1
|
O'Brien AM, Sawers RJH, Gasca-Pineda J, Baxter I, Eguiarte LE, Ross-Ibarra J, Strauss SY. Teosinte populations exhibit weak local adaptation to their rhizosphere biota despite strong effects of biota source on teosinte fitness and traits. Evolution 2024; 78:1991-2005. [PMID: 39277541 DOI: 10.1093/evolut/qpae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
While biotic interactions often impose selection, species and populations vary in whether they are locally adapted to biotic interactions. Evolutionary theory predicts that environmental conditions drive this variable local adaptation by altering the fitness impacts of species interactions. To investigate the influence of an environmental gradient on adaptation between a plant and its associated rhizosphere biota, we cross-combined teosinte (Zea mays ssp. mexicana) and rhizosphere biota collected across a gradient of decreasing temperature, precipitation, and nutrients in a greenhouse common garden experiment. We measured both fitness and phenotypes expected to be influenced by biota, including concentrations of nutrients in leaves. Independent, main effects of teosinte and biota source explained most variation in teosinte fitness and traits. For example, biota from warmer sites provided population-independent fitness benefits across teosinte hosts. Effects of biota that depended on teosinte genotype were often not specific to their local hosts, and most traits had similar relationships to fitness across biota treatments. However, we found weak patterns of local adaptation between teosinte and biota from colder sites, suggesting environmental gradients may alter the importance of local adaptation in teosinte-biota interactions, as evolutionary theory predicts.
Collapse
Affiliation(s)
- Anna M O'Brien
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
- Department of Plant Science, Pennsylvania State University, State College, PA, United States
| | - Jaime Gasca-Pineda
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Luis E Eguiarte
- Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jeffrey Ross-Ibarra
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
- Genome Center, University of California, Davis, CA, United States
| | - Sharon Y Strauss
- Center for Population Biology, University of California, Davis, CA, United States
- Department of Evolution and Ecology, University of California, Davis, CA, United States
| |
Collapse
|
2
|
Zhang J, Song K, Jin F, Jia F, Liang J, Wang F, Zhang J. A novel strategy of artificially regulating plant rhizosphere microbial community to promote plant tolerance to cold stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175184. [PMID: 39089386 DOI: 10.1016/j.scitotenv.2024.175184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Artificial regulation of plant rhizosphere microbial communities through the synthesis of microbial communities is one of the effective ways to improve plant stress resistance. However, the process of synthesizing stress resistant microbial communities with excellent performance is complex, time-consuming, and costly. To address this issue, we proposed a novel strategy for preparing functional microbial communities. We isolated a cultivable cold tolerant bacterial community (PRCBC) from the rhizosphere of peas, and studied its effectiveness in assisting rice to resist stress. The results indicate that PRCBC can not only improve the ability of rice to resist cold stress, but also promote the increase of rice yield after cold stress relieved. This is partly because PRCBC increases the nitrogen content in the rhizosphere soil, and promotes rice's absorption of nitrogen elements, thereby promoting rice growth and enhancing its ability to resist osmotic stress. More importantly, the application of PRCBC drives the succession of rice rhizosphere microbial communities, and promotes the succession of rice rhizosphere microbial communities towards stress resistance. Surprisingly, PRCBC drives the succession of rice rhizosphere microbial communities towards a composition similar to PRCBC. This provides a feasible novel method for artificially and directionally driving microbial succession. In summary, we not only proposed a novel and efficient strategy for preparing stress resistant microbial communities to promote plant stress resistance, but also unexpectedly discovered a possible directionally driving method for soil microbial community succession.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fengyuan Jin
