1
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
2
|
Lee J, Guo HF, Wang S, Maghsoud Y, Vázquez-Montelongo EA, Jing Z, Sammons RM, Cho EJ, Ren P, Cisneros GA, Kurie JM, Dalby KN. Unleashing the Potential of 1,3-Diketone Analogues as Selective LH2 Inhibitors. ACS Med Chem Lett 2023; 14:1396-1403. [PMID: 37849534 PMCID: PMC10577891 DOI: 10.1021/acsmedchemlett.3c00305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Lysyl hydroxylase 2 (LH2) catalyzes the formation of highly stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), thus promoting lung cancer metastasis through its capacity to modulate specific types of collagen cross-links within the tumor stroma. Using 1 and 2 from our previous high-throughput screening (HTS) as lead probes, we prepared a series of 1,3-diketone analogues, 1-18, and identified 12 and 13 that inhibit LH2 with IC50's of approximately 300 and 500 nM, respectively. Compounds 12 and 13 demonstrate selectivity for LH2 over LH1 and LH3. Quantum mechanics/molecular mechanics (QM/MM) modeling indicates that the selectivity of 12 and 13 may stem from noncovalent interactions like hydrogen bonding between the morpholine/piperazine rings with the LH2-specific Arg661. Treatment of 344SQ WT cells with 13 resulted in a dose-dependent reduction in their migration potential, whereas the compound did not impede the migration of the same cell line with an LH2 knockout (LH2KO).
Collapse
Affiliation(s)
- Juhoon Lee
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Hou-fu Guo
- Department
of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536, United States
| | - Shike Wang
- Department
of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Yazdan Maghsoud
- Department
of Chemistry and Biochemistry, The University
of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erik Antonio Vázquez-Montelongo
- Department
of Physical Medicine and Rehabilitation, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zhifeng Jing
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Rae M. Sammons
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Eun Jeong Cho
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - G. Andrés Cisneros
- Department
of Chemistry and Biochemistry, The University
of Texas at Dallas, Richardson, Texas 75080, United States
- Department
of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jonathan M. Kurie
- Department
of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Kevin N. Dalby
- Division
of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
- Targeted Therapeutic Drug Discovery and Development Program, College
of Pharmacy, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Mattoteia D, Chiapparino A, Fumagalli M, De Marco M, De Giorgi F, Negro L, Pinnola A, Faravelli S, Roscioli T, Scietti L, Forneris F. Identification of Regulatory Molecular "Hot Spots" for LH/PLOD Collagen Glycosyltransferase Activity. Int J Mol Sci 2023; 24:11213. [PMID: 37446392 DOI: 10.3390/ijms241311213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.
Collapse
Affiliation(s)
- Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
4
|
Visser DR, Loo TS, Norris GE, Parry DAD. Potential implications of the glycosylation patterns in collagen α1(I) and α2(I) chains for fibril assembly and growth. J Struct Biol 2023; 215:107938. [PMID: 36641113 DOI: 10.1016/j.jsb.2023.107938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
O-Glycosylation of hydroxylysine (Hyl) in collagen occurs at an early stage of biosynthesis before the triple-helix has formed. This simple post-translational modification (PTM) of lysine by either a galactosyl or glucosylgalactosyl moiety is highly conserved in collagens and depends on the species, type of tissue and the collagen amino acid sequence. The structural/functional reason why only specific lysines are modified is poorly understood, and has led to increased efforts to map the sites of PTMs on collagen sequences from different species and to ascertain their potential role in vivo. To investigate this, we purified collagen type I (Col1) from the skins of four animals, then used mass spectrometry and proteomic techniques to identify lysines that were oxidised, galactosylated, glucosylgalactosylated, or glycated in its mature sequence. We found 18 out of the 38 lysines in collagen type Iα1, (Col1A1) and 7 of the 30 lysines in collagen type Iα2 (Col1A2) were glycosylated. Six of these modifications had not been reported before, and included a lysine involved in crosslinking collagen molecules. A Fourier transform analysis of the positions of the glycosylated hydroxylysines showed they display a regular axial distribution with the same d-period observed in collagen fibrils. The significance of this finding in terms of the assembly of collagen molecules into fibrils and of potential restrictions on the growth of the collagen fibrils is discussed.
