1
|
Marks K, Ahn SJ, Rai N, Anfray A, Iadecola C, Anrather J. A minimally invasive thrombotic stroke model to study circadian rhythm in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598243. [PMID: 38915621 PMCID: PMC11195071 DOI: 10.1101/2024.06.10.598243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Experimental stroke models in rodents are essential for mechanistic studies and therapeutic development. However, these models have several limitations negatively impacting their translational relevance. Here we aimed to develop a minimally invasive thrombotic stroke model through magnetic particle delivery that does not require craniotomy, is amenable to reperfusion therapy, can be combined with in vivo imaging modalities, and can be performed in awake mice. We found that the model results in reproducible cortical infarcts within the middle cerebral artery (MCA) with cytologic and immune changes similar to that observed with more invasive distal MCA occlusion models. Importantly, the injury produced by the model was ameliorated by tissue plasminogen activator (tPA) administration. We also show that MCA occlusion in awake animals results in bigger ischemic lesions independent of day/night cycle. Magnetic particle delivery had no overt effects on physiologic parameters and systemic immune biomarkers. In conclusion, we developed a novel stroke model in mice that fulfills many requirements for modeling human stroke.
Collapse
|
2
|
Lan Y, Zhang X, Liu S, Guo C, Jin Y, Li H, Wang L, Zhao J, Hao Y, Li Z, Liu Z, Ginhoux F, Xie Q, Xu H, Jia JM, He D. Fate mapping of Spp1 expression reveals age-dependent plasticity of disease-associated microglia-like cells after brain injury. Immunity 2024; 57:349-363.e9. [PMID: 38309272 DOI: 10.1016/j.immuni.2024.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/22/2023] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Microglial reactivity to injury and disease is emerging as a heterogeneous, dynamic, and crucial determinant in neurological disorders. However, the plasticity and fate of disease-associated microglia (DAM) remain largely unknown. We established a lineage tracing system, leveraging the expression dynamics of secreted phosphoprotein 1(Spp1) to label and track DAM-like microglia during brain injury and recovery. Fate mapping of Spp1+ microglia during stroke in juvenile mice revealed an irreversible state of DAM-like microglia that were ultimately eliminated from the injured brain. By contrast, DAM-like microglia in the neonatal stroke models exhibited high plasticity, regaining a homeostatic signature and integrating into the microglial network after recovery. Furthermore, neonatal injury had a lasting impact on microglia, rendering them intrinsically sensitized to subsequent immune challenges. Therefore, our findings highlight the plasticity and innate immune memory of neonatal microglia, shedding light on the fate of DAM-like microglia in various neuropathological conditions.
Collapse
Affiliation(s)
- Yangning Lan
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaoxuan Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Shaorui Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Laboratory of Systems Immunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chen Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Cancer Stem Cell and Tumor Microenvironment lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuxiao Jin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Laboratory of Systems Immunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Linyixiao Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jinghong Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yilin Hao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhicheng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Systems Immunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore; Gustave Roussy Cancer Campus, Villejuif 94800, France; Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Qi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Cancer Stem Cell and Tumor Microenvironment lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Systems Immunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jie-Min Jia
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neurovascular Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Danyang He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Laboratory of Neuroimmunology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zhang H, Sumbria RK, Chang R, Sun J, Cribbs DH, Holmes TC, Fisher MJ, Xu X. Erythrocyte-brain endothelial interactions induce microglial responses and cerebral microhemorrhages in vivo. J Neuroinflammation 2023; 20:265. [PMID: 37968737 PMCID: PMC10647121 DOI: 10.1186/s12974-023-02932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Cerebral microhemorrhages (CMH) are associated with stroke, cognitive decline, and normal aging. Our previous study shows that the interaction between oxidatively stressed red blood cells (RBC) and cerebral endothelium may underlie CMH development. However, the real-time examination of altered RBC-brain endothelial interactions in vivo, and their relationship with clearance of stalled RBC, microglial responses, and CMH development, has not been reported. METHODS RBC were oxidatively stressed using tert-butylhydroperoxide (t-BHP), fluorescently labeled and injected into adult Tie2-GFP mice. In vivo two-photon imaging and ex vivo confocal microscopy were used to evaluate the temporal profile of RBC-brain endothelial interactions associated with oxidatively stressed RBC. Their relationship with microglial activation and CMH was examined with post-mortem histology. RESULTS Oxidatively stressed RBC stall significantly and rapidly in cerebral vessels in mice, accompanied by decreased blood flow velocity which recovers at 5 days. Post-mortem histology confirms significantly greater RBC-cerebral endothelial interactions and microglial activation at 24 h after t-BHP-treated RBC injection, which persist at 7 days. Furthermore, significant CMH develop in the absence of blood-brain barrier leakage after t-BHP-RBC injection. CONCLUSIONS Our in vivo and ex vivo findings show the stalling and clearance of oxidatively stressed RBC in cerebral capillaries, highlighting the significance of microglial responses and altered RBC-brain endothelial interactions in CMH development. Our study provides novel mechanistic insight into CMH associated with pathological conditions with increased RBC-brain endothelial interactions.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Mark J Fisher
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Beckman Laser Institute, University of California, Irvine, CA, 92697, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Chao CJ, Zhang E, Zhao Z. Engineering cells for precision drug delivery: New advances, clinical translation, and emerging strategies. Adv Drug Deliv Rev 2023; 197:114840. [PMID: 37088403 DOI: 10.1016/j.addr.2023.114840] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Cells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery. Despite exciting advances, clinical translation of cell-based drug carriers demands a thorough understanding of the pressing challenges and potential strategies to overcome them. Here, we summarize recent advances and new concepts in cell-based drug carriers and their clinical translation. We also discuss key considerations and emerging strategies to engineering the next-generation cell-based delivery technologies for more precise, targeted drug delivery.
Collapse
Affiliation(s)
- Chih-Jia Chao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612.
| |
Collapse
|