1
|
Jiang Y, MacRenaris K, O'Halloran TV, Hu J. Determination of metal ion transport rate of human ZIP4 using stable zinc isotopes. J Biol Chem 2024; 300:107661. [PMID: 39128710 DOI: 10.1016/j.jbc.2024.107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
The essential microelement zinc is absorbed in the small intestine mainly by the zinc transporter ZIP4, a representative member of the Zrt/Irt-like protein (ZIP) family. ZIP4 is reportedly upregulated in many cancers, making it a promising oncology drug target. To date, there have been no reports on the turnover number of ZIP4, which is a crucial missing piece of information needed to better understand the transport mechanism. In this work, we used a nonradioactive zinc isotope, 70Zn, and inductively coupled plasma mass spectrometry to study human ZIP4 (hZIP4) expressed in Human embryonic kidney 293 cells. Our data showed that 70Zn can replace the radioactive 65Zn as a tracer in kinetic evaluation of hZIP4 activity. This approach, combined with the quantification of the cell surface expression of hZIP4 using biotinylation or surface-bound antibody, allowed us to estimate the apparent turnover number of hZIP4 to be in the range of 0.08 to 0.2 s-1. The turnover numbers of the truncated hZIP4 variants are significantly smaller than that of the full-length hZIP4, confirming a crucial role for the extracellular domain in zinc transport. Using 64Zn and 70Zn, we measured zinc efflux during the cell-based transport assay and found that it has little effect on the zinc import analysis under these conditions. Finally, we demonstrated that use of laser ablation inductively coupled plasma-TOF-mass spectrometry on samples applied to a solid substrate significantly increased the throughput of the transport assay. We envision that the approach reported here can be applied to the studies of metal transporters beyond the ZIP family.
Collapse
Affiliation(s)
- Yuhan Jiang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Keith MacRenaris
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA; Quantitative Bio Element Analysis and Mapping (QBEAM) Center, Michigan State University, East Lansing, Michigan, USA
| | - Thomas V O'Halloran
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA; Elemental Health Institute, Michigan State University, East Lansing, Michigan, USA; Quantitative Bio Element Analysis and Mapping (QBEAM) Center, Michigan State University, East Lansing, Michigan, USA.
| | - Jian Hu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
2
|
Marin E, Kovalev K, Poelman T, Veenstra R, Borshchevskiy V, Guskov A. Custom Design of a Humidifier Chamber for InMeso Crystallization. CRYSTAL GROWTH & DESIGN 2024; 24:325-330. [PMID: 38188264 PMCID: PMC10767699 DOI: 10.1021/acs.cgd.3c01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024]
Abstract
Membrane proteins are indispensable for every living organism, yet their structural organization remains underexplored. Despite the recent advancements in single-particle cryogenic electron microscopy and cryogenic electron tomography, which have significantly increased the structural coverage of membrane proteins across various kingdoms, certain scientific methods, such as time-resolved crystallography, still mostly rely on crystallization techniques, such as lipidic cubic phase (LCP) or in meso crystallization. In this study, we present an open-access blueprint for a humidity control chamber designed for LCP/in meso crystallization experiments using a Gryphon crystallization robot. Using this chamber, we have obtained crystals of a transmembrane aspartate transporter GltTk from Thermococcus kodakarensis in a lipidic environment using in meso crystallization. The data collected from these crystals allowed us to perform an analysis of lipids bound to the transporter. With this publication of our open-access design of a humidity chamber, we aim to improve the accessibility of in meso protein crystallization for the scientific community.