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Sarkar S, Das DK, Singh A, Laik R, Singh SK, van Es HM, Krishnan K, Singh AK, Das A, Singh U, Elansary HO, Mahmoud EA. Seasonal variations in soil characteristics control microbial respiration and carbon use under tree plantations in the middle gangetic region. Heliyon 2024; 10:e35593. [PMID: 39247289 PMCID: PMC11379560 DOI: 10.1016/j.heliyon.2024.e35593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Seasonal variations directly impact the biochemical and microbial properties of the soil, influence carbon and nutrient cycling within the soil system. Soils under tree plantation (TP) are rich in organic matter and microbial population, making them more susceptible to seasonal variation. We studied the effect of seasonal variations in soil chemical properties (pH, electrical conductivity (EC), total organic carbon (TOC), total nitrogen (TN), C/N ratio etc) and microclimate (moisture and temperature) on microbial respiration (SR), biomass, and carbon (C) utilization efficiency under 13 years old Kadamb (Anthocephalus cadamba Miq.), Simaraubha (Simarouba glauca DC), and Litchi (Litchi chinensis Sonn.) based TPs in middle Gangetic region. In contrast to higher SR and metabolic quotient (qCO2) in winter, the microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) in fall > summer > spring > winter, irrespective of TPs. The positive relationship between qCO2 and C/N ratios strongly supports the dependence of microbes on soil carbon for respiration. qCO2 had a significantly positive relationship with soil moisture (MC) and Electrical conductivity (EC), but a significantly negative relationship with temperature and pH. Higher MBN/TN and MBC/TOC ratios fall under simaraubha, and litchi-based TPs indicated more nitrogen (N) and carbon accumulation into microbial biomass. The seasonal variation of MBC/MBN ratios signifies the changes in microbial communities and fungi dominate over bacteria during winter, as bacteria have a lower C/N ratio than fungi. Stepwise regression analysis suggested that soil properties and micro-climate regulated microbial biomass and SR differ with TPs. Thus, the study indicates that microbial activities and biomass production can significantly influence by soil properties and seasonal variations under TPs.
Collapse
Affiliation(s)
- Sudip Sarkar
- ICAR Research Complex for Eastern Region, Patna, 800014, India
| | - Dipty Kumar Das
- Department of Forestry, Dr. Rajendra Prasad Central Agricultural University, Pusa, 848125, India
| | - Abhinandan Singh
- Department of Agronomy, Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya, U.P, 224229, India
| | - Ranjan Laik
- Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, 848125, India
| | - Santosh Kumar Singh
- Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University, Pusa, 848125, India
| | - Harold M van Es
- Department of Soil and Crop Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Kavya Krishnan
- Wageningen University & Research, Wageningen, Gelderland, Netherlands
| | - Amit Kumar Singh
- Department of Agronomy, Rani Lakshmi Bai Central Agricultural University, Jhansi, U.P., 284003, India
| | - Anup Das
- ICAR Research Complex for Eastern Region, Patna, 800014, India
| | - Utkarsh Singh
- Department of Agronomy, Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya, U.P, 224229, India
| | - Hosam O Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Eman A Mahmoud
- Department of Food Science, Damietta University, Damietta, Egypt
| |
Collapse
|
4
|
Mahmoudi M, Almario J, Lutap K, Nieselt K, Kemen E. Microbial communities living inside plant leaves or on the leaf surface are differently shaped by environmental cues. ISME COMMUNICATIONS 2024; 4:ycae103. [PMID: 39165396 PMCID: PMC11333920 DOI: 10.1093/ismeco/ycae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Leaf-associated microbial communities can promote plant health and resistance to biotic and abiotic stresses. However, the importance of environmental cues in the assembly of the leaf endo- and epi-microbiota remains elusive. Here, we aimed to investigate the impact of seasonal environmental variations, on the establishment of the leaf microbiome, focusing on long-term changes (five years) in bacterial, fungal, and nonfungal eukaryotic communities colonizing the surface and endosphere of six wild Arabidopsis thaliana populations. While leaf-microbial communities were found to be highly stochastic, the leaf niche had a predominant importance with endophytic microbial communities consistently exhibiting a lower diversity and variability. Among environmental factors, radiation- and humidity-related factors are the most important drivers of diversity patterns in the leaf, with stronger effects on epiphytic communities. Using linear models, we identified 30 important genera whose relative abundance in leaf compartments could be modeled from environmental variables, suggesting specific niche preferences for these taxa. With the hypothesis that environmental factors could impact interactions within microbial communities, we analyzed the seasonal patterns of microbial interaction networks across leaf compartments. We showed that epiphytic networks are more complex than endophytic and that the complexity and connectivity of these networks are partially correlated with the mentioned environmental cues. Our results indicate that humidity and solar radiation function as major environmental cues shaping the phyllosphere microbiome at both micro (leaf compartment) and macro (site) scales. These findings could have practical implications for predicting and developing field-adapted microbes in the face of global change.
