1
|
Liu Z, Liu Y, Yu Z, Tan C, Pek N, O'Donnell A, Wu A, Glass I, Winlaw DS, Guo M, Spence JR, Chen YW, Yutzey KE, Miao Y, Gu M. APOE-NOTCH axis governs elastogenesis during human cardiac valve remodeling. NATURE CARDIOVASCULAR RESEARCH 2024; 3:933-950. [PMID: 39196035 DOI: 10.1038/s44161-024-00510-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/19/2024] [Indexed: 08/29/2024]
Abstract
Valve remodeling is a process involving extracellular matrix organization and elongation of valve leaflets. Here, through single-cell RNA sequencing of human fetal valves, we identified an elastin-producing valve interstitial cell (VIC) subtype (apolipoprotein E (APOE)+, elastin-VICs) spatially located underneath valve endothelial cells (VECs) sensing unidirectional flow. APOE knockdown in fetal VICs resulted in profound elastogenesis defects. In valves with pulmonary stenosis (PS), we observed elastin fragmentation and decreased expression of APOE along with other genes regulating elastogenesis. Cell-cell interaction analysis revealed that jagged 1 (JAG1) from unidirectional VECs activates elastogenesis in elastin-VICs through NOTCH2. Similar observations were made in VICs cocultured with VECs under unidirectional flow. Notably, a drastic reduction of JAG1-NOTCH2 was also observed in PS valves. Lastly, we found that APOE controls JAG1-induced NOTCH activation and elastogenesis in VICs through the extracellular signal-regulated kinase pathway. Our study suggests important roles of both APOE and NOTCH in regulating elastogenesis during human valve remodeling.
Collapse
Affiliation(s)
- Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Yu Liu
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Cheng Tan
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Nicole Pek
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Anna O'Donnell
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA, USA
| | - David S Winlaw
- Cardiothoracic Surgery, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Surgery, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
| | - Ya-Wen Chen
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine E Yutzey
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yifei Miao
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
- Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Majid QA, Ghimire BR, Merkely B, Randi AM, Harding SE, Talman V, Földes G. Generation and characterisation of scalable and stable human pluripotent stem cell-derived microvascular-like endothelial cells for cardiac applications. Angiogenesis 2024; 27:561-582. [PMID: 38775849 PMCID: PMC11303486 DOI: 10.1007/s10456-024-09929-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 08/07/2024]
Abstract
Coronary microvascular disease (CMD) and its progression towards major adverse coronary events pose a significant health challenge. Accurate in vitro investigation of CMD requires a robust cell model that faithfully represents the cells within the cardiac microvasculature. Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) offer great potential; however, they are traditionally derived via differentiation protocols that are not readily scalable and are not specified towards the microvasculature. Here, we report the development and comprehensive characterisation of a scalable 3D protocol enabling the generation of phenotypically stable cardiac hPSC-microvascular-like ECs (hPSC-CMVECs) and cardiac pericyte-like cells. These were derived by growing vascular organoids within 3D stirred tank bioreactors and subjecting the emerging 3D hPSC-ECs to high-concentration VEGF-A treatment (3DV). Not only did this promote phenotypic stability of the 3DV hPSC-ECs; single cell-RNA sequencing (scRNA-seq) revealed the pronounced expression of cardiac endothelial- and microvascular-associated genes. Further, the generated mural cells attained from the vascular organoid exhibited markers characteristic of cardiac pericytes. Thus, we present a suitable cell model for investigating the cardiac microvasculature as well as the endothelial-dependent and -independent mechanisms of CMD. Moreover, owing to their phenotypic stability, cardiac specificity, and high angiogenic potential, the cells described within would also be well suited for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Qasim A Majid
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary
| | - Anna M Randi
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Virpi Talman
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gábor Földes
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Heart and Vascular Center, Semmelweis University, 68 Varosmajor Street, Budapest, H1122, Hungary.
