data. Importantly, overexpression of Par14 significantly enhanced androgen-sensitive LNCap cell growth. In contrast, silencing of Par14 dramatically decreased cell growth in LNCap cells by causing cell cycle arrest. Mechanistically, silencing of the Par14 gene dramatically induced cyclin-dependent kinase inhibitor p21 at both the mRNA and the protein level through modulating the localization of p53. In addition, suppression of Par14 in LNCap cells was shown to downregulate the expressions of androgen response genes, at both the mRNA and the protein level, induced by dihydrotestosterone. Par14 was shown to directly associate with AR in nuclei via its DNA-binding domain and augment AR transcriptional activity. CONCLUSION Thus, Par14 plays a critical role in PCa progression, and its enhancing effects on AR signaling are likely to be involved in the underlying molecular mechanisms. These findings suggest Par14 to be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Miki Naito
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Kenichiro Ikeda
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shunya Aoyama
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Mayu Kanamoto
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yasuyuki Akasaka
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yuri Kido
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Mikako Nakanishi
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Machi Kanna
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Takeshi Yamamotoya
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan.,Department of Urology, Hiroshima General Hospital, Hatsukaichi, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Yusuke Nakatsu
- Department of Medical Chemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan
| |
Collapse
|