Collapse
Affiliation(s)
- Maryam Mahmoudi
- Microbial Interactions in Plant Ecosystems, IMIT/ZMBP, Eberhard Karls University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Juliana Almario
- Université Claude Bernard Lyon 1, Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622, Villeurbanne, France
| | - Katrina Lutap
- Microbial Interactions in Plant Ecosystems, IMIT/ZMBP, Eberhard Karls University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Kay Nieselt
- Institute for Bioinformatics and Medical Informatics, Eberhard Karls University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Eric Kemen
- Microbial Interactions in Plant Ecosystems, IMIT/ZMBP, Eberhard Karls University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Huang WF, Li J, Huang JA, Liu ZH, Xiong LG. Review: Research progress on seasonal succession of phyllosphere microorganisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111898. [PMID: 37879538 DOI: 10.1016/j.plantsci.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Phyllosphere microorganisms have recently attracted the attention of scientists studying plant microbiomes. The origin, diversity, functions, and interactions of phyllosphere microorganisms have been extensively explored. Many experiments have demonstrated seasonal cycles of phyllosphere microbes. However, a comprehensive comparison of these separate investigations to characterize seasonal trends in phyllosphere microbes of woody and herbaceous plants has not been conducted. In this review, we explored the dynamic changes of phyllosphere microorganisms in woody and non-woody plants with the passage of the season, sought to find the driving factors, summarized these texts, and thought about future research trends regarding the application of phyllosphere microorganisms in agricultural production. Seasonal trends in phyllosphere microorganisms of herbaceous and woody plants have similarities and differences, but extensive experimental validation is needed. Climate, insects, hosts, microbial interactions, and anthropogenic activities are the diverse factors that influence seasonal variation in phyllosphere microorganisms.
Collapse
Affiliation(s)
- Wen-Feng Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China
| | - Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Van Nuland ME, Daws SC, Bailey JK, Schweitzer JA, Busby PE, Peay KG. Above- and belowground fungal biodiversity of Populus trees on a continental scale. Nat Microbiol 2023; 8:2406-2419. [PMID: 37973868 DOI: 10.1038/s41564-023-01514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Understanding drivers of terrestrial fungal communities over large scales is an important challenge for predicting the fate of ecosystems under climate change and providing critical ecological context for bioengineering plant-microbe interactions in model systems. We conducted an extensive molecular and microscopy field study across the contiguous United States measuring natural variation in the Populus fungal microbiome among tree species, plant niche compartments and key symbionts. Our results show clear biodiversity hotspots and regional endemism of Populus-associated fungal communities explained by a combination of climate, soil and geographic factors. Modelling climate change impacts showed a deterioration of Populus mycorrhizal associations and an increase in potentially pathogenic foliar endophyte diversity and prevalence. Geographic differences among these symbiont groups in their sensitivity to environmental change are likely to influence broader forest health and ecosystem function. This dataset provides an above- and belowground atlas of Populus fungal biodiversity at a continental scale.
Collapse
Affiliation(s)
- Michael E Van Nuland
- Department of Biology, Stanford University, Stanford, CA, USA.
- Society for the Protection of Underground Networks, SPUN, Dover, DE, USA.
| | - S Caroline Daws
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Joseph K Bailey
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, USA
| | - Jennifer A Schweitzer
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, USA
| | - Posy E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Kabir G Peay
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Dos Santos MSN, Ody LP, Kerber BD, Araujo BA, Oro CED, Wancura JHC, Mazutti MA, Zabot GL, Tres MV. New frontiers of soil fungal microbiome and its application for biotechnology in agriculture. World J Microbiol Biotechnol 2023; 39:287. [PMID: 37632593 DOI: 10.1007/s11274-023-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.