Collapse
Affiliation(s)
- Egor Marin
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Kirill Kovalev
- European
Molecular Biology Laboratory, EMBL Hamburg c/o DESY, 22607 Hamburg, Germany
| | | | - Rick Veenstra
- University
of Groningen, 9747AG Groningen, The Netherlands
| | | | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
3
|
Colucci E, Anshari ZR, Patiño-Ruiz MF, Nemchinova M, Whittaker J, Slotboom DJ, Guskov A. Mutation in glutamate transporter homologue GltTk provides insights into pathologic mechanism of episodic ataxia 6. Nat Commun 2023; 14:1799. [PMID: 37002226 PMCID: PMC10066184 DOI: 10.1038/s41467-023-37503-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Episodic ataxias (EAs) are rare neurological conditions affecting the nervous system and typically leading to motor impairment. EA6 is linked to the mutation of a highly conserved proline into an arginine in the glutamate transporter EAAT1. In vitro studies showed that this mutation leads to a reduction in the substrates transport and an increase in the anion conductance. It was hypothesised that the structural basis of these opposed functional effects might be the straightening of transmembrane helix 5, which is kinked in the wild-type protein. In this study, we present the functional and structural implications of the mutation P208R in the archaeal homologue of glutamate transporters GltTk. We show that also in GltTk the P208R mutation leads to reduced aspartate transport activity and increased anion conductance, however a cryo-EM structure reveals that the kink is preserved. The arginine side chain of the mutant points towards the lipidic environment, where it may engage in interactions with the phospholipids, thereby potentially interfering with the transport cycle and contributing to stabilisation of an anion conducting state.
Collapse
Affiliation(s)
- Emanuela Colucci
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Zaid R Anshari
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Miyer F Patiño-Ruiz
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Mariia Nemchinova
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Jacob Whittaker
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands
| | - Dirk J Slotboom
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands.
| | - Albert Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
4
|
Liu H, Zhu Z, Xue Q, Yang F, Cao W, Xue Z, Liu X, Zheng H. Picornavirus infection enhances aspartate by the SLC38A8 transporter to promote viral replication. PLoS Pathog 2023; 19:e1011126. [PMID: 36735752 PMCID: PMC9931120 DOI: 10.1371/journal.ppat.1011126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/15/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhaoning Xue
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology; College of Veterinary Medicine, Lanzhou University, WOAH/National reference laboratory for foot-and-mouth disease; Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
5
|
Peter MF, Ruland JA, Depping P, Schneberger N, Severi E, Moecking J, Gatterdam K, Tindall S, Durand A, Heinz V, Siebrasse JP, Koenig PA, Geyer M, Ziegler C, Kubitscheck U, Thomas GH, Hagelueken G. Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter. Nat Commun 2022; 13:4471. [PMID: 35927235 PMCID: PMC9352664 DOI: 10.1038/s41467-022-31907-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are found widely in bacteria and archaea and consist of three structural domains, a soluble substrate-binding protein (P-domain), and two transmembrane domains (Q- and M-domains). HiSiaPQM and its homologs are TRAP transporters for sialic acid and are essential for host colonization by pathogenic bacteria. Here, we reconstitute HiSiaQM into lipid nanodiscs and use cryo-EM to reveal the structure of a TRAP transporter. It is composed of 16 transmembrane helices that are unexpectedly structurally related to multimeric elevator-type transporters. The idiosyncratic Q-domain of TRAP transporters enables the formation of a monomeric elevator architecture. A model of the tripartite PQM complex is experimentally validated and reveals the coupling of the substrate-binding protein to the transporter domains. We use single-molecule total internal reflection fluorescence (TIRF) microscopy in solid-supported lipid bilayers and surface plasmon resonance to study the formation of the tripartite complex and to investigate the impact of interface mutants. Furthermore, we characterize high-affinity single variable domains on heavy chain (VHH) antibodies that bind to the periplasmic side of HiSiaQM and inhibit sialic acid uptake, providing insight into how TRAP transporter function might be inhibited in vivo.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jan A Ruland
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Peer Depping
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Aston Centre for Membrane Proteins and Lipids Research, Aston St., B4 7ET, Birmingham, UK
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Emmanuele Severi
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
- Biosciences Institute, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jonas Moecking
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Karl Gatterdam
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sarah Tindall
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
