1
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2498-2521. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
2
|
Dai L, Zhou X, Jian Z, Tian J, Li Y, Xu G. Comparison of leaf anatomical structure and photosynthetic characteristics between weedy rice and cultivated rice at the seedling stage. Sci Rep 2024; 14:30829. [PMID: 39730556 DOI: 10.1038/s41598-024-81669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
To explore the internal factors related to the strong growth and competitive ability of weedy rice during the seedling period, we collected two biotypes of Japonica weedy rice from Northeast China, four biotypes of Indica weedy rice from Eastern China and Southern China, and two biotypes of cultivated rice, Zhendao-8 (ZD-8) and Shanyou-63 (SY-63), which were used as controls in a pot experiment. Under homogeneous garden planting conditions, we measured the vascular bundle size (VBS), vascular bundle number (VBN), leaf thickness (LT), air cavity size (ACS), stomatal size (SS), stomatal density (SD), net photosynthetic rate (Pn) and stomatal conductance (Gs) of the weedy and cultivated rice biotypes. A comprehensive analysis was performed to explore the correlation between the seedling leaf structure and the photosynthetic indices of the biotypes. The results showed the following: (1) At the seedling growth stage, the leaf structure parameters of weedy rice were significantly greater than those of ZD-8 and SY-63. (2) The Pn and Gs of weedy rice were significantly positively correlated with VBS, VBN, LT, ACS, and SD. Thus, the leaf structural features of weedy rice provide the anatomical basis for the stronger Pn and establish a strong competitive physiology at the seedling stage. Therefore, the prevention and elimination of weedy rice should start at the seedling stage.
Collapse
Affiliation(s)
- Lei Dai
- College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China.
| | - Xiuren Zhou
- College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zaiyou Jian
- College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jing Tian
- College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yongchao Li
- College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Guifang Xu
- College of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
3
|
Kehinde BO, Xie L, Song BK, Zheng X, Fan L. African Cultivated, Wild and Weedy Rice ( Oryza spp.): Anticipating Further Genomic Studies. BIOLOGY 2024; 13:697. [PMID: 39336124 PMCID: PMC11428565 DOI: 10.3390/biology13090697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Rice is a staple crop in sub-Saharan Africa, and it is mostly produced by Asian cultivars of Oryza sativa that were introduced to the continent around the fifteenth or sixteenth century. O. glaberrima, the native African rice, has also been planted due to its valuable traits of insect and drought tolerance. Due to competition and resistance evolution, weedy rice has evolved from O. sativa and O. glaberrima, posing an increasing threat to rice production. This paper provides an overview of current knowledge on the introduction and domestication history of cultivated rice in Africa, as well as the genetic properties of African weedy rice that invades paddy fields. Recent developments in genome sequencing have made it possible to uncover findings about O. glaberrima's population structure, stress resilience genes, and domestication bottleneck. Future rice genomic research in Africa should prioritize producing more high-quality reference genomes, quantifying the impact of crop-wild hybridization, elucidating weed adaptation mechanisms through resequencing, and establishing a connection between genomic variation and stress tolerance phenotypes to accelerate breeding efforts.