Collapse
Affiliation(s)
- Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Lissara P Ody
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Bruno D Kerber
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Beatriz A Araujo
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Carolina E D Oro
- Department of Food Engineering, Integrated Regional University of Alto Uruguay and Missions, 1621, Sete de Setembro Av., Fátima, Erechim, RS 99709-910, Brazil
| | - João H C Wancura
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil.
| |
Collapse
|
8
|
Allsup CM, George I, Lankau RA. Shifting microbial communities can enhance tree tolerance to changing climates. Science 2023; 380:835-840. [PMID: 37228219 DOI: 10.1126/science.adf2027] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Climate change is pushing species outside of their evolved tolerances. Plant populations must acclimate, adapt, or migrate to avoid extinction. However, because plants associate with diverse microbial communities that shape their phenotypes, shifts in microbial associations may provide an alternative source of climate tolerance. Here, we show that tree seedlings inoculated with microbial communities sourced from drier, warmer, or colder sites displayed higher survival when faced with drought, heat, or cold stress, respectively. Microbially mediated drought tolerance was associated with increased diversity of arbuscular mycorrhizal fungi, whereas cold tolerance was associated with lower fungal richness, likely reflecting a reduced burden of nonadapted fungal taxa. Understanding microbially mediated climate tolerance may enhance our ability to predict and manage the adaptability of forest ecosystems to changing climates.
Collapse
Affiliation(s)
- Cassandra M Allsup
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabelle George
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
Quiza L, Tremblay J, Pagé AP, Greer CW, Pozniak CJ, Li R, Haug B, Hemmingsen SM, St-Arnaud M, Yergeau E. The effect of wheat genotype on the microbiome is more evident in roots and varies through time. ISME COMMUNICATIONS 2023; 3:32. [PMID: 37076737 PMCID: PMC10115884 DOI: 10.1038/s43705-023-00238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
Crop breeding has traditionally ignored the plant-associated microbial communities. Considering the interactions between plant genotype and associated microbiota is of value since different genotypes of the same crop often harbor distinct microbial communities which can influence the plant phenotype. However, recent studies have reported contrasting results, which led us to hypothesize that the effect of genotype is constrained by growth stages, sampling year and plant compartment. To test this hypothesis, we sampled bulk soil, rhizosphere soil and roots of 10 field-grown wheat genotypes, twice per year, for 4 years. DNA was extracted and regions of the bacterial 16 S rRNA and CPN60 genes and the fungal ITS region were amplified and sequenced. The effect of genotype was highly contingent on the time of sampling and on the plant compartment sampled. Only for a few sampling dates, were the microbial communities significantly different across genotypes. The effect of genotype was most often significant for root microbial communities. The three marker genes used provided a highly coherent picture of the effect of genotype. Taken together, our results confirm that microbial communities in the plant environment strongly vary across compartments, growth stages, and years, and that this can mask the effect of genotype.
Collapse
Affiliation(s)
- Liliana Quiza
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| | - Antoine P Pagé
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Charles W Greer
- Energy, Mining, and Environment Research Centre, National Research Council Canada, Montréal, QC, Canada
| | | | - Rong Li
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Brenda Haug
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Sean M Hemmingsen
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, 4101 rue Sherbrooke E., Montréal, QC, Canada
| | - Etienne Yergeau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada.