| |
Collapse
|
3
|
Shen M, Wu JC. Empowering Valvular Heart Disease Research With Stem Cell-Derived Valve Cells. Circulation 2024; 149:1457-1460. [PMID: 38683900 DOI: 10.1161/circulationaha.124.068656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute (M.S., J.C.W.), Stanford University, CA
- Departments of Medicine, Division of Cardiology (M.S., J.C.W.), Stanford University, CA
| | - Joseph C Wu
- Stanford Cardiovascular Institute (M.S., J.C.W.), Stanford University, CA
- Departments of Medicine, Division of Cardiology (M.S., J.C.W.), Stanford University, CA
- Radiology (J.C.W.), Stanford University, CA
| |
Collapse
|
4
|
Cai Z, Zhu M, Xu L, Wang Y, Xu Y, Yim WY, Cao H, Guo R, Qiu X, He X, Shi J, Qiao W, Dong N. Directed Differentiation of Human Induced Pluripotent Stem Cells to Heart Valve Cells. Circulation 2024; 149:1435-1456. [PMID: 38357822 PMCID: PMC11062615 DOI: 10.1161/circulationaha.123.065143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND A main obstacle in current valvular heart disease research is the lack of high-quality homogeneous functional heart valve cells. Human induced pluripotent stem cells (hiPSCs)-derived heart valve cells may help with this dilemma. However, there are no well-established protocols to induce hiPSCs to differentiate into functional heart valve cells, and the networks that mediate the differentiation have not been fully elucidated. METHODS To generate heart valve cells from hiPSCs, we sequentially activated the Wnt, BMP4, VEGF (vascular endothelial growth factor), and NFATc1 signaling pathways using CHIR-99021, BMP4, VEGF-165, and forskolin, respectively. The transcriptional and functional similarity of hiPSC-derived heart valve cells compared with primary heart valve cells were characterized. Longitudinal single-cell RNA sequencing was used to uncover the trajectory, switch genes, pathways, and transcription factors of the differentiation. RESULTS An efficient protocol was developed to induce hiPSCs to differentiate into functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells. After 6-day differentiation and CD144 magnetic bead sorting, ≈70% CD144+ cells and 30% CD144- cells were obtained. On the basis of single-cell RNA sequencing data, the CD144+ cells and CD144- cells were found to be highly similar to primary heart valve endothelial cells and primary heart valve interstitial cells in gene expression profile. Furthermore, CD144+ cells had the typical function of primary heart valve endothelial cells, including tube formation, uptake of low-density lipoprotein, generation of endothelial nitric oxide synthase, and response to shear stress. Meanwhile, CD144- cells could secret collagen and matrix metalloproteinases, and differentiate into osteogenic or adipogenic lineages like primary heart valve interstitial cells. Therefore, we identified CD144+ cells and CD144- cells as hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells, respectively. Using single-cell RNA sequencing analysis, we demonstrated that the trajectory of heart valve cell differentiation was consistent with embryonic valve development. We identified the main switch genes (NOTCH1, HEY1, and MEF2C), signaling pathways (TGF-β, Wnt, and NOTCH), and transcription factors (MSX1, SP5, and MECOM) that mediated the differentiation. Finally, we found that hiPSC-derived valve interstitial-like cells might derive from hiPSC-derived valve endothelial-like cells undergoing endocardial-mesenchymal transition. CONCLUSIONS In summary, this is the first study to report an efficient strategy to generate functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells from hiPSCs, as well as to elucidate the differentiation trajectory and transcriptional dynamics of hiPSCs differentiated into heart valve cells.
Collapse
Affiliation(s)
- Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China (Z.C.)
| | - Miaomiao Zhu
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China (Z.C.)
- Institute of Maternal and Children Health, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji medical College, Huazhong University of Science & Technology, Hubei, China (M.Z.)