Collapse
Affiliation(s)
- Babatunde O Kehinde
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Department of Zoology, University of Lagos, Akoka-Yaba, Lagos 101245, Nigeria
| | - Lingjuan Xie
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Beng-Kah Song
- School of Science, Monash University Malaysia, Bandar Sunway 46150, Selangor, Malaysia
| | - Xiaoming Zheng
- Yazhouwan National Laboratory, Yazhou District, Sanya 572024, China
| | - Longjiang Fan
- Institute of Crop Science, Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Yazhouwan National Laboratory, Yazhou District, Sanya 572024, China
| |
Collapse
|
4
|
Wu ZY, Chapman MA, Liu J, Milne RI, Zhao Y, Luo YH, Zhu GF, Cadotte MW, Luan MB, Fan PZ, Monro AK, Li ZP, Corlett RT, Li DZ. Genomic variation, environmental adaptation, and feralization in ramie, an ancient fiber crop. PLANT COMMUNICATIONS 2024; 5:100942. [PMID: 38720463 PMCID: PMC11369781 DOI: 10.1016/j.xplc.2024.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
Feralization is an important evolutionary process, but the mechanisms behind it remain poorly understood. Here, we use the ancient fiber crop ramie (Boehmeria nivea (L.) Gaudich.) as a model to investigate genomic changes associated with both domestication and feralization. We first produced a chromosome-scale de novo genome assembly of feral ramie and investigated structural variations between feral and domesticated ramie genomes. Next, we gathered 915 accessions from 23 countries, comprising cultivars, major landraces, feral populations, and the wild progenitor. Based on whole-genome resequencing of these accessions, we constructed the most comprehensive ramie genomic variation map to date. Phylogenetic, demographic, and admixture signal detection analyses indicated that feral ramie is of exoferal or exo-endo origin, i.e., descended from hybridization between domesticated ramie and the wild progenitor or ancient landraces. Feral ramie has higher genetic diversity than wild or domesticated ramie, and genomic regions affected by natural selection during feralization differ from those under selection during domestication. Ecological analyses showed that feral and domesticated ramie have similar ecological niches that differ substantially from the niche of the wild progenitor, and three environmental variables are associated with habitat-specific adaptation in feral ramie. These findings advance our understanding of feralization, providing a scientific basis for the excavation of new crop germplasm resources and offering novel insights into the evolution of feralization in nature.
Collapse
Affiliation(s)
- Zeng-Yuan Wu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Mark A Chapman
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jie Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Richard I Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Ying Zhao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guang-Fu Zhu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Ming-Bao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China.
| | - Peng-Zhen Fan
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Alex K Monro
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK
| | - Zhi-Peng Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Richard T Corlett
- Royal Botanic Gardens Kew, Richmond, Surrey TW9 3AE, UK; Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan 666303, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
5
|
Goli RC, Chishi KG, Ganguly I, Singh S, Dixit S, Rathi P, Diwakar V, Sree C C, Limbalkar OM, Sukhija N, Kanaka K. Global and Local Ancestry and its Importance: A Review. Curr Genomics 2024; 25:237-260. [PMID: 39156729 PMCID: PMC11327809 DOI: 10.2174/0113892029298909240426094055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 08/20/2024] Open
Abstract
The fastest way to significantly change the composition of a population is through admixture, an evolutionary mechanism. In animal breeding history, genetic admixture has provided both short-term and long-term advantages by utilizing the phenomenon of complementarity and heterosis in several traits and genetic diversity, respectively. The traditional method of admixture analysis by pedigree records has now been replaced greatly by genome-wide marker data that enables more precise estimations. Among these markers, SNPs have been the popular choice since they are cost-effective, not so laborious, and automation of genotyping is easy. Certain markers can suggest the possibility of a population's origin from a sample of DNA where the source individual is unknown or unwilling to disclose their lineage, which are called Ancestry-Informative Markers (AIMs). Revealing admixture level at the locus-specific level is termed as local ancestry and can be exploited to identify signs of recent selective response and can account for genetic drift. Considering the importance of genetic admixture and local ancestry, in this mini-review, both concepts are illustrated, encompassing basics, their estimation/identification methods, tools/software used and their applications.
Collapse
Affiliation(s)
| | - Kiyevi G. Chishi
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Indrajit Ganguly
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Sanjeev Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - S.P. Dixit
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Pallavi Rathi
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Vikas Diwakar
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Chandana Sree C
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | | | - Nidhi Sukhija
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
- Central Tasar Research and Training Institute, Ranchi, 835303, Jharkhand, India
| | - K.K Kanaka
- ICAR- Indian Institute of Agricultural Biotechnology, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
6
|
Chen K, Yang H, Wu D, Peng Y, Lian L, Bai L, Wang L. Weed biology and management in the multi-omics era: Progress and perspectives. PLANT COMMUNICATIONS 2024; 5:100816. [PMID: 38219012 PMCID: PMC11009161 DOI: 10.1016/j.xplc.2024.100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Weeds pose a significant threat to crop production, resulting in substantial yield reduction. In addition, they possess robust weedy traits that enable them to survive in extreme environments and evade human control. In recent years, the application of multi-omics biotechnologies has helped to reveal the molecular mechanisms underlying these weedy traits. In this review, we systematically describe diverse applications of multi-omics platforms for characterizing key aspects of weed biology, including the origins of weed species, weed classification, and the underlying genetic and molecular bases of important weedy traits such as crop-weed interactions, adaptability to different environments, photoperiodic flowering responses, and herbicide resistance. In addition, we discuss limitations to the application of multi-omics techniques in weed science, particularly compared with their extensive use in model plants and crops. In this regard, we provide a forward-looking perspective on the future application of multi-omics technologies to weed science research. These powerful tools hold great promise for comprehensively and efficiently unraveling the intricate molecular genetic mechanisms that underlie weedy traits. The resulting advances will facilitate the development of sustainable and highly effective weed management strategies, promoting greener practices in agriculture.
