1
|
Goyani S, Shukla S, Jadiya P, Tomar D. Calcium signaling in mitochondrial intermembrane space. Biochem Soc Trans 2024; 52:2215-2229. [PMID: 39392359 DOI: 10.1042/bst20240319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The mitochondrial intermembrane space (IMS) is a highly protected compartment, second only to the matrix. It is a crucial bridge, coordinating mitochondrial activities with cellular processes such as metabolites, protein, lipid, and ion exchange. This regulation influences signaling pathways for metabolic activities and cellular homeostasis. The IMS harbors various proteins critical for initiating apoptotic cascades and regulating reactive oxygen species production by controlling the respiratory chain. Calcium (Ca2+), a key intracellular secondary messenger, enter the mitochondrial matrix via the IMS, regulating mitochondrial bioenergetics, ATP production, modulating cell death pathways. IMS acts as a regulatory site for Ca2+ entry due to the presence of different Ca2+ sensors such as MICUs, solute carriers (SLCs); ion exchangers (LETM1/SCaMCs); S100A1, mitochondrial glycerol-3-phosphate dehydrogenase, and EFHD1, each with unique Ca2+ binding motifs and spatial localizations. This review primarily emphasizes the role of these IMS-localized Ca2+ sensors concerning their spatial localization, mechanism, and molecular functions. Additionally, we discuss how these sensors contribute to the progression and pathogenesis of various human health conditions and diseases.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
2
|
Hayasaka K. Pathogenesis and Management of Citrin Deficiency. Intern Med 2024; 63:1977-1986. [PMID: 37952953 PMCID: PMC11309867 DOI: 10.2169/internalmedicine.2595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 11/14/2023] Open
Abstract
Citrin deficiency (CD) is a hereditary disorder caused by SLC25A13 mutations that manifests as neonatal intrahepatic cholestasis caused by CD (NICCD), failure to thrive and dyslipidemia caused by CD (FTTDCD), and adult-onset type 2 citrullinemia (CTLN2). Citrin, an aspartate-glutamate carrier primarily expressed in the liver, is a component of the malate-aspartate shuttle, which is essential for glycolysis. Citrin-deficient hepatocytes have primary defects in glycolysis and de novo lipogenesis and exhibit secondarily downregulated PPARα, leading to impaired β-oxidation. They are unable to utilize glucose and free fatty acids as energy sources, resulting in energy deficiencies. Medium-chain triglyceride (MCT) supplements are effective for treating CD by providing energy to hepatocytes, increasing lipogenesis, and activating the malate-citrate shuttle. However, patients with CD often exhibit growth impairment and irreversible brain and/or liver damage. To improve the quality of life and prevent irreversible damage, MCT supplementation with a diet containing minimal carbohydrates is recommended promptly after the diagnosis.
Collapse
Affiliation(s)
- Kiyoshi Hayasaka
- Department of Pediatrics, Yamagata University School of Medicine, Japan
| |
Collapse
|
3
|
Gottschalk B, Koshenov Z, Malli R, Graier WF. Implications of mitochondrial membrane potential gradients on signaling and ATP production analyzed by correlative multi-parameter microscopy. Sci Rep 2024; 14:14784. [PMID: 38926476 PMCID: PMC11208492 DOI: 10.1038/s41598-024-65595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The complex architecture and biochemistry of the inner mitochondrial membrane generate ultra-structures with different phospholipid and protein compositions, shapes, characteristics, and functions. The crista junction (CJ) serves as an important barrier separating the cristae (CM) and inner boundary membranes (IBM). Thereby CJ regulates the movement of ions and ensures distinct electrical potentials across the cristae (ΔΨC) and inner boundary (ΔΨIBM) membranes. We have developed a robust and flexible approach to visualize the CJ permeability with super-resolution microscopy as a readout of local mitochondrial membrane potential (ΔΨmito) fluctuations. This method involves analyzing the distribution of TMRM fluorescence intensity in a model that is restricted to the mitochondrial geometry. We show that mitochondrial Ca2+ elevation hyperpolarizes the CM most likely caused by Ca2+ sensitive increase of mitochondrial tricarboxylic acid cycle (TCA) and subsequent oxidative phosphorylation (OXPHOS) activity in the cristae. Dynamic multi-parameter correlation measurements of spatial mitochondrial membrane potential gradients, ATP levels, and mitochondrial morphometrics revealed a CJ-based membrane potential overflow valve mechanism protecting the mitochondrial integrity during excessive cristae hyperpolarization.
Collapse
Affiliation(s)
- Benjamin Gottschalk
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/4, 8010, Graz, Austria.
- BioTechMed, Graz, Austria.
| |
Collapse
|
4
|
Leung HH, Mansour C, Rousseau M, Nakhla A, Kiselyov K, Venkatachalam K, Wong CO. Drosophila tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in Glia. Glia 2024; 72:433-451. [PMID: 37870193 PMCID: PMC10842981 DOI: 10.1002/glia.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.