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Yue Wang
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China (Y.W.)
| | - Yin Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Wai Yen Yim
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Ruikang Guo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Xiang Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (M.Z., X.H.)
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.C., L.X., Y.X., W.Y.Y., H.C., R.G., X.Q, J.S., W.Q., N.D.)
| |
Collapse
|
5
|
Xie M, Cao H, Qiao W, Yan G, Qian X, Zhang Y, Xu L, Wen S, Shi J, Cheng M, Dong N. Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells. Acta Biomater 2024; 178:181-195. [PMID: 38447808 DOI: 10.1016/j.actbio.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.
Collapse
Affiliation(s)
- Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yan
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Zhu Z, Liu Z, Zhang D, Li L, Pei J, Cai L. Models for calcific aortic valve disease in vivo and in vitro. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:6. [PMID: 38424219 PMCID: PMC10904700 DOI: 10.1186/s13619-024-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.
Collapse
Affiliation(s)
- Zijin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Zhirong Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Disease, Capital Medical University, Beijing, 100069, China.
| | - Lin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
7
|
Jiang KL, Jia YB, Liu XJ, Jia QL, Guo LK, Wang XX, Yang KM, Wu CH, Liang BB, Ling JH. Bibliometrics analysis based on the Web of Science: Current trends and perspective of gastric organoid during 2010-2023. World J Gastroenterol 2024; 30:969-983. [PMID: 38516239 PMCID: PMC10950634 DOI: 10.3748/wjg.v30.i8.969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Three-dimensional organoid culture systems have been established as a robust tool for elucidating mechanisms and performing drug efficacy testing. The use of gastric organoid models holds significant promise for advancing personalized medicine research. However, a comprehensive bibliometric review of this bur-geoning field has not yet been published. AIM To analyze and understand the development, impact, and direction of gastric organoid research using bibliometric methods using data from the Web of Science Core Collection (WoSCC) database. METHODS This analysis encompassed literature pertaining to gastric organoids published between 2010 and 2023, as indexed in the WoSCC. CiteSpace and VOSviewer were used to depict network maps illustrating collaborations among authors, institutions and keywords related to gastric organoid. Citation, co-citation, and burst analysis methodologies were applied to assess the impact and progress of research. RESULTS A total of 656 relevant studies were evaluated. The majority of research was published in gastroenterology-focused journals. Globally, Yana Zavros, Hans Clevers, James M Wells, Sina Bartfeld, and Chen Zheng were the 5 most productive authors, while Hans Clevers, Huch Meritxell, Johan H van Es, Marc Van de Wetering, and Sato Toshiro were the foremost influential scientists in this area. Institutions from the University Medical Center Utrecht, Netherlands Institute for Developmental Biology (Utrecht), and University of Cincinnati (Cincinnati, OH, United States) made the most significant contributions. Currently, gastric organoids are used mainly in studies investigating gastric cancer (GC), Helicobacter pylori-infective gastritis, with a focus on the mechanisms of GC, and drug screening tests. CONCLUSION Key focus areas of research using gastric organoids include unraveling disease mechanisms and enhancing drug screening techniques. Major contributions from renowned academic institutions highlight this field's dynamic growth.