Collapse
Affiliation(s)
- Ke Chen
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haona Yang
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yajun Peng
- State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lei Lian
- Qingdao Kingagroot Compounds Co. Ltd, Qingdao 266000, China
| | - Lianyang Bai
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Lifeng Wang
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Ministry of Agriculture and Rural Affairs, Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; State Key Laboratory of Hybrid Rice, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Huangpu Research Institute of Longping Agricultural Science and Technology, Guangzhou 510715, China; Hunan Weed Science Key Laboratory, Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
7
|
Unan R, Azapoglu O, Deligoz İ, Mennan H, Al-Khatib K. Gene flow and spontaneous mutations are responsible for imidazolinone herbicide-resistant weedy rice (Oryza sativa L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105746. [PMID: 38225089 DOI: 10.1016/j.pestbp.2023.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024]
Abstract
For more than two decades, weedy rice (Oryza sativa L.) has been controlled in rice fields by using imidazolinone (IMI) herbicide-resistant rice technology (Clearfield®). Outcrossing in weedy rice populations and spontaneous mutations are potential problems with herbicide-resistant crop management technologies, such as the IMI-resistant rice. The aim of this study was to characterize the mechanism of IMI herbicide resistance in weedy rice through dose-response bioassay study and evaluating amino acid substitutions in acetolactate synthase (ALS) protein. A total of 118 suspected IMI-resistant weedy rice samples, which survived in the field after an IMI herbicide application, were collected at harvest time from Türkiye in 2020 and 2021. Single-dose imazamox application experiment revealed that 38 plants survived herbicide treatment. The imazamox resistance of the surviving plants was confirmed by dose-response experiment. ALS gene region underwent a sanger DNA partial sequencing. No substitution was found in 10 samples, however, amino acid substitutions were found in 26 samples with S563N, one sample with S653T, and one sample with E630D. The S653N point is the same substitution point that serves as the origin of resistance for the Clearfield® rice varieties that are commonly cultivated in the region. It has been hypothesized that the gene flow from IMI-resistant rice may be the cause of resistance in the IMI resistant weedy rice samples with S653N. The other substitution, S653T, were considered spontaneous mutation to IMI resistance. Interestingly, the S653T mutation was detected for the first time in weedy rice. The mechanism of resistance of 10 resistant weedy rice was not confirmed in this study, however, it may be a non-target resistance or another mutation point in target site, but evidently, they did not acquire resistance by gene flow from IMI-resistant rice. It has been concluded that the effectiveness of IMI-resistant rice technology in controlling weedy rice has drastically decreased due to possible gene flow, spontaneous mutation and non-target resistance. In addition to cultural controls like clean seed, clean machinery and crop rotation, other herbicide-tolerant rice systems such as Provisia® and Roxy-RPS® rice are needed to create a diverse weedy rice management ensemble available for rice production and move towards sustainable rice farming.
Collapse
Affiliation(s)
- Rasim Unan
- Department of Plant Science, University of California, Davis, 95616, CA, USA
| | - Ozgur Azapoglu
- Black Sea Agricultural Research Institute, Samsun, Türkiye
| | - İlyas Deligoz
- Black Sea Agricultural Research Institute, Samsun, Türkiye
| | - Husrev Mennan
- Plant Protection Department, Ondokuzmayis University, Samsun, Türkiye
| | - Kassim Al-Khatib
- Department of Plant Science, University of California, Davis, 95616, CA, USA.
