1
|
Claes JM, Haddock SHD, Coubris C, Mallefet J. Systematic Distribution of Bioluminescence in Marine Animals: A Species-Level Inventory. Life (Basel) 2024; 14:432. [PMID: 38672704 PMCID: PMC11051050 DOI: 10.3390/life14040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Bioluminescence is the production of visible light by an organism. This phenomenon is particularly widespread in marine animals, especially in the deep sea. While the luminescent status of numerous marine animals has been recently clarified thanks to advancements in deep-sea exploration technologies and phylogenetics, that of others has become more obscure due to dramatic changes in systematics (themselves triggered by molecular phylogenies). Here, we combined a comprehensive literature review with unpublished data to establish a catalogue of marine luminescent animals. Inventoried animals were identified to species level in over 97% of the cases and were associated with a score reflecting the robustness of their luminescence record. While luminescence capability has been established in 695 genera of marine animals, luminescence reports from 99 additional genera need further confirmation. Altogether, these luminescent and potentially luminescent genera encompass 9405 species, of which 2781 are luminescent, 136 are potentially luminescent (e.g., suggested luminescence in those species needs further confirmation), 99 are non-luminescent, and 6389 have an unknown luminescent status. Comparative analyses reveal new insights into the occurrence of luminescence among marine animal groups and highlight promising research areas. This work will provide a solid foundation for future studies related to the field of marine bioluminescence.
Collapse
Affiliation(s)
- Julien M. Claes
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (C.C.); (J.M.)
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (C.C.); (J.M.)
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (C.C.); (J.M.)
| |
Collapse
|
2
|
Vijayan N, McAnulty SJ, Sanchez G, Jolly J, Ikeda Y, Nishiguchi MK, Réveillac E, Gestal C, Spady BL, Li DH, Burford BP, Kerwin AH, Nyholm SV. Evolutionary history influences the microbiomes of a female symbiotic reproductive organ in cephalopods. Appl Environ Microbiol 2024; 90:e0099023. [PMID: 38315021 PMCID: PMC10952459 DOI: 10.1128/aem.00990-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/09/2023] [Indexed: 02/07/2024] Open
Abstract
Many female squids and cuttlefishes have a symbiotic reproductive organ called the accessory nidamental gland (ANG) that hosts a bacterial consortium involved with egg defense against pathogens and fouling organisms. While the ANG is found in multiple cephalopod families, little is known about the global microbial diversity of these ANG bacterial symbionts. We used 16S rRNA gene community analysis to characterize the ANG microbiome from different cephalopod species and assess the relationship between host and symbiont phylogenies. The ANG microbiome of 11 species of cephalopods from four families (superorder: Decapodiformes) that span seven geographic locations was characterized. Bacteria of class Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were found in all species, yet analysis of amplicon sequence variants by multiple distance metrics revealed a significant difference between ANG microbiomes of cephalopod families (weighted/unweighted UniFrac, Bray-Curtis, P = 0.001). Despite being collected from widely disparate geographic locations, members of the family Sepiolidae (bobtail squid) shared many bacterial taxa including (~50%) Opitutae (Verrucomicrobia) and Ruegeria (Alphaproteobacteria) species. Furthermore, we tested for phylosymbiosis and found a positive correlation between host phylogenetic distance and bacterial community dissimilarity (Mantel test r = 0.7). These data suggest that closely related sepiolids select for distinct symbionts from similar bacterial taxa. Overall, the ANGs of different cephalopod species harbor distinct microbiomes and thus offer a diverse symbiont community to explore antimicrobial activity and other functional roles in host fitness.IMPORTANCEMany aquatic organisms recruit microbial symbionts from the environment that provide a variety of functions, including defense from pathogens. Some female cephalopods (squids, bobtail squids, and cuttlefish) have a reproductive organ called the accessory nidamental gland (ANG) that contains a bacterial consortium that protects eggs from pathogens. Despite the wide distribution of these cephalopods, whether they share similar microbiomes is unknown. Here, we studied the microbial diversity of the ANG in 11 species of cephalopods distributed over a broad geographic range and representing 15-120 million years of host divergence. The ANG microbiomes shared some bacterial taxa, but each cephalopod species had unique symbiotic members. Additionally, analysis of host-symbiont phylogenies suggests that the evolutionary histories of the partners have been important in shaping the ANG microbiome. This study advances our knowledge of cephalopod-bacteria relationships and provides a foundation to explore defensive symbionts in other systems.