Collapse
Affiliation(s)
- Kai-Lin Jiang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
- Laboratory of Cancer Biology, University of Oxford, Oxford OX37DQ, United Kingdom
| | - Yue-Bo Jia
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xue-Jiao Liu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Qing-Ling Jia
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Li-Kun Guo
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Xiang-Xiang Wang
- School of Traditional Chinese Medicine, Shanghai University of Chinese Medicine, Shanghai 200021, China
| | - Ke-Ming Yang
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Chen-Heng Wu
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Bei-Bei Liang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiang-Hong Ling
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
8
|
Liu CZ, Prasad A, Jadhav B, Liu Y, Gu M, Sharp AJ, Gelb BD. Feeder-free generation and characterization of endocardial and cardiac valve cells from human pluripotent stem cells. iScience 2024; 27:108599. [PMID: 38170020 PMCID: PMC10758960 DOI: 10.1016/j.isci.2023.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Valvular heart disease presents a significant health burden, yet advancements in valve biology and therapeutics have been hindered by the lack of accessibility to human valve cells. In this study, we have developed a scalable and feeder-free method to differentiate human induced pluripotent stem cells (iPSCs) into endocardial cells, which are transcriptionally and phenotypically distinct from vascular endothelial cells. These endocardial cells can be challenged to undergo endothelial-to-mesenchymal transition (EndMT), after which two distinct populations emerge-one population undergoes EndMT to become valvular interstitial cells (VICs), while the other population reinforces their endothelial identity to become valvular endothelial cells (VECs). We then characterized these populations through bulk RNA-seq transcriptome analyses and compared our VIC and VEC populations to pseudobulk data generated from normal valve tissue of a 15-week-old human fetus. By increasing the accessibility to these cell populations, we aim to accelerate discoveries for cardiac valve biology and disease.
Collapse
Affiliation(s)
- Clifford Z. Liu
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aditi Prasad
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bharati Jadhav
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Liu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mingxia Gu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA, USA
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew J. Sharp
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Volmert B, Kiselev A, Juhong A, Wang F, Riggs A, Kostina A, O'Hern C, Muniyandi P, Wasserman A, Huang A, Lewis-Israeli Y, Panda V, Bhattacharya S, Lauver A, Park S, Qiu Z, Zhou C, Aguirre A. A patterned human primitive heart organoid model generated by pluripotent stem cell self-organization. Nat Commun 2023; 14:8245. [PMID: 38086920 PMCID: PMC10716495 DOI: 10.1038/s41467-023-43999-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Pluripotent stem cell-derived organoids can recapitulate significant features of organ development in vitro. We hypothesized that creating human heart organoids by mimicking aspects of in utero gestation (e.g., addition of metabolic and hormonal factors) would lead to higher physiological and anatomical relevance. We find that heart organoids produced using this self-organization-driven developmental induction strategy are remarkably similar transcriptionally and morphologically to age-matched human embryonic hearts. We also show that they recapitulate several aspects of cardiac development, including large atrial and ventricular chambers, proepicardial organ formation, and retinoic acid-mediated anterior-posterior patterning, mimicking the developmental processes found in the post-heart tube stage primitive heart. Moreover, we provide proof-of-concept demonstration of the value of this system for disease modeling by exploring the effects of ondansetron, a drug administered to pregnant women and associated with congenital heart defects. These findings constitute a significant technical advance for synthetic heart development and provide a powerful tool for cardiac disease modeling.
Collapse
Affiliation(s)
- Brett Volmert
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Artem Kiselev
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Aniwat Juhong
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Ashlin Riggs
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aleksandra Kostina
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Colin O'Hern
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Priyadharshni Muniyandi
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron Wasserman
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda Huang
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan Lewis-Israeli
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Vishal Panda
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI, USA
| | - Adam Lauver
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sangbum Park
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhen Qiu
- Institute for Quantitative Health Science and Engineering, Division of Biomedical Devices, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering, Division of Developmental and Stem Cell Biology, Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Datta S, Cao W, Skillman M, Wu M. Hypoplastic Left Heart Syndrome: Signaling & Molecular Perspectives, and the Road Ahead. Int J Mol Sci 2023; 24:15249. [PMID: 37894928 PMCID: PMC10607600 DOI: 10.3390/ijms242015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a lethal congenital heart disease (CHD) affecting 8-25 per 100,000 neonates globally. Clinical interventions, primarily surgical, have improved the life expectancy of the affected subjects substantially over the years. However, the etiological basis of HLHS remains fundamentally unclear to this day. Based upon the existing paradigm of studies, HLHS exhibits a multifactorial mode of etiology mediated by a complicated course of genetic and signaling cascade. This review presents a detailed outline of the HLHS phenotype, the prenatal and postnatal risks, and the signaling and molecular mechanisms driving HLHS pathogenesis. The review discusses the potential limitations and future perspectives of studies that can be undertaken to address the existing scientific gap. Mechanistic studies to explain HLHS etiology will potentially elucidate novel druggable targets and empower the development of therapeutic regimens against HLHS in the future.