| |
Collapse
|
10
|
Love SJ, Schweitzer JA, Bailey JK. Climate-driven convergent evolution in riparian ecosystems on sky islands. Sci Rep 2023; 13:2817. [PMID: 36797341 PMCID: PMC9935884 DOI: 10.1038/s41598-023-29564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Climate-induced evolution will determine population persistence in a changing world. However, finding natural systems in which to study these responses has been a barrier to estimating the impact of global change on a broad scale. We propose that isolated sky islands (SI) and adjacent mountain chains (MC) are natural laboratories for studying long-term and contemporary climatic pressures on natural populations. We used greenhouse common garden trees to test whether populations on SI exposed to hot and dry climates since the end of the Pleistocene have phenotypically diverged from populations on MC, and if SI populations have converged in these traits. We show: (1) populations of Populus angustifolia from SI have diverged from MC, and converged across SI, in reproductive and productivity traits, (2) these traits (cloning and aboveground biomass, respectively) are significantly correlated, suggesting a genetic linkage between them, and (3) the trait variation is driven by both natural selection and genetic drift. These shifts represent potentially beneficial phenotypes for population persistence in a changing world. These results suggest that the SI-MC comparison is a natural laboratory, as well as a predictive framework, for studying long-term responses to climate change across the globe.
Collapse
Affiliation(s)
- S J Love
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA.
| | - J A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| | - J K Bailey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| |
Collapse
|
11
|
Bayliss SLJ, Mueller LO, Ware IM, Schweitzer JA, Bailey JK. Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales. Commun Biol 2022; 5:1213. [PMID: 36357488 PMCID: PMC9649771 DOI: 10.1038/s42003-022-04131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
Climate change is having profound effects on species distributions and is likely altering the distribution of genetic variation across landscapes. Maintaining population genetic diversity is essential for the survival of species facing rapid environmental change, and variation loss will further ecological and evolutionary change. We used trait values of spring foliar leaf-out phenology of 400 genotypes from three geographically isolated populations of Populus angustifolia grown under common conditions, in concert with stacked species distribution modeling, to ask: (a) How will climate change alter phenological variation across the P. angustifolia species-range, and within populations; and (b) will the distribution of phenological variation among and within populations converge (become more similar) in future climatic conditions? Models predicted a net loss of phenological variation in future climate scenarios on 20-25% of the landscape across the species' range, with the trailing edge population losing variation on as much as 47% of the landscape. Our models also predicted that population's phenological trait distributions will become more similar over time. This stacked distribution model approach allows for the identification of areas expected to experience the greatest loss of genetically based functional trait variation and areas that may be priorities to conserve as future genetic climate refugia.
Collapse
Affiliation(s)
- Shannon L J Bayliss
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA.
- Department of Geography, Florida State University, Tallahassee, FL, USA.
| | - Liam O Mueller
- Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Ian M Ware
- Funga PBC 1612 Canterbury Street, Austin, TX, 78702, USA
| | - Jennifer A Schweitzer
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Joseph K Bailey
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, USA
| |
Collapse
|
12
|
Ding C, Brouard JS. Assisted migration is plausible for a boreal tree species under climate change: A quantitative and population genetics study of trembling aspen ( Populus tremuloides Michx.) in western Canada. Ecol Evol 2022; 12:e9384. [PMID: 36225831 PMCID: PMC9534759 DOI: 10.1002/ece3.9384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/16/2022] [Indexed: 11/14/2022] Open
Abstract
A novel method was tested for improving tree breeding strategies that integrate quantitative and population genetics based on range-wide reciprocal transplant experiments. Five reciprocal common garden tests of Populus tremuloides were investigated including 6450 trees across western Canada focusing on adaptation traits and growth. Both genetic parameters and home-site transplant models were evaluated. We found a genetic trade-off between growth and early spring leaf flush and late fall senescence. Coefficients of phenotypic variation (CVp) of cell lysis (CL), a measure of freezing injury, shrank from 0.28 to 0.10 during acclimation in the fall, and the CVp slope versus the freezing temperature was significantly different from zero (R 2 = 0.33, p = .02). There was more between-population genetic variation in fall phenology than in spring leaf phenology. We suggest that P. tremuloides demonstrated a discrepancy between the ecological optimum and the physiological optimum minimum winter temperature. The sub-optimal growing condition of P. tremuloides is potentially caused by the warmer ecological optimum than the physiological optimum. Assisted migration and breeding of fast growers to reforest cooler plantation sites can improve productivity. Transferring the study populations to less than 4°C of extreme minimum temperature appears safe for reforestation aligning with the historical recolonization direction of the species. This is equivalent to a 5-10° latitudinal northward movement. Fall frost hardiness is an effective criterion for family selection in the range tested in this study.