Collapse
Affiliation(s)
- Ho Hang Leung
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Present address: South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Christina Mansour
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Morgan Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Anwar Nakhla
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
5
|
González-Moreno L, Santamaría-Cano A, Paradela A, Martínez-Chantar ML, Martín MÁ, Pérez-Carreras M, García-Picazo A, Vázquez J, Calvo E, González-Aseguinolaza G, Saheki T, del Arco A, Satrústegui J, Contreras L. Exogenous aralar/slc25a12 can replace citrin/slc25a13 as malate aspartate shuttle component in liver. Mol Genet Metab Rep 2023; 35:100967. [PMID: 36967723 PMCID: PMC10031141 DOI: 10.1016/j.ymgmr.2023.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The deficiency of CITRIN, the liver mitochondrial aspartate-glutamate carrier (AGC), is the cause of four human clinical phenotypes, neonatal intrahepatic cholestasis caused by CITRIN deficiency (NICCD), silent period, failure to thrive and dyslipidemia caused by CITRIN deficiency (FTTDCD), and citrullinemia type II (CTLN2). Clinical symptoms can be traced back to disruption of the malate-aspartate shuttle due to the lack of citrin. A potential therapy for this condition is the expression of aralar, the AGC present in brain, to replace citrin. To explore this possibility we have first verified that the NADH/NAD+ ratio increases in hepatocytes from citrin(-/-) mice, and then found that exogenous aralar expression reversed the increase in NADH/NAD+ observed in these cells. Liver mitochondria from citrin (-/-) mice expressing liver specific transgenic aralar had a small (~ 4-6 nmoles x mg prot-1 x min-1) but consistent increase in malate aspartate shuttle (MAS) activity over that of citrin(-/-) mice. These results support the functional replacement between AGCs in the liver. To explore the significance of AGC replacement in human therapy we studied the relative levels of citrin and aralar in mouse and human liver through absolute quantification proteomics. We report that mouse liver has relatively high aralar levels (citrin/aralar molar ratio of 7.8), whereas human liver is virtually devoid of aralar (CITRIN/ARALAR ratio of 397). This large difference in endogenous aralar levels partly explains the high residual MAS activity in liver of citrin(-/-) mice and why they fail to recapitulate the human disease, but supports the benefit of increasing aralar expression to improve the redox balance capacity of human liver, as an effective therapy for CITRIN deficiency.
Collapse
Key Words
- (BNGE), Blue native gel electrophoresis
- AGC, aspartate-glutamate carrier
- AQUA, Absolute Quantification methods
- Aspartate-glutamate carrier
- CD, CITRIN Deficiency
- CTNL2, citrullinemia type II
- Citrin deficiency
- DAB, 3,3-diaminobenzidine
- FBS, Fetal Bovine serum
- FTTDCD, failure to thrive and dyslipidemia caused by CITRIN Deficiency
- GOT, aspartate transaminase
- GPD2, mitochondrial glycerol phosphate dehydrogenase
- GPS, glycerol phosphate shuttle
- Hepatocyte
- IM, imaging medium
- LC-MS, liquid chromatography mass spectrometry
- LNP, lipid nanoparticles
- MAS, malate aspartate shuttle
- Malate-aspartate shuttle
- Mitochondria
- NAA, N-Acetyl-aspartate
- NICCD, neonatal intrahepatic cholestasis caused by CITRIN Deficiency
- OXPHOS, oxidative phosphorylation
- PFA, paraformaldehyde
- PRM, parallel reaction monitoring
- SDS, sodium dodecyl sulfate
- TBS, Tris-Buffered saline.
- hCitrin, human citrin
Collapse
Affiliation(s)
- Luis González-Moreno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Andrea Santamaría-Cano
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alberto Paradela
- Centro Nacional de Biotecnología (CNB), CSIC. C/Darwin 3, 28049 Madrid, Spain
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Á. Martín
- Grupo Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Servicio de Genética, Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | | | - Alberto García-Picazo
- Departamento de Cirugía General Aparato Digestivo, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Enrique Calvo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Gloria González-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, 31008 Pamplona, Spain
| | | | - Araceli del Arco
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla la Mancha, Toledo 45071, Spain
- Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina, Toledo 45071, Spain
| | - Jorgina Satrústegui
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Contreras
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Universitario de Biología Molecular, (IUBM), and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
del Arco A, González-Moreno L, Pérez-Liébana I, Juaristi I, González-Sánchez P, Contreras L, Pardo B, Satrústegui J. Regulation of neuronal energy metabolism by calcium: Role of MCU and Aralar/malate-aspartate shuttle. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119468. [PMID: 36997074 DOI: 10.1016/j.bbamcr.2023.119468] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Calcium is a major regulator of cellular metabolism. Calcium controls mitochondrial respiration, and calcium signaling is used to meet cellular energetic demands through energy production in the organelle. Although it has been widely assumed that Ca2+-actions require its uptake by mitochondrial calcium uniporter (MCU), alternative pathways modulated by cytosolic Ca2+ have been recently proposed. Recent findings have indicated a role for cytosolic Ca2+ signals acting on mitochondrial NADH shuttles in the control of cellular metabolism in neurons using glucose as fuel. It has been demonstrated that AGC1/Aralar, the component of the malate/aspartate shuttle (MAS) regulated by cytosolic Ca2+, participates in the maintenance of basal respiration exerted through Ca2+-fluxes between ER and mitochondria, whereas mitochondrial Ca2+-uptake by MCU does not contribute. Aralar/MAS pathway, activated by small cytosolic Ca2+ signals, provides in fact substrates, redox equivalents and pyruvate, fueling respiration. Upon activation and increases in workload, neurons upregulate OxPhos, cytosolic pyruvate production and glycolysis, together with glucose uptake, in a Ca2+-dependent way, and part of this upregulation is via Ca2+ signaling. Both MCU and Aralar/MAS contribute to OxPhos upregulation, Aralar/MAS playing a major role, especially at small and submaximal workloads. Ca2+ activation of Aralar/MAS, by increasing cytosolic NAD+/NADH provides Ca2+-dependent increases in glycolysis and cytosolic pyruvate production priming respiration as a feed-forward mechanism in response to workload. Thus, except for glucose uptake, these processes are dependent on Aralar/MAS, whereas MCU is the relevant target for Ca2+ signaling when MAS is bypassed, by using pyruvate or β-hydroxybutyrate as substrates.