Collapse
Affiliation(s)
| | | | | | - Mingfu Wu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (S.D.); (W.C.); (M.S.)
| |
Collapse
|
11
|
Salerno N, Panuccio G, Sabatino J, Leo I, Torella M, Sorrentino S, De Rosa S, Torella D. Cellular and Molecular Mechanisms Underlying Tricuspid Valve Development and Disease. J Clin Med 2023; 12:jcm12103454. [PMID: 37240563 DOI: 10.3390/jcm12103454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tricuspid valve (TV) disease is highly prevalent in the general population. For ages considered "the forgotten valve" because of the predominant interest in left-side valve disease, the TV has now received significant attention in recent years, with significant improvement both in diagnosis and in management of tricuspid disease. TV is characterized by complex anatomy, physiology, and pathophysiology, in which the right ventricle plays a fundamental role. Comprehensive knowledge of molecular and cellular mechanisms underlying TV development, TV disease, and tricuspid regurgitation-related right-ventricle cardiomyopathy is necessary to enhance TV disease understanding to improve the ability to risk stratify TR patients, while also predicting valve dysfunction and/or response to tricuspid regurgitation treatment. Scientific efforts are still needed to eventually decipher the complete picture describing the etiopathogenesis of TV and TV-associated cardiomyopathy, and future advances to this aim may be achieved by combining emerging diagnostic imaging modalities with molecular and cellular studies. Overall, basic science studies could help to streamline a new coherent hypothesis underlying both the development of TV during embryogenesis and TV-associated disease and its complications in adult life, providing the conceptual basis for the ultimate and innovative field of valve repair and regeneration using tissue-engineered heart valves.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Pan Y, Jiang Z, Ye Y, Zhu D, Li N, Yang G, Wang Y. Role and Mechanism of BMP4 in Regenerative Medicine and Tissue Engineering. Ann Biomed Eng 2023:10.1007/s10439-023-03173-6. [PMID: 37014581 DOI: 10.1007/s10439-023-03173-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/21/2023] [Indexed: 04/05/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) is emerging as a promising cytokine for regenerative medicine and tissue engineering. BMP4 has been shown to promote the regeneration of teeth, periodontal tissue, bone, cartilage, the thymus, hair, neurons, nucleus pulposus, and adipose tissue, as well as the formation of skeletal myotubes and vessels. BMP4 can also contribute to the formation of tissues in the heart, lung, and kidney. However, there are certain deficiencies, including the insufficiency of the mechanism of BMP4 in some fields and an appropriate carrier of BMP4 for clinical use. There has also been a lack of in vivo experiments and orthotopic transplantation studies in some fields. BMP4 has great distance from the clinical application. Therefore, there are many BMP4-related studies waiting to be explored. This review mainly discusses the effects, mechanisms, and applications of BMP4 in regenerative medicine and tissue engineering over the last 10 years in various domains and possible improvements. BMP4 has shown great potential in regenerative medicine and tissue engineering. The research of BMP4 has broad development space and great value.
