1
|
Poding LH, Jägers P, Herlitze S, Huhn M. Diversity and function of fluorescent molecules in marine animals. Biol Rev Camb Philos Soc 2024; 99:1391-1410. [PMID: 38468189 DOI: 10.1111/brv.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches. These biological functions of fluorescence range from prey and symbiont attraction, photoprotection, photoenhancement, stress mitigation, mimicry, and aposematism to inter- and intraspecific communication. We provide a comprehensive list of marine taxa that utilise fluorescence, including demonstrated effects on behavioural or physiological responses. We describe the numerous known functions of fluorescence in anthozoans and their underlying molecular mechanisms. We also highlight that other marine taxa should be studied regarding the functions of fluorescence. We suggest that an increase in research effort in this field could contribute to understanding the capacity of marine animals to respond to negative effects of climate change, such as rising sea temperatures and increasing intensities of solar irradiation.
Collapse
Affiliation(s)
- Lars H Poding
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Mareike Huhn
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| |
Collapse
|
2
|
Shikina S, Yoshioka Y, Chiu YL, Uchida T, Chen E, Cheng YC, Lin TC, Chu YL, Kanda M, Kawamitsu M, Fujie M, Takeuchi T, Zayasu Y, Satoh N, Shinzato C. Genome and tissue-specific transcriptomes of the large-polyp coral, Fimbriaphyllia (Euphyllia) ancora: a recipe for a coral polyp. Commun Biol 2024; 7:899. [PMID: 39048698 PMCID: PMC11269664 DOI: 10.1038/s42003-024-06544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Coral polyps are composed of four tissues; however, their characteristics are largely unexplored. Here we report biological characteristics of tentacles (Te), mesenterial filaments (Me), body wall (Bo), and mouth with pharynx (MP), using comparative genomic, morpho-histological, and transcriptomic analyses of the large-polyp coral, Fimbriaphyllia ancora. A draft F. ancora genome assembly of 434 Mbp was created. Morpho-histological and transcriptomic characterization of the four tissues showed that they have distinct differences in structure, primary cellular composition, and transcriptional profiles. Tissue-specific, highly expressed genes (HEGs) of Te are related to biological defense, predation, and coral-algal symbiosis. Me expresses multiple digestive enzymes, whereas Bo expresses innate immunity and biomineralization-related molecules. Many receptors for neuropeptides and neurotransmitters are expressed in MP. This dataset and new insights into tissue functions will facilitate a deeper understanding of symbiotic biology, immunology, biomineralization, digestive biology, and neurobiology in corals.
Collapse
Affiliation(s)
- Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Yuki Yoshioka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yi-Ling Chiu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Taiga Uchida
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Emma Chen
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yin-Chu Cheng
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tzu-Chieh Lin
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ling Chu
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan
| | - Miyuki Kanda
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Manabu Fujie
- DNA Sequencing Center Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.
| |
Collapse
|
3
|
Poding LH, Jägers P, Senen B, Limmon GV, Herlitze S, Huhn M. New observations of fluorescent organisms in the Banda Sea and in the Red Sea. PLoS One 2024; 19:e0292476. [PMID: 38865289 PMCID: PMC11168664 DOI: 10.1371/journal.pone.0292476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024] Open
Abstract
Fluorescence is a widespread phenomenon found in animals, bacteria, fungi, and plants. In marine environments fluorescence has been proposed to play a role in physiological and behavioral responses. Many fluorescent proteins and other molecules have been described in jellyfish, corals, and fish. Here we describe fluorescence in marine species, which we observed and photographed during night dives in the Banda Sea, Indonesia, and in the Red Sea, Egypt. Among various phyla we found fluorescence in sponges, molluscs, tunicates, and fish. Our study extends the knowledge on how many different organisms fluoresce in marine environments. We describe the occurrence of fluorescence in 27 species, in which fluorescence has not been described yet in peer-reviewed literature. It especially extends the knowledge beyond Scleractinia, the so far best described taxon regarding diversity in fluorescent proteins.
Collapse
Affiliation(s)
- Lars Henrik Poding
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | | | - Gino Valentino Limmon
- Fisheries and Marine Science Faculty, Pattimura University, Ambon, Indonesia
- Maritime and Marine Science Center of Excellence, Pattimura University, Ambon, Indonesia
- Center for Collaborative Research on Aquatic Ecosystem in Eastern Indonesia, Ambon, Indonesia
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Mareike Huhn
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Suarez JV, Mudd EA, Day A. A Chloroplast-Localised Fluorescent Protein Enhances the Photosynthetic Action Spectrum in Green Algae. Microorganisms 2022; 10:microorganisms10091770. [PMID: 36144372 PMCID: PMC9504678 DOI: 10.3390/microorganisms10091770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 10/29/2022] Open
Abstract
Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon-optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.
Collapse
Affiliation(s)
- Julio V. Suarez
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carr. Transpeninsular 3917, Ensenada 22860, Mexico
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| | - Elisabeth A. Mudd
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| |
Collapse
|
5
|
Bollati E, Lyndby NH, D'Angelo C, Kühl M, Wiedenmann J, Wangpraseurt D. Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. eLife 2022; 11:73521. [PMID: 35801683 PMCID: PMC9342951 DOI: 10.7554/elife.73521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Pigments homologous to the green fluorescent protein (GFP) have been proposed to fine-tune the internal light microclimate of corals, facilitating photoacclimation of photosynthetic coral symbionts (Symbiodiniaceae) to life in different reef habitats and environmental conditions. However, direct measurements of the in vivo light conditions inside the coral tissue supporting this conclusion are lacking. Here, we quantified the intra-tissue spectral light environment of corals expressing GFP-like proteins from widely different light regimes. We focus on: (1) photoconvertible red fluorescent proteins (pcRFPs), thought to enhance photosynthesis in mesophotic habitats via wavelength conversion, and (2) chromoproteins (CPs), which provide photoprotection to the symbionts in shallow water via light absorption. Optical microsensor measurements indicated that both pigment groups strongly alter the coral intra-tissue light environment. Estimates derived from light spectra measured in pcRFP-containing corals showed that fluorescence emission can contribute to >50% of orange-red light available to the photosynthetic symbionts at mesophotic depths. We further show that upregulation of pink CPs in shallow-water corals during bleaching leads to a reduction of orange light by 10–20% compared to low-CP tissue. Thus, screening by CPs has an important role in mitigating the light-enhancing effect of coral tissue scattering and skeletal reflection during bleaching. Our results provide the first experimental quantification of the importance of GFP-like proteins in fine-tuning the light microclimate of corals during photoacclimation.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Niclas H Lyndby
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cecilia D'Angelo
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Michael Kühl
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jörg Wiedenmann
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, San Diego, United States
| |
Collapse
|