Collapse
|
7
|
Bachkoenig OA, Gottschalk B, Malli R, Graier WF. An unexpected effect of risperidone reveals a nonlinear relationship between cytosolic Ca 2+ and mitochondrial Ca 2+ uptake. CURRENT TOPICS IN MEMBRANES 2022; 90:13-35. [PMID: 36368872 DOI: 10.1016/bs.ctm.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mitochondria actively contribute to cellular Ca2+ homeostasis. The molecular mechanisms of mitochondrial Ca2+ uptake and release are well characterized and are attributed to the multi-protein assembly of the mitochondrial Ca2+ uniporter complex (MCUC) and the mitochondrial sodium-calcium exchanger (NCLX), respectively. Hence, Ca2+ transfer from the endoplasmic reticulum (ER) and store-operated Ca2+ entry (SOCE) into the mitochondrial matrix has been quantitatively visualized on the subcellular level using targeted fluorescent biosensors. However, a correlation between the amplitude of cytosolic Ca2+ elevation with that in the mitochondrial matrix has not been investigated in detail so far. In the present study, we combined the Ca2+-mobilizing agonist histamine with the H1-receptor antagonist risperidone to establish a well-tunable experimental approach allowing the correlation between low, slow, high, and fast cytosolic and mitochondrial Ca2+ signals in response to inositol 1,4,5-trisphosphate (IP3)-triggered ER Ca2+ release. Our present data confirm a defined threshold in cytosolic Ca2+, which is necessary for the activation of mitochondrial Ca2+ uptake. Moreover, our data support the hypothesis of different modes of mitochondrial Ca2+ uptake depending on the source of the ion (i.e., ER vs SOCE).
Collapse
Affiliation(s)
- Olaf A Bachkoenig
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Oflaz FE, Koshenov Z, Hirtl M, Rost R, Malli R, Graier WF. Sigma-1 Receptor Modulation by Ligands Coordinates Cancer Cell Energy Metabolism. Biomolecules 2022; 12:762. [PMID: 35740887 PMCID: PMC9221035 DOI: 10.3390/biom12060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Sigma-1 receptor (S1R) is an important endoplasmic reticulum chaperone with various functions in health and disease. The purpose of the current work was to elucidate the involvement of S1R in cancer energy metabolism under its basal, activated, and inactivated states. For this, two cancer cell lines that differentially express S1R were treated with S1R agonist, (+)-SKF10047, and antagonist, BD1047. The effects of the agonist and antagonist on cancer energy metabolism were studied using single-cell fluorescence microscopy analysis of real-time ion and metabolite fluxes. Our experiments revealed that S1R activation by agonist increases mitochondrial bioenergetics of cancer cells while decreasing their reliance on aerobic glycolysis. S1R antagonist did not have a major impact on mitochondrial bioenergetics of tested cell lines but increased aerobic glycolysis of S1R expressing cancer cell line. Our findings suggest that S1R plays an important role in cancer energy metabolism and that S1R ligands can serve as tools to modulate it.
Collapse
Affiliation(s)
- Furkan E. Oflaz
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (F.E.O.); (Z.K.); (M.H.); (R.R.); (R.M.)
| | - Zhanat Koshenov
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (F.E.O.); (Z.K.); (M.H.); (R.R.); (R.M.)
| | - Martin Hirtl
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (F.E.O.); (Z.K.); (M.H.); (R.R.); (R.M.)
| | - Rene Rost
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (F.E.O.); (Z.K.); (M.H.); (R.R.); (R.M.)
| | - Roland Malli
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (F.E.O.); (Z.K.); (M.H.); (R.R.); (R.M.)
- BioTechMed Graz, 8010 Graz, Austria
| | - Wolfgang F. Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (F.E.O.); (Z.K.); (M.H.); (R.R.); (R.M.)
- BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|