Collapse
Affiliation(s)
- Yiqi Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yuer Ye
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
| |
Collapse
|
13
|
Floy ME, Shabnam F, Givens SE, Patil VA, Ding Y, Li G, Roy S, Raval AN, Schmuck EG, Masters KS, Ogle BM, Palecek SP. Identifying molecular and functional similarities and differences between human primary cardiac valve interstitial cells and ventricular fibroblasts. Front Bioeng Biotechnol 2023; 11:1102487. [PMID: 37051268 PMCID: PMC10083504 DOI: 10.3389/fbioe.2023.1102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Fibroblasts are mesenchymal cells that predominantly produce and maintain the extracellular matrix (ECM) and are critical mediators of injury response. In the heart, valve interstitial cells (VICs) are a population of fibroblasts responsible for maintaining the structure and function of heart valves. These cells are regionally distinct from myocardial fibroblasts, including left ventricular cardiac fibroblasts (LVCFBs), which are located in the myocardium in close vicinity to cardiomyocytes. Here, we hypothesize these subpopulations of fibroblasts are transcriptionally and functionally distinct. Methods: To compare these fibroblast subtypes, we collected patient-matched samples of human primary VICs and LVCFBs and performed bulk RNA sequencing, extracellular matrix profiling, and functional contraction and calcification assays. Results: Here, we identified combined expression of SUSD2 on a protein-level, and MEOX2, EBF2 and RHOU at a transcript-level to be differentially expressed in VICs compared to LVCFBs and demonstrated that expression of these genes can be used to distinguish between the two subpopulations. We found both VICs and LVCFBs expressed similar activation and contraction potential in vitro, but VICs showed an increase in ALP activity when activated and higher expression in matricellular proteins, including cartilage oligomeric protein and alpha 2-Heremans-Schmid glycoprotein, both of which are reported to be linked to calcification, compared to LVCFBs. Conclusion: These comparative transcriptomic, proteomic, and functional studies shed novel insight into the similarities and differences between valve interstitial cells and left ventricular cardiac fibroblasts and will aid in understanding region-specific cardiac pathologies, distinguishing between primary subpopulations of fibroblasts, and generating region-specific stem-cell derived cardiac fibroblasts.
Collapse
Affiliation(s)
- Martha E. Floy
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Fathima Shabnam
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Sophie E. Givens
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Vaidehi A. Patil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Grace Li
- Department of Chemical Engineering, University of Florida, Gainesville, FL, United States
| | - Sushmita Roy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Amish N. Raval
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Eric G. Schmuck
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Yu Z, Liu Z, Ravichandran V, Lami B, Gu M. Endocardium in Hypoplastic Left Heart Syndrome: Implications from In Vitro Study. J Cardiovasc Dev Dis 2022; 9:jcdd9120442. [PMID: 36547439 PMCID: PMC9786329 DOI: 10.3390/jcdd9120442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Endocardium lines the inner layer of the heart ventricle and serves as the source of valve endothelial cells and interstitial cells. Previously, endocardium-associated abnormalities in hypoplastic left heart syndrome (HLHS) have been reported, including endocardial fibroelastosis (EFE) and mitral and aortic valve malformation. However, few mechanistic studies have investigated the molecular pathological changes in endocardial cells. Recently, the emergence of a powerful in vitro system-induced pluripotent stem cells (iPSCs)-was applied to study various genetic diseases, including HLHS. This review summarized current in vitro studies in understanding the endocardial pathology in HLHS, emphasizing new findings of the cellular phenotypes and underlying molecular mechanisms. Lastly, a future perspective is provided regarding the better recapitulation of endocardial phenotypes in a dish.