Collapse
Affiliation(s)
- D R Visser
- School of Natural Sciences, Massey University, New Zealand
| | - T S Loo
- School of Natural Sciences, Massey University, New Zealand
| | - G E Norris
- School of Natural Sciences, Massey University, New Zealand.
| | | |
Collapse
|
5
|
Niu C, Xiong Y, Yang L, Xiao X, Yang S, Huang Z, Yang Y, Feng L. Carboxy-terminal telopeptide levels of type I collagen hydrogels modulated the encapsulated cell fate for regenerative medicine. Int J Biol Macromol 2023; 228:826-837. [PMID: 36566813 DOI: 10.1016/j.ijbiomac.2022.12.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The cellular microenvironment has a profound impact on cell proliferation, interaction, and differentiation. In cell encapsulation for disease therapy, type I collagen is an important biomaterial due to its ability to mimic the extracellular matrix. Telopeptides (carboxy-terminal, CTX, and amino-terminal, NTX) protruding from the triple helix structure of type I collagen are cross-link sites, but also mediate the signal transmission in tissue homeostasis. It is worth investigating the features of the hydrogel microenvironment shaped by the tissue-derived type I collagen with various telopeptide levels, which is paramount for encapsulated cell development. Here, we found the fate of encapsulated human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs) behaved differently towards decreasing CTX levels in the collagen hydrogels. Even among collagen hydrogels with a small magnitude of CTX variation, similar stiffness and microstructure, the apparent CTX modulation on the proliferation, cell-interaction, and genes expression of encapsulated hADSCs, as well as morphology and tubule structure formation of endothelial cells were observed, suggesting the biological roles of CTX and its modulation on microenvironment for cell development.
Collapse
Affiliation(s)
- Chuan Niu
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ying Xiong
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liping Yang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiong Xiao
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shaojie Yang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ziwei Huang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yuchu Yang
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Li Feng
- Department of Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Ishikawa Y, Taga Y, Coste T, Tufa SF, Keene DR, Mizuno K, Tournier-Lasserve E, Gould DB. Lysyl hydroxylase 3-mediated post-translational modifications are required for proper biosynthesis of collagen α1α1α2(IV). J Biol Chem 2022; 298:102713. [PMID: 36403858 PMCID: PMC9761383 DOI: 10.1016/j.jbc.2022.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Collagens are the most abundant proteins in the body and among the most biosynthetically complex. A molecular ensemble of over 20 endoplasmic reticulum resident proteins participates in collagen biosynthesis and contributes to heterogeneous post-translational modifications. Pathogenic variants in genes encoding collagens cause connective tissue disorders, including osteogenesis imperfecta, Ehlers-Danlos syndrome, and Gould syndrome (caused by mutations in COL4A1 and COL4A2), and pathogenic variants in genes encoding proteins required for collagen biosynthesis can cause similar but overlapping clinical phenotypes. Notably, pathogenic variants in lysyl hydroxylase 3 (LH3) cause a multisystem connective tissue disorder that exhibits pathophysiological features of collagen-related disorders. LH3 is a multifunctional collagen-modifying enzyme; however, its precise role(s) and substrate specificity during collagen biosynthesis has not been defined. To address this critical gap in knowledge, we generated LH3 KO cells and performed detailed quantitative and molecular analyses of collagen substrates. We found that LH3 deficiency severely impaired secretion of collagen α1α1α2(IV) but not collagens α1α1α2(I) or α1α1α1(III). Amino acid analysis revealed that LH3 is a selective LH for collagen α1α1α2(IV) but a general glucosyltransferase for collagens α1α1α2(IV), α1α1α2(I), and α1α1α1(III). Importantly, we identified rare variants that are predicted to be pathogenic in the gene encoding LH3 in two of 113 fetuses with intracranial hemorrhage-a cardinal feature of Gould syndrome. Collectively, our findings highlight a critical role of LH3 in α1α1α2(IV) biosynthesis and suggest that LH3 pathogenic variants might contribute to Gould syndrome.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Thibault Coste
- Université Paris Cité, Inserm Neurodiderot, AP-HP Paris, France
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, California, USA; Department Anatomy, Cardiovascular Research Institute, Bakar Aging Research Institute, and Institute for Human Genetics, University of California, San Francisco, California, USA.