Collapse
Affiliation(s)
- Chen Ding
- Western Gulf Forest Tree Improvement ProgramTexas A&M Forest Service, TAMU SystemCollege StationTexasUSA
| | - Jean S. Brouard
- Isabella Point Forestry Ltd.Salt Spring IslandBritish ColumbiaCanada
| |
Collapse
|
13
|
Retreat of Major European Tree Species Distribution under Climate Change—Minor Natives to the Rescue? SUSTAINABILITY 2022. [DOI: 10.3390/su14095213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Climate change is projected to trigger strong declines in the potential distribution of major tree species in Europe. While minor natives have moved into the spotlight as alternatives, their ecology is often poorly understood. We use an ensemble species distribution modelling approach on a set of promising native tree species to gain insights into their distribution potential under different climate change scenarios. Moreover, we identify the urgency and potential of altered species distributions in favor of minor natives by comparing the niche dynamics of five major native tree species with the set of six minor natives in a case study. Our models project stark range contractions and range shifts among major tree species, strongly amplified under high emission scenarios. Abies alba, Picea abies and Fagus sylvatica are affected the strongest. While also experiencing range shifts, the minor European natives Castanea sativa, Sorbus torminalis, and Ulmus laevis all considerably expand their range potential across climate change scenarios. Accompanied by Carpinus betulus, with a stable range size, they hold the potential to substantially contribute to sustainably adapting European forest to climate change.
Collapse
|
14
|
Mafa‐Attoye TG, Borden KA, Alvarez DO, Thevathasan N, Isaac ME, Dunfield KE. Roots alter soil microbial diversity and interkingdom interactions in diversified agricultural landscapes. OIKOS 2022. [DOI: 10.1111/oik.08717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Kira A. Borden
- Faculty of Land and Food Systems, Univ. of British Columbia Vancouver BC Canada
| | | | | | - Marney E. Isaac
- Dept of Physical&Environmental Sciences, Univ. of Toronto Scarborough Toronto ON Canada
| | - Kari E. Dunfield
- School of Environmental Sciences, Univ. of Guelph Guelph ON Canada
| |
Collapse
|
15
|
Van Nuland ME, Ware IM, Schadt CW, Yang Z, Bailey JK, Schweitzer JA. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate-driven range shifts. THE NEW PHYTOLOGIST 2021; 232:762-775. [PMID: 34227117 DOI: 10.1111/nph.17599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Identifying the potential for natural soil microbial communities to predictably affect complex plant traits is an important frontier in climate change research. Plant phenology varies with environmental and genetic factors, but few studies have examined whether the soil microbiome interacts with plant population differentiation to affect phenology and ecosystem function. We compared soil microbial variation in a widespread tree species (Populus angustifolia) with different soil inoculum treatments in a common garden environment to test how the soil microbiome affects spring foliar phenology and subsequent biomass growth. We hypothesized and show that soil bacterial and fungal communities vary with tree conditioning from different populations and elevations, that this soil community variation influences patterns of foliar phenology and plant growth across populations and elevation gradients, and that transferring lower elevation plant genotypes to higher elevation soil communities delayed foliar phenology, thereby shortening the growing season and reducing annual biomass production. Our findings show the importance of plant-soil interactions that help shape the timing of tree foliar phenology and productivity. These geographic patterns in plant population × microbiome interactions also broaden our understanding of how soil communities impact plant phenotypic variation across key climate change gradients, with consequences for ecosystem functioning.
Collapse
Affiliation(s)
| | - Ian M Ware
- Institute of Pacific Islands Forestry, USDA Forest Service, Pacific Southwest Research Station, Hilo, HI, 96720, USA
| | - Chris W Schadt
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zamin Yang
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joseph K Bailey
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jennifer A Schweitzer
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|