Collapse
Affiliation(s)
- Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah J. McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan
| | - Jeffrey Jolly
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Marine Climate Change Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Yuzuru Ikeda
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of Ryukyus, Ryukyus, Japan
| | - Michele K. Nishiguchi
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Elodie Réveillac
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS–La Rochelle Université, La Rochelle, France
| | - Camino Gestal
- Institute of Marine Research (IIM), CSIC, Vigo, Spain
| | - Blake L. Spady
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- U.S. National Oceanic and Atmospheric Administration, National Environmental Satellite Data and Information Service, Center for Satellite Applications and Research, Coral Reef Watch, College Park, Maryland, USA
| | - Diana H. Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Benjamin P. Burford
- Institute of Marine Sciences, University of California, affiliated with the National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California, USA
| | - Allison H. Kerwin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Biology, McDaniel College, Westminster, Maryland, USA
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Rogers TF, Yalçın G, Briseno J, Vijayan N, Nyholm SV, Simakov O. Gene modelling and annotation for the Hawaiian bobtail squid, Euprymna scolopes. Sci Data 2024; 11:40. [PMID: 38184621 PMCID: PMC10771462 DOI: 10.1038/s41597-023-02903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024] Open
Abstract
Coleoid cephalopods possess numerous complex, species-specific morphological and behavioural adaptations, e.g., a uniquely structured nervous system that is the largest among the invertebrates. The Hawaiian bobtail squid (Euprymna scolopes) is one of the most established cephalopod species. With its recent publication of the chromosomal-scale genome assembly and regulatory genomic data, it also emerges as a key model for cephalopod gene regulation and evolution. However, the latest genome assembly has been lacking a native gene model set. Our manuscript describes the generation of new long-read transcriptomic data and, made using this combined with a plethora of publicly available transcriptomic and protein sequence data, a new reference annotation for E. scolopes.
Collapse
Affiliation(s)
- Thea F Rogers
- Department of Neuroscience and Developmental Biology, Division of Molecular Evolution and Development, University of Vienna, Vienna, Austria.
| | - Gözde Yalçın
- Department of Neuroscience and Developmental Biology, Division of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - John Briseno
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, Division of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Fernández-Álvarez FÁ, Sanchez G, Deville D, Taite M, Villanueva R, Allcock AL. Atlantic Oceanic Squids in the "Grey Speciation Zone". Integr Comp Biol 2023; 63:1214-1225. [PMID: 37604791 PMCID: PMC10755182 DOI: 10.1093/icb/icad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023] Open
Abstract
Cryptic species complexes represent an important challenge for the adequate characterization of Earth's biodiversity. Oceanic organisms tend to have greater unrecognized cryptic biodiversity since the marine realm was often considered to lack hard barriers to genetic exchange. Here, we tested the effect of several Atlantic and Mediterranean oceanic barriers on 16 morphospecies of oceanic squids of the orders Oegopsida and Bathyteuthida using three mitochondrial and one nuclear molecular marker and five species delimitation methods. Number of species recognized within each morphospecies differed among different markers and analyses, but we found strong evidence of cryptic biodiversity in at least four of the studied species (Chtenopteryx sicula, Chtenopteryx canariensis, Ancistrocheirus lesueurii, and Galiteuthis armata). There were highly geographically structured units within Helicocranchia navossae that could either represent recently diverged species or population structure. Although the species studied here can be considered relatively passive with respect to oceanic currents, cryptic speciation patterns showed few signs of being related to oceanic currents. We hypothesize that the bathymetry of the egg masses and duration of the paralarval stage might influence the geographic distribution of oceanic squids. Because the results of different markers and different species delimitation methods are inconsistent and because molecular data encompassing broad geographic sampling areas for oceanic squids are scarce and finding morphological diagnostic characters for early life stages is difficult, it is challenging to assess the species boundaries for many of these species. Thus, we consider many to be in the "grey speciation zone." As many oceanic squids have cosmopolitan distributions, new studies combining genomic and morphological information from specimens collected worldwide are needed to correctly assess the actual oceanic squid biodiversity.