| |
Collapse
|
7
|
Wu W, Kim JS, Bailey AO, Russell WK, Richards SJ, Chen T, Chen T, Chen Z, Liang B, Yamauchi M, Guo H. Comparative genomic and biochemical analyses identify a collagen galactosylhydroxylysyl glucosyltransferase from Acanthamoeba polyphaga mimivirus. Sci Rep 2022; 12:16806. [PMID: 36207453 PMCID: PMC9546862 DOI: 10.1038/s41598-022-21197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Humans and Acanthamoeba polyphaga mimivirus share numerous homologous genes, including collagens and collagen-modifying enzymes. To explore this homology, we performed a genome-wide comparison between human and mimivirus using DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) and identified 52 new putative mimiviral proteins that are homologous with human proteins. To gain functional insights into mimiviral proteins, their human protein homologs were organized into Gene Ontology (GO) and REACTOME pathways to build a functional network. Collagen and collagen-modifying enzymes form the largest subnetwork with most nodes. Further analysis of this subnetwork identified a putative collagen glycosyltransferase R699. Protein expression test suggested that R699 is highly expressed in Escherichia coli, unlike the human collagen-modifying enzymes. Enzymatic activity assay and mass spectrometric analyses showed that R699 catalyzes the glucosylation of galactosylhydroxylysine to glucosylgalactosylhydroxylysine on collagen using uridine diphosphate glucose (UDP-glucose) but no other UDP-sugars as a sugar donor, suggesting R699 is a mimiviral collagen galactosylhydroxylysyl glucosyltransferase (GGT). To facilitate further analysis of human and mimiviral homologous proteins, we presented an interactive and searchable genome-wide comparison website for quickly browsing human and Acanthamoeba polyphaga mimivirus homologs, which is available at RRID Resource ID: SCR_022140 or https://guolab.shinyapps.io/app-mimivirus-publication/ .
Collapse
Affiliation(s)
- Wenhui Wu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Jeong Seon Kim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Richards
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tingfei Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhenhang Chen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Houfu Guo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Scietti L, Moroni E, Mattoteia D, Fumagalli M, De Marco M, Negro L, Chiapparino A, Serapian SA, De Giorgi F, Faravelli S, Colombo G, Forneris F. A Fe2+-dependent self-inhibited state influences the druggability of human collagen lysyl hydroxylase (LH/PLOD) enzymes. Front Mol Biosci 2022; 9:876352. [PMID: 36090047 PMCID: PMC9453210 DOI: 10.3389/fmolb.2022.876352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multifunctional human collagen lysyl hydroxylase (LH/PLOD) enzymes catalyze post-translational hydroxylation and subsequent glycosylation of collagens, enabling their maturation and supramolecular organization in the extracellular matrix (ECM). Recently, the overexpression of LH/PLODs in the tumor microenvironment results in abnormal accumulation of these collagen post-translational modifications, which has been correlated with increased metastatic progression of a wide variety of solid tumors. These observations make LH/PLODs excellent candidates for prospective treatment of aggressive cancers. The recent years have witnessed significant research efforts to facilitate drug discovery on LH/PLODs, including molecular structure characterizations and development of reliable high-throughput enzymatic assays. Using a combination of biochemistry and in silico studies, we characterized the dual role of Fe2+ as simultaneous cofactor and inhibitor of lysyl hydroxylase activity and studied the effect of a promiscuous Fe2+ chelating agent, 2,2’-bipyridil, broadly considered a lysyl hydroxylase inhibitor. We found that at low concentrations, 2,2’-bipyridil unexpectedly enhances the LH enzymatic activity by reducing the inhibitory effect of excess Fe2+. Together, our results show a fine balance between Fe2+-dependent enzymatic activity and Fe2+-induced self-inhibited states, highlighting exquisite differences between LH/PLODs and related Fe2+, 2-oxoglutarate dioxygenases and suggesting that conventional structure-based approaches may not be suited for successful inhibitor development. These insights address outstanding questions regarding druggability of LH/PLOD lysyl hydroxylase catalytic site and provide a solid ground for upcoming drug discovery and screening campaigns.