Collapse
Affiliation(s)
- Zhiyun Yu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ziyi Liu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Vidhya Ravichandran
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bonny Lami
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mingxia Gu
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Center for Stem Cell and Organoid Medicine, CuSTOM, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence:
| |
Collapse
|
15
|
Hall B, Alonzo M, Texter K, Garg V, Zhao MT. Probing single ventricle heart defects with patient-derived induced pluripotent stem cells and emerging technologies. Birth Defects Res 2022; 114:959-971. [PMID: 35199491 PMCID: PMC9586491 DOI: 10.1002/bdr2.1989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/23/2022]
Abstract
Single ventricle heart defects (SVHDs) are a severe type of congenital heart disease with poorly understood pathogenic mechanisms. New research using patient-specific induced pluripotent stem cells (iPSCs) as a cellular model is beginning to uncover genetic and cellular etiologies of SVHDs. Hypoplastic left heart syndrome (HLHS) is a type of SVHD that is characterized by an underdeveloped left ventricle and other malformations in the left side of the heart. Hypoplastic right heart syndrome (HRHS), the second type of SVHD, is characterized by an underdeveloped right heart, including malformed tricuspid and pulmonary valves. Despite a noticeable lack of research on SVHD, emerging technologies offer a promising future to further probe the genetic and cellular mechanisms of these diseases. Pediatric cardiovascular research is at the dawn of a new era in terms of what can be discovered with patient-specific iPSCs in conjunction with other technologies (e.g., organoids, single-cell genomics, CRISPR/Cas9 genome editing). In this review, we present recent approaches and findings utilizing patient-specific iPSCs to identify cellular mechanisms responsible for improper cardiac organogenesis in HLHS and HRHS.
Collapse
Affiliation(s)
- Bailey Hall
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
| | - Matthew Alonzo
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
| | - Karen Texter
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, 43215, USA
- The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, 43210, USA
| |
Collapse
|
16
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
17
|
Cao H, Zhou Q, Liu C, Zhang Y, Xie M, Qiao W, Dong N. Substrate stiffness regulates differentiation of induced pluripotent stem cells into heart valve endothelial cells. Acta Biomater 2022; 143:115-126. [PMID: 35235867 DOI: 10.1016/j.actbio.2022.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022]
Abstract
Substrate stiffness has been indicated as a primary determinant for stem cell fate, being capable of influencing motility, proliferation, and differentiation. Although the effects of stiffness on cardiac differentiation of human-induced pluripotent stem cells (h-iPSCs) have been reported, whether stiffness of polydimethylsiloxane-based substrates could enhance differentiation of h-iPSCs toward heart valve endothelial cells lineage (VECs) or not remains unknown. Herein, we modulated the substrate stiffness to evaluate its effect on the differentiation of h-iPSCs into valve endothelial-like cells (h-iVECs) in vitro and determine the suitable stiffness. The results revealed that VECs-related genes (PECAM1, CDH5, NFATC1, etc.) were significantly increased in h-iVECs obtained from the three substrates compared with h-iPSCs. Gene expression levels and differentiation efficiency were higher in the medium group than in the stiff and soft groups. An increase in substrate stiffness to 2.8 GPa decreased the efficiency of h-iPSCs differentiation into h-iVECs and downregulated VECs specific genes. Through mRNA sequencing, we determined the key genetic markers involved in stiffness guiding the differentiation of cardiac progenitor cells into h-iVECs. Unsupervised hierarchical clustering showed that medium stiffness were more suitable for the differentiation of h-iPSCs into h-iVECs in vitro. Moreover, this process is regulated by the WNT/Calcineurin signaling pathway. Overall, this study demonstrates how stiffness can be used to enhance the h-iVECs differentiation of iPSCs and emphasizes the importance of using substrate stiffness to accomplish a more specific and mature differentiation of h-iVECs for future therapeutic and tissue engineering valve applications. STATEMENT OF SIGNIFICANCE: Several studies have examined the stiffness-induced cell fate from pluripotent stem cells during the stage of mesoderm cell differentiation. This is the first research that rigorously examines the effect of substrate stiffness on human valve endothelial-like cells differentiation from cardiac progenitor cells. We found that the medium stiffness can increase the differentiation efficiency of h-iVECs from 40% to about 60%, and this process was regulated by the WNT/CaN signaling pathway through the activation of WNT5a. Substrate stiffness not only increases the differentiation efficiency of h-iVECs, but also improves its cellular functions such as low-density lipoprotein uptake and NO release. This study emphasizes the importance of using substrate stiffness to accomplish a more specific and mature differentiation of h-iVECs.
Collapse
|
18
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|