Collapse
Affiliation(s)
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0412, Japan
| | - Diego Deville
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Morag Taite
- Ryan Institute and School of Natural Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Roger Villanueva
- Institut de Ciències del Mar (ICM), CSIC, Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain
| | - A Louise Allcock
- Ryan Institute and School of Natural Sciences, University of Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
5
|
Baden T, Briseño J, Coffing G, Cohen-Bodénès S, Courtney A, Dickerson D, Dölen G, Fiorito G, Gestal C, Gustafson T, Heath-Heckman E, Hua Q, Imperadore P, Kimbara R, Król M, Lajbner Z, Lichilín N, Macchi F, McCoy MJ, Nishiguchi MK, Nyholm SV, Otjacques E, Pérez-Ferrer PA, Ponte G, Pungor JR, Rogers TF, Rosenthal JJC, Rouressol L, Rubas N, Sanchez G, Santos CP, Schultz DT, Seuntjens E, Songco-Casey JO, Stewart IE, Styfhals R, Tuanapaya S, Vijayan N, Weissenbacher A, Zifcakova L, Schulz G, Weertman W, Simakov O, Albertin CB. Cephalopod-omics: Emerging Fields and Technologies in Cephalopod Biology. Integr Comp Biol 2023; 63:1226-1239. [PMID: 37370232 PMCID: PMC10755191 DOI: 10.1093/icb/icad087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Few animal groups can claim the level of wonder that cephalopods instill in the minds of researchers and the general public. Much of cephalopod biology, however, remains unexplored: the largest invertebrate brain, difficult husbandry conditions, and complex (meta-)genomes, among many other things, have hindered progress in addressing key questions. However, recent technological advancements in sequencing, imaging, and genetic manipulation have opened new avenues for exploring the biology of these extraordinary animals. The cephalopod molecular biology community is thus experiencing a large influx of researchers, emerging from different fields, accelerating the pace of research in this clade. In the first post-pandemic event at the Cephalopod International Advisory Council (CIAC) conference in April 2022, over 40 participants from all over the world met and discussed key challenges and perspectives for current cephalopod molecular biology and evolution. Our particular focus was on the fields of comparative and regulatory genomics, gene manipulation, single-cell transcriptomics, metagenomics, and microbial interactions. This article is a result of this joint effort, summarizing the latest insights from these emerging fields, their bottlenecks, and potential solutions. The article highlights the interdisciplinary nature of the cephalopod-omics community and provides an emphasis on continuous consolidation of efforts and collaboration in this rapidly evolving field.
Collapse
Affiliation(s)
- Tom Baden
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - John Briseño
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Gabrielle Coffing
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Sophie Cohen-Bodénès
- Laboratoire des Systèmes Perceptifs, Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, CNRS, 75005 Paris, France
| | - Amy Courtney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Dominick Dickerson
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Gül Dölen
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Camino Gestal
- Laboratory of Marine Molecular Pathobiology, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo 36208, Spain
| | | | - Elizabeth Heath-Heckman
- Departments of Integrative Biology and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Qiaz Hua
- Department of Ecology and Evolution, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Ryosuke Kimbara
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa 238-0225, Japan
| | - Mirela Król
- Adam Mickiewicz University in Poznań, Poznań 61-712, Poland
| | - Zdeněk Lajbner
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | - Nicolás Lichilín
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Filippo Macchi
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188 Abu Dhabi, United Arab Emirates
| | - Matthew J McCoy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Michele K Nishiguchi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Spencer V Nyholm
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Eve Otjacques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Division of Biosphere Sciences and Engineering, Carnegie Institution for Science, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Pedro Antonio Pérez-Ferrer
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 N. Lake Blvd., Merced, CA 95343, USA
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Judit R Pungor
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Thea F Rogers
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Joshua J C Rosenthal
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| | - Lisa Rouressol
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Noelle Rubas
- Department of Molecular Biosciences and Bioengineering, University of Hawaii Manoa, Honolulu, HI 96822, USA
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Catarina Pereira Santos