| |
Collapse
|
8
|
Li X, Zhang S, Lowey D, Hissam C, Clevenger J, Perera S, Jia Y, Caicedo AL. A derived weedy rice × ancestral cultivar cross identifies evolutionarily relevant weediness QTLs. Mol Ecol 2023; 32:5971-5985. [PMID: 37861465 DOI: 10.1111/mec.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/02/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Weedy rice (Oryza spp.) is a weedy relative of the cultivated rice that competes with the crop and causes significant production loss. The BHA (blackhull awned) US weedy rice group has evolved from aus cultivated rice and differs from its ancestors in several important weediness traits, including flowering time, plant height and seed shattering. Prior attempts to determine the genetic basis of weediness traits in plants using linkage mapping approaches have not often considered weed origins. However, the timing of divergence between crossed parents can affect the detection of quantitative trait loci (QTL) relevant to the evolution of weediness. Here, we used a QTL-seq approach that combines bulked segregant analysis and high-throughput whole genome resequencing to map the three important weediness traits in an F2 population derived from a cross between BHA weedy rice with an ancestral aus cultivar. We compared these QTLs with those previously detected in a cross of BHA with a more distantly related crop, indica. We identified multiple QTLs that overlapped with regions under selection during the evolution of weedy BHA rice and some candidate genes possibly underlying the evolution weediness traits in BHA. We showed that QTLs detected with ancestor-descendant crosses are more likely to be involved in the evolution of weediness traits than those detected from crosses of more diverged taxa.
Collapse
Affiliation(s)
- Xiang Li
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Shulin Zhang
- College of Biology and Food Engineering, Innovation and Practice Base for Postdoctors, Anyang Institute of Technology, Anyang, China
| | - Daniel Lowey
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Carter Hissam
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Josh Clevenger
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama, USA
| | - Sherin Perera
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Yulin Jia
- United States Department of Agriculture-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, USA
| | - Ana L Caicedo
- Plant Biology Graduate Program and Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Cai XX, Wang Z, Yuan Y, Pang LH, Wang Y, Lu BR. Crop-Weed Introgression Plays Critical Roles in Genetic Differentiation and Diversity of Weedy Rice: A Case Study of Human-Influenced Weed Evolution. BIOLOGY 2023; 12:biology12050744. [PMID: 37237556 DOI: 10.3390/biology12050744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
As an important driving force, introgression plays an essential role in shaping the evolution of plant species. However, knowledge concerning how introgression affects plant evolution in agroecosystems with strong human influences is still limited. To generate such knowledge, we used InDel (insertion/deletion) molecular fingerprints to determine the level of introgression from japonica rice cultivars into the indica type of weedy rice. We also analyzed the impact of crop-to-weed introgression on the genetic differentiation and diversity of weedy rice, using InDel (insertion/deletion) and SSR (simple sequence repeat) molecular fingerprints. Results based on the STRUCTURE analysis indicated an evident admixture of some weedy rice samples with indica and japonica components, suggesting different levels of introgression from japonica rice cultivars to the indica type of weedy rice. The principal coordinate analyses indicated indica-japonica genetic differentiation among weedy rice samples, which was positively correlated with the introgression of japonica-specific alleles from the rice cultivars. In addition, increased crop-to-weed introgression formed a parabola pattern of dynamic genetic diversity in weedy rice. Our findings based on this case study provide evidence that human activities, such as the frequent change in crop varieties, can strongly influence weed evolution by altering genetic differentiation and genetic diversity through crop-weed introgression in agroecosystems.
Collapse
Affiliation(s)
- Xing-Xing Cai
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhi Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ye Yuan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Li-Hao Pang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bao-Rong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Huang Y, Wu D, Huang Z, Li X, Merotto A, Bai L, Fan L. Weed genomics: yielding insights into the genetics of weedy traits for crop improvement. ABIOTECH 2023; 4:20-30. [PMID: 37220539 PMCID: PMC10199979 DOI: 10.1007/s42994-022-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/06/2022] [Indexed: 05/25/2023]
Abstract
Weeds cause tremendous economic and ecological damage worldwide. The number of genomes established for weed species has sharply increased during the recent decade, with some 26 weed species having been sequenced and de novo genomes assembled. These genomes range from 270 Mb (Barbarea vulgaris) to almost 4.4 Gb (Aegilops tauschii). Importantly, chromosome-level assemblies are now available for 17 of these 26 species, and genomic investigations on weed populations have been conducted in at least 12 species. The resulting genomic data have greatly facilitated studies of weed management and biology, especially origin and evolution. Available weed genomes have indeed revealed valuable weed-derived genetic materials for crop improvement. In this review, we summarize the recent progress made in weed genomics and provide a perspective for further exploitation in this emerging field.