Collapse
Affiliation(s)
- Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| | - Elisabetta Moroni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC-CNR), Milano, Italy
| | - Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- *Correspondence: Luigi Scietti, ; Federico Forneris,
| |
Collapse
|
9
|
Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes. Sci Rep 2022; 12:14256. [PMID: 35995931 PMCID: PMC9395344 DOI: 10.1038/s41598-022-18165-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Lysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2. Is LH2 involved in the helical Lys hydroxylation? 3. What are the functional consequences when LH2 is completely absent? To answer these questions, we generated LH2-null MC3T3 cells (LH2KO), and extensively characterized the type I collagen phenotypes in comparison with controls. Cross-link analysis demonstrated that the hydroxylysine-aldehyde (Hylald)-derived cross-links were completely absent from LH2KO collagen with concomitant increases in the Lysald-derived cross-links. Mass spectrometric analysis revealed that, in LH2KO type I collagen, telopeptidyl Lys hydroxylation was completely abolished at all sites while helical Lys hydroxylation was slightly diminished in a site-specific manner. Moreover, di-glycosylated Hyl was diminished at the expense of mono-glycosylated Hyl. LH2KO collagen was highly soluble and digestible, fibril diameters were diminished, and mineralization impaired when compared to controls. Together, these data underscore the critical role of LH2-catalyzed collagen modifications in collagen stability, organization and mineralization in MC3T3 cells.
Collapse
|
10
|
Wang C, Yang J. Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol 2022; 101:151234. [DOI: 10.1016/j.ejcb.2022.151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
|
11
|
Fuller AM, Eisinger-Mathason TSK. Context Matters: Response Heterogeneity to Collagen-Targeting Approaches in Desmoplastic Cancers. Cancers (Basel) 2022; 14:cancers14133132. [PMID: 35804902 PMCID: PMC9264969 DOI: 10.3390/cancers14133132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A common feature of tumor types such as breast cancer, prostate cancer, pancreatic cancer, and soft-tissue sarcoma is the deposition of collagen-rich tissue called desmoplasia. However, efforts to control tumor growth by disrupting desmoplasia, collectively known as “collagen-targeting approaches”, have had mixed and contradictory results, sometimes even within the same cancer type. We believe that this phenomenon may be due—at least partially—to the fact that “collagen” is not a single molecule, but rather a diverse molecular family composed of 28 unique collagen types. Therefore, in this review, we discuss the diversity of collagen molecules in normal and cancer tissue, and explore how collagen heterogeneity relates to the mixed efficacy of collagen-targeting approaches for cancer therapy. Abstract The deposition of collagen-rich desmoplastic tissue is a well-documented feature of the solid tumor microenvironment (TME). However, efforts to target the desmoplastic extracellular matrix (ECM) en masse, or collagen molecules more specifically, have been met with mixed and sometimes paradoxical results. In this review, we posit that these discrepancies are due—at least in part—to the incredible diversity of the collagen superfamily. Specifically, whereas studies of “collagen-targeting” approaches frequently refer to “collagen” as a single molecule or relatively homogeneous molecular family, 28 individual collagens have been identified in mammalian tissues, each with a unique structure, supramolecular assembly pattern, tissue distribution, and/or function. Moreover, some collagen species have been shown to exert both pro- and anti-neoplastic effects in the desmoplastic TME, even within the same cancer type. Therefore, herein, we describe the diversity of the collagen family in normal tissues and highlight the context-specific roles of individual collagen molecules in desmoplastic tumors. We further discuss how this heterogeneity relates to the variable efficacy of “collagen-targeting” strategies in this setting and provide guidance for future directions in the field.
Collapse
|
12
|
Bajaj R, Warner AN, Fradette JF, Gibbons DL. Dance of The Golgi: Understanding Golgi Dynamics in Cancer Metastasis. Cells 2022; 11:1484. [PMID: 35563790 PMCID: PMC9102947 DOI: 10.3390/cells11091484] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
The Golgi apparatus is at the center of protein processing and trafficking in normal cells. Under pathological conditions, such as in cancer, aberrant Golgi dynamics alter the tumor microenvironment and the immune landscape, which enhances the invasive and metastatic potential of cancer cells. Among these changes in the Golgi in cancer include altered Golgi orientation and morphology that contribute to atypical Golgi function in protein trafficking, post-translational modification, and exocytosis. Golgi-associated gene mutations are ubiquitous across most cancers and are responsible for modifying Golgi function to become pro-metastatic. The pharmacological targeting of the Golgi or its associated genes has been difficult in the clinic; thus, studying the Golgi and its role in cancer is critical to developing novel therapeutic agents that limit cancer progression and metastasis. In this review, we aim to discuss how disrupted Golgi function in cancer cells promotes invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Amanda N. Warner
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jared F. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (R.B.); (A.N.W.); (J.F.F.)