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Jeremea O Songco-Casey
- Biology Department: Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Ian Erik Stewart
- Neural Circuits and Behaviour Lab, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven 3000, Belgium
| | - Surangkana Tuanapaya
- Laboratory of genetics and applied breeding of molluscs, Fisheries College, Ocean University of China, Qingdao 266100, China
| | - Nidhi Vijayan
- Molecular and Cell Biology Department, University of Connecticut, Storrs, CT 06269, USA
| | | | - Lucia Zifcakova
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Kunigami District, Okinawa 904-0495, Japan
| | | | - Willem Weertman
- Friday Harbor Laboratory, University of Washington, Seattle, WA 98250, USA
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1010, Austria
| | - Caroline B Albertin
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA 02543-1015, USA
| |
Collapse
|
6
|
Jeena NS, Sajikumar KK, Rahuman S, Ragesh N, Koya KPS, Chinnadurai S, Sasikumar G, Mohamed KS. Insights into the divergent evolution of the oceanic squid Sthenoteuthis oualaniensis (Cephalopoda: Ommastrephidae) from the Indian Ocean. Integr Zool 2023; 18:924-948. [PMID: 36610009 DOI: 10.1111/1749-4877.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sthenoteuthis oualaniensis is known for its complex population structure with three major transoceanic forms (viz. middle-sized, dwarf, and giant forms) whose taxonomic status has been disputed for decades. This integrated taxonomic study examines these prevenient morphotypes gathered on cruises in the Indian Ocean to ascertain their status in the evolutionary history of the species. Molecular analyses employing mitochondrial (COI, ND2) and nuclear (H3) markers revealed four genetically distinct and novel lineages of the species in the Indian Ocean, representing three morphotypes from the Arabian Sea and one from the Southern Indian Ocean. The mitochondrial-based phylograms revealed two distinct clades in the species: "dwarf forms + giant form" and "middle-sized forms," which further branch into geographically structured evolutionary units. Species delimitation analyses recovered five distinct clades, namely, the Arabian Sea giant and dwarf forms, Equatorial, Eastern Typical, and Other Middle-sized forms, representing the consensus molecular operational taxonomic units. H3 being heterozygous could not resolve the phylogeny. Haplotype network and AMOVA analysis of mtDNA genes indicated explicit phylogeographic structuring of haplotypes, whereas these outputs and PCA results were incongruent with the morphological grouping. Phenetic features distinguishing the morphotypes were sometimes plastic and mismatched with the genotypes. The giant form was genetically close to the dwarf forms, contradicting the earlier notion that it descended from the middle-sized form. It may be assumed that the dwarf form evolved following sympatric speciation and adaptation to warm equatorial waters, while the focal features of the Western Arabian Sea guide toward allopatric speciation of the giant form.
Collapse
Affiliation(s)
- Nikarthil S Jeena
- ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, India
| | | | - Summaya Rahuman
- ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, India
| | - Nadakkal Ragesh
- ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, India
| | - K P Said Koya
- ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, India
| | - Shunmugavel Chinnadurai
- Fishing Technology Division, Veraval Research Centre of ICAR-Central Institute of Fisheries Technology, Matsyabhavan, Bhidia, Veraval, Gujarat, India
| | - Geetha Sasikumar
- ICAR-Central Marine Fisheries Research Institute, Kochi, Kerala, India
| | | |
Collapse
|
7
|
Rouressol L, Briseno J, Vijayan N, Chen GY, Ritschard EA, Sanchez G, Nyholm SV, McFall-Ngai MJ, Simakov O. Emergence of novel genomic regulatory regions associated with light-organ development in the bobtail squid. iScience 2023; 26:107091. [PMID: 37426346 PMCID: PMC10329180 DOI: 10.1016/j.isci.2023.107091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Light organs (LO) with symbiotic bioluminescent bacteria are hallmarks of many bobtail squid species. These organs possess structural and functional features to modulate light, analogous to those found in coleoid eyes. Previous studies identified four transcription factors and modulators (SIX, EYA, PAX6, DAC) associated with both eyes and light organ development, suggesting co-option of a highly conserved gene regulatory network. Using available topological, open chromatin, and transcriptomic data, we explore the regulatory landscape around the four transcription factors as well as genes associated with LO and shared LO/eye expression. This analysis revealed several closely associated and putatively co-regulated genes. Comparative genomic analyses identified distinct evolutionary origins of these putative regulatory associations, with the DAC locus showing a unique topological and evolutionarily recent organization. We discuss different scenarios of modifications to genome topology and how these changes may have contributed to the evolutionary emergence of the light organ.