| | - Alexandre Durand
- Institut de Génétique et de Biologie Molecule et Cellulaire, 1 Rue Laurent Fries, 67404, Illkirch Cedex, France
| | - Veronika Heinz
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Jan Peter Siebrasse
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Paul-Albert Koenig
- Core Facility Nanobodies, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ulrich Kubitscheck
- Institute for Physical und Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53127, Bonn, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, YO10 5YW, UK
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
6
|
Galluccio M, Mazza T, Scalise M, Sarubbi MC, Indiveri C. Bacterial over-expression of functionally active human CT2 (SLC22A16) carnitine transporter. Mol Biol Rep 2022; 49:8185-8193. [PMID: 35608746 DOI: 10.1007/s11033-022-07491-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/20/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Escherichia coli is a widely used tool for the over-expression of human proteins for studying structure and function. The toxicity of human proteins for E. coli often hampers the expression. This study aims to find conditions for the expression of a membrane transporter known as the carnitine transporter CT2. The knowledge on this transporter is scarce, thus obtaining the recombinant protein is very important for further studies. METHODS AND RESULTS The cDNAs coding for human CT2 (hCT2) was cloned in the pH6EX3 vector and different transformed E. coli strains were cultured in absence or in presence of glucose. hCT2 expression was obtained. The protein was purified and reconstituted into proteoliposomes in a functionally active state. CONCLUSIONS Using the appropriate IPTG concentration, together with the addition of glucose, hCT2 has been expressed in E. coli. The protein is active and shows capacity to transport carnitine in proteoliposomes. The results have a great interest in basic biochemistry of membrane transporters and applications to human health since hCT2 is involved in human pathology.
Collapse
Affiliation(s)
- Michele Galluccio
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Maria Chiara Sarubbi
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST Biologia, Ecologia, Scienze Della Terra Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via P. Bucci cubo 4C, 87036, Arcavacata di Rende, Italy. .,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology IBIOM, via Amendola 122/O, 70126, Bari, Italy.
| |
Collapse
|
7
|
High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS. Proc Natl Acad Sci U S A 2022; 119:2113927119. [PMID: 35101979 PMCID: PMC8833178 DOI: 10.1073/pnas.2113927119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
As cellular membranes are impermeable to most molecules, transporter proteins are typically present in the membrane to transport small molecules in or out of the cell. Due to the small, nanometer size of these transporters, it is challenging to study their transport mechanism. Here, we use advanced microscopy approaches to study in real time and at the single-molecule level the mode of action of the dimeric CitS tranpsorter. Using high-speed atomic force microscopy, we visualize the dynamic, elevator-like movement of the transporter, and we reveal that the two protomers move independently. We also discovered an intermediate state, reminiscent of another, unrelated transporter, indicating that independent evolutionary pathways have led to similar three-state elevator mechanisms. The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh. Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.
Collapse
|
8
|
Elucidating the Mechanism Behind Sodium-Coupled Neurotransmitter Transporters by Reconstitution. Neurochem Res 2021; 47:127-137. [PMID: 34347265 DOI: 10.1007/s11064-021-03413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Sodium-coupled neurotransmitter transporters play a fundamental role in the termination of synaptic neurotransmission, which makes them a major drug target. The reconstitution of these secondary active transporters into liposomes has shed light on their molecular transport mechanisms. From the earliest days of the reconstitution technique up to today's single-molecule studies, insights from live functioning transporters have been indispensable for our understanding of their physiological impact. The two classes of sodium-coupled neurotransmitter transporters, the neurotransmitter: sodium symporters and the excitatory amino acid transporters, have vastly different molecular structures, but complementary proteoliposome studies have sought to unravel their ion-dependence and transport kinetics. Furthermore, reconstitution experiments have been used on both protein classes to investigate the role of e.g. the lipid environment, of posttranslational modifications, and of specific amino acid residues in transport. Techniques that allow the detection of transport at a single-vesicle resolution have been developed, and single-molecule studies have started to reveal single transporter kinetics, which will expand our understanding of how transport across the membrane is facilitated at protein level. Here, we review a selection of the results and applications where the reconstitution of the two classes of neurotransmitter transporters has been instrumental.
Collapse
|