1
|
Müller T, Meiser E, Engstler M. ThirdPeak is a flexible tool designed for the robust analysis of two- and three-dimensional tracking data. Commun Biol 2024; 7:1683. [PMID: 39702822 DOI: 10.1038/s42003-024-07378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
Biological processes, though often imaged and visualized in two dimensions, inherently occur in at least three-dimensional space. As time-resolved volumetric imaging becomes increasingly accessible, there emerges a necessity for tools that empower non-specialists to process and interpret intricate datasets. We introduce ThirdPeak, an open-source tool tailored for the comprehensive analysis of two- and three-dimensional track data across various scales. Its versatile import and export options ensure seamless integration into established workflows, while the intuitive user interface allows for swift visualization and analysis of the data. When applied to live-cell diffusion data, this software demonstrates the benefits of integrating both 2D and 3D analysis, yielding valuable insights into the understanding of biological processes.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Cell & Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Elisabeth Meiser
- Department of Cell & Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell & Developmental Biology, Biocentre, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Maity A, Wulffelé J, Ayala I, Favier A, Adam V, Bourgeois D, Brutscher B. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306272. [PMID: 38146132 PMCID: PMC10933604 DOI: 10.1002/advs.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62, altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.
Collapse
Affiliation(s)
- Arijit Maity
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Jip Wulffelé
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Isabel Ayala
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Adrien Favier
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Virgile Adam
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Dominique Bourgeois
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Bernhard Brutscher
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| |
Collapse
|
4
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
5
|
Yeo WH, Sun C, Zhang HF. Physically informed Monte Carlo simulation of dual-wedge prism-based spectroscopic single-molecule localization microscopy. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11502. [PMID: 37795311 PMCID: PMC10546470 DOI: 10.1117/1.jbo.29.s1.s11502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Significance The dual-wedge prism (DWP)-based spectroscopic single-molecule localization microscopy (sSMLM) system offers improved localization precision and adjustable spectral or localization performance, but its nonlinear spectral dispersion presents a challenge. A systematic method can help understand the challenges and thereafter optimize the DWP system's performance by customizing the system parameters to maximize the spectral or localization performance for various molecular labels. Aim We developed a Monte Carlo (MC)-based model that predicts the imaging output of the DWP-based sSMLM system given different system parameters. Approach We assessed our MC model's localization and spectral precisions by comparing our simulation against theoretical equations and fluorescent microspheres. Furthermore, we simulated the DWP-based system using beamsplitters (BSs) with a reflectance (R):transmittance (T) of R50:T50 and R30:T70 and their tradeoffs. Results Our MC simulation showed average deviations of 2.5 and 2.1 nm for localization and spectral precisions against theoretical equations and 2.3 and 1.0 nm against fluorescent microspheres. An R30:T70 BS improved the spectral precision by 8% but worsened the localization precision by 35% on average compared with an R50:T50 BS. Conclusions The MC model accurately predicted the localization precision, spectral precision, spectral peaks, and spectral widths of fluorescent microspheres, as validated by experimental data. Our work enhances the theoretical understanding of DWP-based sSMLM for multiplexed imaging, enabling performance optimization.
Collapse
Affiliation(s)
- Wei-Hong Yeo
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| | - Cheng Sun
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois, United States
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois, United States
| |
Collapse
|
6
|
Balsollier L, Lavancier F, Salamero J, Kervrann C. A generative model to simulate spatiotemporal dynamics of biomolecules in cells. BIOLOGICAL IMAGING 2023; 3:e22. [PMID: 38510174 PMCID: PMC10951932 DOI: 10.1017/s2633903x2300020x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 03/22/2024]
Abstract
Generators of space-time dynamics in bioimaging have become essential to build ground truth datasets for image processing algorithm evaluation such as biomolecule detectors and trackers, as well as to generate training datasets for deep learning algorithms. In this contribution, we leverage a stochastic model, called birth-death-move (BDM) point process, in order to generate joint dynamics of biomolecules in cells. This particle-based stochastic simulation method is very flexible and can be seen as a generalization of well-established standard particle-based generators. In comparison, our approach allows us: (1) to model a system of particles in motion, possibly in interaction, that can each possibly switch from a motion regime (e.g., Brownian) to another (e.g., a directed motion); (2) to take into account finely the appearance over time of new trajectories and their disappearance, these events possibly depending on the cell regions but also on the current spatial configuration of all existing particles. This flexibility enables to generate more realistic dynamics than standard particle-based simulation procedures, by for example accounting for the colocalization phenomena often observed between intracellular vesicles. We explain how to specify all characteristics of a BDM model, with many practical examples that are relevant for bioimaging applications. As an illustration, based on real fluorescence microscopy datasets, we finally calibrate our model to mimic the joint dynamics of Langerin and Rab11 proteins near the plasma membrane, including the well-known colocalization occurrence between these two types of vesicles. We show that the resulting synthetic sequences exhibit comparable features as those observed in real microscopy image sequences.
Collapse
Affiliation(s)
- Lisa Balsollier
- LMJL, UMR 6629, CNRS, Nantes Université, Nantes, France
- SERPICO Project-Team, Centre INRIA de l’Université de Rennes, Rennes Cedex, France
- Institut Curie, UMR 144, CNRS, PSL Research University, Sorbonne Universités, Paris, France
| | - Frédéric Lavancier
- LMJL, UMR 6629, CNRS, Nantes Université, Nantes, France
- CREST-ENSAI, UMR CNRS 9194, Campus de Ker-Lann, Rue Blaise Pascal, Bruz Cedex, France
| | - Jean Salamero
- SERPICO Project-Team, Centre INRIA de l’Université de Rennes, Rennes Cedex, France
- Institut Curie, UMR 144, CNRS, PSL Research University, Sorbonne Universités, Paris, France
| | - Charles Kervrann
- SERPICO Project-Team, Centre INRIA de l’Université de Rennes, Rennes Cedex, France
- Institut Curie, UMR 144, CNRS, PSL Research University, Sorbonne Universités, Paris, France
| |
Collapse
|