Collapse
Affiliation(s)
- Lisa Rouressol
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - John Briseno
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Nidhi Vijayan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Grischa Y. Chen
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - Elena A. Ritschard
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, NA, Italy
| | - Gustavo Sanchez
- Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Margaret J. McFall-Ngai
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Pasadena, CA 91125, USA
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| |
Collapse
|
8
|
Ahuja N, Hwaun E, Pungor JR, Rafiq R, Nemes S, Sakmar T, Vogt MA, Grasse B, Diaz Quiroz J, Montague TG, Null RW, Dallis DN, Gavriouchkina D, Marletaz F, Abbo L, Rokhsar DS, Niell CM, Soltesz I, Albertin CB, Rosenthal JJC. Creation of an albino squid line by CRISPR-Cas9 and its application for in vivo functional imaging of neural activity. Curr Biol 2023:S0960-9822(23)00739-X. [PMID: 37343558 DOI: 10.1016/j.cub.2023.05.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function. One emerging cephalopod model, Euprymna berryi, produces large numbers of embryos that can be easily cultured throughout their life cycle and has a sequenced genome. As proof of principle, we used CRISPR-Cas9 in E. berryi to target the gene for tryptophan 2,3 dioxygenase (TDO), an enzyme required for the formation of ommochromes, the pigments present in the eyes and chromatophores of cephalopods. CRISPR-Cas9 ribonucleoproteins targeting tdo were injected into early embryos and then cultured to adulthood. Unexpectedly, the injected specimens were pigmented, despite verification of indels at the targeted sites by sequencing in injected animals (G0s). A homozygote knockout line for TDO, bred through multiple generations, was also pigmented. Surprisingly, a gene encoding indoleamine 2,3, dioxygenase (IDO), an enzyme that catalyzes the same reaction as TDO in vertebrates, was also present in E. berryi. Double knockouts of both tdo and ido with CRISPR-Cas9 produced an albino phenotype. We demonstrate the utility of these albinos for in vivo imaging of Ca2+ signaling in the brain using two-photon microscopy. These data show the feasibility of making gene knockout cephalopod lines that can be used for live imaging of neural activity in these behaviorally sophisticated organisms.
Collapse
Affiliation(s)
- Namrata Ahuja
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Ernie Hwaun
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Judit R Pungor
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ruhina Rafiq
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sal Nemes
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Taylor Sakmar
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Miranda A Vogt
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Bret Grasse
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Juan Diaz Quiroz
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Tessa G Montague
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ryan W Null
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Danielle N Dallis
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daria Gavriouchkina
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Ferdinand Marletaz
- Centre for Life's Origin & Evolution, Department of Ecology, Evolution & Environment, University College London, WC1E 6BT London, UK
| | - Lisa Abbo
- Marine Resources Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Ivan Soltesz
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Caroline B Albertin
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
9
|
Abalde S, Crocetta F, Tenorio MJ, D'Aniello S, Fassio G, Rodríguez-Flores PC, Uribe JE, M L Afonso C, Oliverio M, Zardoya R. Hidden species diversity and mito-nuclear discordance within the Mediterranean cone snail, Lautoconus ventricosus. Mol Phylogenet Evol 2023:107838. [PMID: 37286063 DOI: 10.1016/j.ympev.2023.107838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The Mediterranean cone snail, Lautoconus ventricosus, is currently considered a single species inhabiting the whole Mediterranean basin and the adjacent Atlantic coasts. Yet, no population genetic study has assessed its taxonomic status. Here, we collected 245 individuals from 75 localities throughout the Mediterranean Sea and used cox1 barcodes, complete mitochondrial genomes, and genome skims to test