Collapse
Affiliation(s)
- Yujie Huang
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| | - Dongya Wu
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| | - Zhaofeng Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xiangyu Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Aldo Merotto
- Department of Crop Sciences, Agricultural School Federal University of Rio Grande do Sul, Porto Alegre, 91540-000 Brazil
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Sciences, Changshang, 410125 China
| | - Longjiang Fan
- Institute of Crop Science and Institute of Bioinformatics, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
11
|
Vercellino RB, Hernández F, Pandolfo C, Ureta S, Presotto A. Agricultural weeds: the contribution of domesticated species to the origin and evolution of feral weeds. PEST MANAGEMENT SCIENCE 2023; 79:922-934. [PMID: 36507604 DOI: 10.1002/ps.7321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Agricultural weeds descended from domesticated ancestors, directly from crops (endoferality) and/or from crop-wild hybridization (exoferality), may have evolutionary advantages by rapidly acquiring traits pre-adapted to agricultural habitats. Understanding the role of crops on the origin and evolution of agricultural weeds is essential to develop more effective weed management programs, minimize crop losses due to weeds, and accurately assess the risks of cultivated genes escaping. In this review, we first describe relevant traits of weediness: shattering, seed dormancy, branching, early flowering and rapid growth, and their role in the feralization process. Furthermore, we discuss how the design of "super-crops" can affect weed evolution. We then searched for literature documenting cases of agricultural weeds descended from well-domesticated crops, and describe six case studies of feral weeds evolved from major crops: maize, radish, rapeseed, rice, sorghum, and sunflower. Further studies on the origin and evolution of feral weeds can improve our understanding of the physiological and genetic mechanisms underpinning the adaptation to agricultural habitats and may help to develop more effective weed-control practices and breeding better crops. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Fernando Hernández
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Claudio Pandolfo
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Soledad Ureta
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| |
Collapse
|
12
|
Imaizumi T, Kawahara Y, Auge G. Hybrid-derived weedy rice maintains adaptive combinations of alleles associated with seed dormancy. Mol Ecol 2022; 31:6556-6569. [PMID: 36178060 DOI: 10.1111/mec.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Plant hybridization is a pathway for the evolution of adaptive traits. However, hybridization between adapted and nonadapted populations may affect the persistence of combinations of adaptive alleles evolved through natural selection. Seed dormancy is an adaptive trait for weedy rice because it regulates the timing of seed germination and the persistence of the soil seed bank. Hybridization between weedy and cultivated rice has been confirmed with an adaptive introgression of deep seed dormancy alleles from cultivated rice. Here, we explored the influence of hybridization on the conservation of adaptive allele combinations by evaluating natural variation and genetic structure in seed dormancy-associated genomic regions. Based on sequence variation in the genomic regions associated with seed dormancy, hybrid-derived weedy rice strains maintained most of the adaptive combinations for this trait observed in the parental weedy rice, despite equal representation of the parental weedy and cultivated rice in the whole genome sequence. Moreover, hybrid-derived weedy rice strains were more dormant than their parental weedy rice strains, and this trait was strongly influenced by the environment. This study suggests that hybridization between weedy rice (adaptive allelic combinations for seed dormancy) and cultivated rice (nonadaptive combinations) generates weedy rice strains expressing deep seed dormancy caused by genome stabilization through the removal of alleles derived from cultivated rice, in addition to the adaptive introgression of deep seed dormancy alleles derived from cultivated rice. Thus, hybridization between adapted and nonadapted populations appears to be reinforcing the trajectory towards the evolution of adaptive traits.
Collapse
Affiliation(s)
- Toshiyuki Imaizumi
- Institute for Plant Protection, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | | - Gabriela Auge
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Instituto de Biociencias, Biotecnología y Biología Traslacional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|