1
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Lopez-Gomez A, Pelaez-Prestel HF, Juarez I. Approaches to evaluate the specific immune responses to SARS-CoV-2. Vaccine 2023; 41:6434-6443. [PMID: 37770298 DOI: 10.1016/j.vaccine.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The SARS-CoV-2 pandemic has a huge impact on public health and global economy, meaning an enormous scientific, political, and social challenge. Studying how infection or vaccination triggers both cellular and humoral responses is essential to know the grade and length of protection generated in the population. Nowadays, scientists and authorities around the world are increasingly concerned about the arrival of new variants, which have a greater spread, due to the high mutation rate of this virus. The aim of this review is to summarize the different techniques available for the study of the immune responses after exposure or vaccination against SARS-CoV-2, showing their advantages and limitations, and proposing suitable combinations of different techniques to achieve extensive information in these studies. We wish that the information provided here will helps other scientists in their studies of the immune response against SARS-CoV-2 after vaccination with new vaccine candidates or infection with upcoming variants.
Collapse
Affiliation(s)
- Ana Lopez-Gomez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Hector F Pelaez-Prestel
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ignacio Juarez
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Yazdanparast S, Bakhtiyaridovvombaygi M, Mikanik F, Ahmadi R, Ghorbani M, Mansoorian MR, Mansoorian M, Chegni H, Moshari J, Gharehbaghian A. Spotlight on contributory role of host immunogenetic profiling in SARS-CoV-2 infection: Susceptibility, severity, mortality, and vaccine effectiveness. Life Sci 2023:121907. [PMID: 37394094 DOI: 10.1016/j.lfs.2023.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND The SARS-CoV-2 virus has spread continuously worldwide, characterized by various clinical symptoms. The immune system responds to SARS-CoV-2 infection by producing Abs and secreting cytokines. Recently, numerous studies have highlighted that immunogenetic factors perform a putative role in COVID-19 pathogenesis and implicate vaccination effectiveness. AIM This review summarizes the relevant articles and evaluates the significance of mutation and polymorphism in immune-related genes regarding susceptibility, severity, mortality, and vaccination effectiveness of COVID-19. Furthermore, the correlation between host immunogenetic and SARS-CoV-2 reinfection is discussed. METHOD A comprehensive search was conducted to identify relevant articles using five databases until January 2023, which resulted in 105 total articles. KEY FINDINGS Taken to gather this review summarized that: (a) there is a plausible correlation between immune-related genes and COVID-19 outcomes, (b) the HLAs, cytokines, chemokines, and other immune-related genes expression profiles can be a prognostic factor in COVID-19-infected patients, and (c) polymorphisms in immune-related genes have been associated with the effectiveness of vaccination. SIGNIFICANCE Regarding the importance of mutation and polymorphisms in immune-related genes in COVID-19 outcomes, modulating candidate genes is expected to help clinical decisions, patient outcomes management, and innovative therapeutic approach development. In addition, the manipulation of host immunogenetics is hypothesized to induce more robust cellular and humoral immune responses, effectively increase the efficacy of vaccines, and subsequently reduce the incidence rates of reinfection-associated COVID-19.
Collapse
Affiliation(s)
- Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Ahmadi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Ghorbani
- Laboratory Hematology and Transfusion Medicine, Department of Pathology, Faculty Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | | | - Mozhgan Mansoorian
- Nursing Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Hamid Chegni
- Department of Immunology, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalil Moshari
- School of Medicine, Gonabad University of Medical Science, Gonabad, Iran
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Keeton R, Tincho MB, Suzuki A, Benede N, Ngomti A, Baguma R, Chauke MV, Mennen M, Skelem S, Adriaanse M, Grifoni A, Weiskopf D, Sette A, Bekker LG, Gray G, Ntusi NA, Burgers WA, Riou C. Impact of SARS-CoV-2 exposure history on the T cell and IgG response. Cell Rep Med 2022; 4:100898. [PMID: 36584684 PMCID: PMC9771741 DOI: 10.1016/j.xcrm.2022.100898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, from infection or vaccination, can potently boost spike antibody responses. Less is known about the impact of repeated exposures on T cell responses. Here, we compare the prevalence and frequency of peripheral SARS-CoV-2-specific T cell and immunoglobulin G (IgG) responses in 190 individuals with complex SARS-CoV-2 exposure histories. As expected, an increasing number of SARS-CoV-2 spike exposures significantly enhances the magnitude of IgG responses, while repeated exposures improve the number of T cell responders but have less impact on SARS-CoV-2 spike-specific T cell frequencies in the circulation. Moreover, we find that the number and nature of exposures (rather than the order of infection and vaccination) shape the spike immune response, with spike-specific CD4 T cells displaying a greater polyfunctional potential following hybrid immunity compared with vaccination only. Characterizing adaptive immunity from an evolving viral and immunological landscape may inform vaccine strategies to elicit optimal immunity as the pandemic progress.