whether L. ventricosus represents a complex of cryptic species. The maximum likelihood phylogeny based on complete mitochondrial genomes recovered six main clades (hereby named blue, brown, green, orange, red, and violet) with sufficient sequence divergence to be considered putative species. On the other hand, phylogenomic analyses based on 437 nuclear genes only recovered four out of the six clades: blue and orange clades were thoroughly mixed and the brown one was not recovered. This mito-nuclear discordance revealed instances of incomplete lineage sorting and introgression, and may have caused important differences in the dating of main cladogenetic events. Species delimitation tests proposed the existence of at least three species: green, violet, and red+blue+orange (i.e., cyan). Green plus cyan (with sympatric distributions) and violet, had West and East Mediterranean distributions, respectively, mostly separated by the Siculo-Tunisian biogeographical barrier. Morphometric analyses of the shell using species hypotheses as factor and shell length as covariate showed that the discrimination power of the studied parameters was only 70.2%, reinforcing the cryptic nature of the uncovered species, and the importance of integrative taxonomic approaches considering morphology, ecology, biogeography, and mitochondrial and nuclear population genetic variation.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Fabio Crocetta
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Paula C Rodríguez-Flores
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge MA 02138, USA
| | - Juan E Uribe
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005 - 139 Faro, Portugal
| | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
10
|
Xavier JC, Golikov AV, Queirós JP, Perales-Raya C, Rosas-Luis R, Abreu J, Bello G, Bustamante P, Capaz JC, Dimkovikj VH, González AF, Guímaro H, Guerra-Marrero A, Gomes-Pereira JN, Hernández-Urcera J, Kubodera T, Laptikhovsky V, Lefkaditou E, Lishchenko F, Luna A, Liu B, Pierce GJ, Pissarra V, Reveillac E, Romanov EV, Rosa R, Roscian M, Rose-Mann L, Rouget I, Sánchez P, Sánchez-Márquez A, Seixas S, Souquet L, Varela J, Vidal EAG, Cherel Y. The significance of cephalopod beaks as a research tool: An update. Front Physiol 2022; 13:1038064. [PMID: 36467695 PMCID: PMC9716703 DOI: 10.3389/fphys.2022.1038064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960's, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.
Collapse
Affiliation(s)
- José C. Xavier
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | - José P. Queirós
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | | | - José Abreu
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Institut Universitaire de France (IUF), Paris, France
| | - Juan C. Capaz
- Center of Marine Sciences, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Valerie H. Dimkovikj
- Department of Marine Science, Coastal Carolina University, Conway, SC, United States
| | | | - Hugo Guímaro
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Airam Guerra-Marrero
- IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus de Tafira, Las Palmas de Gran Canaria, Spain
| | | | | | | | - Vladimir Laptikhovsky
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, United Kingdom
| | | | - Fedor Lishchenko
- Laboratory for Ecology and Morphology of Marine Invertebrates, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Amanda Luna
- Department of Ecology and Animal Biology, Faculty of Marine Sciences, University of Vigo, Vigo, Spain
| | - Bilin Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | | | - Vasco Pissarra
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Elodie Reveillac
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Evgeny V. Romanov
- Centre Technique de Recherche et de Valorisation des Milieux Aquatiques (CITEB), Le Port, Île de la Réunion, France
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Marjorie Roscian
- Centre de Recherche en Paléontologie-Paris (CR2P), CNRS, Sorbonne Université, Paris, France
| | - Lisa Rose-Mann
- University of South Florida, College of Marine Science, St. Petersburg, FL, United States
| | - Isabelle Rouget
- Centre de Recherche en Paléontologie-Paris (CR2P), CNRS, Sorbonne Université, Paris, France
| | - Pilar Sánchez
- Institut de Ciènces del Mar, CSIC, Psg. Marítim de la Barceloneta, Barcelona, Spain
| | | | - Sónia Seixas