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
13
|
Saito T, Terajima M, Taga Y, Hayashi F, Oshima S, Kasamatsu A, Okubo Y, Ito C, Toshimori K, Sunohara M, Tanzawa H, Uzawa K, Yamauchi M. Decrease of lysyl hydroxylase 2 activity causes abnormal collagen molecular phenotypes, defective mineralization and compromised mechanical properties of bone. Bone 2022; 154:116242. [PMID: 34718219 DOI: 10.1016/j.bone.2021.116242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
Lysyl hydroxylase 2 (LH2) is an enzyme that catalyzes the hydroxylation of lysine (Lys) residues in fibrillar collagen telopeptides, a critical post-translational modification for the stability of intermolecular cross-links. Though abnormal LH2 activities have been implicated in various diseases including Bruck syndrome, the molecular basis of the pathologies is still not well understood. Since LH2 null mice die at early embryonic stage, we generated LH2 heterozygous (LH2+/-) mice in which LH2 level is significantly diminished, and characterized collagen and bone phenotypes using femurs. Compared to the wild-type (WT), LH2+/- collagen showed a significant decrease in the ratio of hydroxylysine (Hyl)- to the Lys-aldehyde-derived collagen cross-links without affecting the total number of aldehydes involved in cross-links. Mass spectrometric analysis revealed that, in LH2+/- type I collagen, the extent of hydroxylation of all telopeptidyl Lys residues was significantly decreased. In the helical domain, Lys hydroxylation at the cross-linking sites was either unaffected or slightly lower, but other sites were significantly diminished compared to WT. In LH2+/- femurs, mineral densities of cortical and cancellous bones were significantly decreased and the mechanical properties of cortical bones evaluated by nanoindentation analysis were compromised. When cultured, LH2+/- osteoblasts poorly produced mineralized nodules compared to WT osteoblasts. These data provide insight into the functionality of LH2 in collagen molecular phenotype and its critical role in bone matrix mineralization and mechanical properties.
Collapse
Affiliation(s)
- Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Fumihiko Hayashi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan; Future Medicine Research Center, Chiba University, Chiba, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Sato K, Parag-Sharma K, Terajima M, Musicant AM, Murphy RM, Ramsey MR, Hibi H, Yamauchi M, Amelio AL. Lysyl hydroxylase 2-induced collagen cross-link switching promotes metastasis in head and neck squamous cell carcinomas. Neoplasia 2021; 23:594-606. [PMID: 34107376 PMCID: PMC8192727 DOI: 10.1016/j.neo.2021.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and incidence rates are continuing to rise globally. HNSCC patient prognosis is closely related to the occurrence of tumor metastases, and collagen within the tumor microenvironment (TME) plays a key role in this process. Lysyl hydroxylase 2 (LH2), encoded by the Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) gene, catalyzes hydroxylation of telopeptidyl lysine (Lys) residues of fibrillar collagens which then undergo subsequent modifications to form stable intermolecular cross-links that change the biomechanical properties (i.e. quality) of the TME. While LH2-catalyzed collagen modification has been implicated in driving tumor progression and metastasis in diverse cancers, little is known about its role in HNSCC progression. Thus, using gain- and loss-of-function studies, we examined the effects of LH2 expression levels on collagen cross-linking and cell behavior in vitro and in vivo using a tractable bioluminescent imaging-based orthotopic xenograft model. We found that LH2 overexpression dramatically increases HNSCC cell migratory and invasive abilities in vitro and that LH2-driven changes in collagen cross-linking robustly induces metastasis in vivo. Specifically, the amount of LH2-mediated collagen cross-links increased significantly with PLOD2 overexpression, without affecting the total quantity of collagen cross-links. Conversely, LH2 knockdown significantly blunted HNSCC cells invasive capacity in vitro and metastatic potential in vivo. Thus, regardless of the total "quantity" of collagen crosslinks, it is the "quality" of these cross-links that is the key driver of HNSCC tumor metastatic dissemination. These data implicate LH2 as a key regulator of HNSCC tumor invasion and metastasis by modulating collagen cross-link quality and suggest that therapeutic strategies targeting LH2-mediated collagen cross-linking in the TME may be effective in controlling tumor progression and improving disease outcomes.
Collapse
Affiliation(s)
- Kotaro Sato
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology & Physiology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Adele M. Musicant
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Ryan M. Murphy
- Graduate Curriculum in Pharmacology, Biological & Biomedical Sciences Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
| | - Matthew R. Ramsey
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
| | - Antonio L. Amelio
- Division of Oral and Craniofacial health Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|