Collapse
Affiliation(s)
- Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Akiko Suzuki
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Masego V. Chauke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa,Corresponding author
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
5
|
Bubnova L, Pavlova I, Terentieva M, Glazanova T, Belyaeva E, Sidorkevich S, Bashketova N, Chkhingeria I, Kozhemyakina M, Azarov D, Kuznetsova R, Ramsay ES, Gladkikh A, Sharova A, Dedkov V, Totolian A. HLA Genotypes in Patients with Infection Caused by Different Strains of SARS-CoV-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14024. [PMID: 36360904 PMCID: PMC9657774 DOI: 10.3390/ijerph192114024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The aggressive infectious nature of SARS-CoV-2, its rapid spread, and the emergence of mutations necessitate investigation of factors contributing to differences in SARS-CoV-2 susceptibility and severity. The role of genetic variations in the human HLA continues to be studied in various populations in terms of both its effect on morbidity and clinical manifestation of illness. The study included 484 COVID-19 convalescents (northwest Russia residents of St. Petersburg). Cases in which the responsible strain was determined were divided in two subgroups: group 1 (n = 231) had illness caused by genovariants unrelated to variant of concern (VOC) strains; and group 2 (n = 80) had illness caused by the delta (B.1.617.2) VOC; and a control group (n = 1456). DNA typing (HLA-A, B, DRB1) was performed at the basic resolution level. HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants only but not against infection caused by delta strains. HLA-A*03 was associated with protection against infection caused by delta strains; and allele groups associated with infection by delta strains were HLA-A*30, B*49, and B*57. Thus, in northwest Russia, HLA-A*02 was associated with protection against infection caused by non-VOC SARS-CoV-2 genetic variants but not against delta viral strains. HLA-A*03 was associated with a reduced risk of infection by delta SARS-CoV-2 strains. HLA-A*30, HLA-B*49, and HLA-B*57 allele groups were predisposing factors for infection by delta (B.1.617.2) strains.
Collapse
Affiliation(s)
- Ludmila Bubnova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
| | - Irina Pavlova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Maria Terentieva
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Tatiana Glazanova
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Elena Belyaeva
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Sergei Sidorkevich
- Russian Research Institute of Hematology and Transfusion Science, FMBA, 191024 St. Petersburg, Russia
| | - Nataliya Bashketova
- Saint Petersburg Office, Federal Service for Consumer Rights Protection and Human Welfare, 191025 St. Petersburg, Russia
| | - Irina Chkhingeria
- Saint Petersburg Office, Federal Service for Consumer Rights Protection and Human Welfare, 191025 St. Petersburg, Russia
| | | | - Daniil Azarov
- Saint Petersburg Center for Hygiene and Epidemiology, 191023 St. Petersburg, Russia
| | - Raisa Kuznetsova
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Edward S. Ramsay
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Anna Gladkikh
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Alena Sharova
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| | - Vladimir Dedkov
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Areg Totolian
- Department of immunology, Faculty of medicine, Pavlov First Saint Petersburg State Medical University, Russian Ministry of Health, 197022 St. Petersburg, Russia
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 197101 St. Petersburg, Russia
| |
Collapse
|