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- Universidade Aberta, Rua Escola Politécnica, Lisboa, Portugal
| | - Louise Souquet
- Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, United Kingdom
| | - Jaquelino Varela
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Erica A. G. Vidal
- Center for Marine Studies—Federal University of Parana (UFPR), Pontal do Paraná, PR, Brazil
| | - Yves Cherel
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, Villiers-en-Bois, France
| |
Collapse
|
11
|
Drerup C. The behavioural ecology of Sepiolidae (Cephalopoda: Sepiolida): a review. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Christian Drerup
- Marine Behavioural Ecology Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Fernández-Álvarez FÁ, Taite M, Vecchione M, Villanueva R, Allcock AL. A phylogenomic look into the systematics of oceanic squids (order Oegopsida). Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Abstract
Oceanic squids of the order Oegopsida are ecologically and economically important members of the pelagic environment. They are the most diverse group of cephalopods, with 24 families that are divergent morphologically. Despite their importance, knowledge of phylogenetic relationships among oegopsids is less than that among neritic cephalopods. Here, we provide the complete mitogenomes and the nuclear 18S and 28S ribosomal genes for 35 selected oceanic squids, which were generated using genome skimming. We performed maximum likelihood and Bayesian inference analyses that included 21 of the 24 oegopsid families. In our analyses, the architeuthid, chiroteuthid and enoploteuthid family groups, which have been proposed previously based on morphological and natural history characteristics, were retrieved as monophyletic. The morphologically divergent Cranchiidae formed a well-supported clade with families Ommastrephidae and Thysanoteuthidae, with a unique mitochondrial gene order. The family Lycoteuthidae was revealed as paraphyletic and contained Pyroteuthidae. Thus, the two lycoteuthid subfamilies are herein elevated to family level, increasing the number of oegopsid squid families to 25. In order to describe the diversity and evolutionary trends of oegopsid squids accurately, the superfamilies Architeuthoidea, Chiroteuthoidea, Cranchioidea and Enoploteuthoidea are resurrected from the literature, and the superfamilies Cycloteuthoidea, Octopoteuthoidea and Pholidoteuthoidea are proposed. The phylogenetic positions of Gonatidae, Histioteuthidae and Onychoteuthidae were not stable in our phylogenetic analyses and are not assigned to a superfamily. This study supports the utility of genome skimming to solve the phylogenetic relationships of oceanic squids.
Collapse
Affiliation(s)
| | - Morag Taite
- Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, UK
| | - Michael Vecchione
- NOAA/NMFS National Systematics Laboratory, National Museum of Natural History, Washington, DC, USA
| | - Roger Villanueva
- Institut de Ciències del Mar (CSIC), Passeig Marítim 37–49, E-08003 Barcelona, Spain
| | - A Louise Allcock
- Ryan Institute and School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
13
|
Reid AL. Two new species of Iridoteuthis (Cephalopoda: Sepiolidae: Heteroteuthinae) from the southwest Pacific, with a redescription of Stoloteuthis maoria (Dell, 1959). Zootaxa 2021; 5005:503-537. [PMID: 34810600 DOI: 10.11646/zootaxa.5005.4.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/04/2022]
Abstract
Examination of the Stoloteuthis maoria (Dell, 1959) type specimens held in the Museum of New Zealand, Te Papa Tongarewa revealed that the two female paratypes were not conspecific with the S. maoria holotype male and belong to the genus Iridoteuthis Naef, 1912. Based on this finding, Stoloteuthis maoria is redescribed here to properly define the male and female characters. Its occurrence in Australian waters is formally recognised for the first time; the species was known previously only from New Zealand. The Iridoteuthis taxon was found to be new and is described as I. merlini, n. sp. Like S. maoria, this new species occurs in New Zealand and southern Australia. A second new Iridoteuthis from New Zealand was also discovered among the Te Papa collection and is described here as I. lophia, n. sp. The sucker pedicels in males of this latter species are highly and uniquely modified.
Collapse
Affiliation(s)
- Amanda L Reid
- Australian Museum Research Institute, 1 William Street, Sydney NSW 2010, Australia. .
| |
Collapse
|