1
|
Lu J, Wu H, Wu S, Wang S, Fan H, Ruan H, Qiao J, Caiyin Q, Wen M. Salmonella: Infection mechanism and control strategies. Microbiol Res 2025; 292:128013. [PMID: 39675139 DOI: 10.1016/j.micres.2024.128013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Salmonella is a foodborne pathogen that predominantly resides in the intestinal tract of humans and animals. Infections caused by Salmonella can lead to various illnesses, including gastroenteritis, bacteremia, septicemia, and focal infections, with severe cases potentially resulting in host mortality. The mechanisms by which Salmonella invades host cells and disseminates throughout the body are partly understood, but there are still many scientific questions to be solved. This review aims to synthesize existing research on the interactions between Salmonella and hosts, detailing a comprehensive infection mechanism from adhesion and invasion to intracellular propagation and systemic spread. Overuse of antibiotics contributes to the emergence of drug-resistant Salmonella strains. An in-depth analysis of the mechanism of Salmonella infection will provide a theoretical basis for the development of novel Salmonella control strategies. These innovative control strategies include antibiotic adjuvants, small molecules, phages, attenuated vaccines, and probiotic therapies, which show huge potential in controlling Salmonella infection.
Collapse
Affiliation(s)
- Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Mingzhang Wen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing 312300, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Zhang S, Ruan W, Guan J. Single-atom nanozymes for antibacterial applications. Food Chem 2024; 456:140094. [PMID: 38908326 DOI: 10.1016/j.foodchem.2024.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Bacteria have always been a thorny problem that threatens human health and food safety. Conventional antibiotic treatment often leads to the emergence of drug resistance. Therefore, the development of more effective antibacterial agents is urgently needed. Single-atom nanozymes (SAzymes) can efficiently eliminate bacteria due to their high atomic utilization, abundant active centers, and good natural enzyme mimicry, providing a potential alternative choice for antibiotics in antibacterial applications. Here, the antibacterial applications of SAzymes are reviewed and their catalytic properties are discussed from the aspects of active sites, coordination environment regulation and carrier selection. Then, the antibacterial effect of SAzymes is elaborated in combination with photothermal therapy (PTT) and sonodynamic therapy (SDT). Finally, the problems faced by SAzymes in antibacterial applications and their future development potential are proposed.
Collapse
Affiliation(s)
- Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China
| | - Weidong Ruan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China.
| |
Collapse
|
3
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Singh M, Chandra D, Jagdish S, Nandi D. Global transcriptome analysis reveals Salmonella Typhimurium employs nitrate metabolism to combat bile stress. FEBS Lett 2024; 598:1605-1619. [PMID: 38503554 DOI: 10.1002/1873-3468.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Salmonella Typhimurium is an enteric pathogen that is highly tolerant to bile. Next-generation mRNA sequencing was performed to analyze the adaptive responses to bile in two S. Typhimurium strains: wild type (WT) and a mutant lacking cold shock protein E (ΔcspE). CspE is an RNA chaperone which is crucial for survival of S. Typhimurium during bile stress. This study identifies transcriptional responses in bile-tolerant WT and bile-sensitive ΔcspE. Upregulation of several genes involved in nitrate metabolism was observed, including fnr, a global regulator of nitrate metabolism. Notably, Δfnr was susceptible to bile stress. Also, complementation with fnr lowered reactive oxygen species and enhanced the survival of bile-sensitive ΔcspE. Importantly, intracellular nitrite amounts were highly induced in bile-treated WT compared to ΔcspE. Also, the WT strain pre-treated with nitrate displayed better growth with bile. These results demonstrate that nitrate-dependent metabolism promotes adaptation of S. Typhimurium to bile.
Collapse
Affiliation(s)
- Madhulika Singh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Deepti Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sirisha Jagdish
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Girón-Pérez DA, Espinoza-Gonzalez HD, Murillo Cisneros JA, Covantes-Rosales CE, Toledo-Ibarra GA, Díaz-Resendiz KJG, Barcelos-García RG, Benitez-Trinidad AB, Girón-Pérez MI. Diazoxon exposure increases susceptibility to infection by Salmonella Typhimurium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-12. [PMID: 38842028 DOI: 10.1080/09603123.2024.2363475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Various exogenous factors, such as microbiological and chemical contamination condition food security. Salmonella Typhimurium (S. Typhimurium) is the cause of salmonellosis. This bacterium utilizes phagocytosis to create bacterial reservoirs. On the other hand, exposure to chemical contaminants, such as pesticides, increases susceptibility to numerous infections. Therefore, this research aims to evaluate the effect of co-exposure to diazoxon and S. Typhimurium on the in vitro infection dynamics. For this purpose, human mononuclear cells were pre-exposed in vitro to diazoxon and then challenged with S. Typhimurium at 1, 8, and 24 h. Bacterial internalization, actin polymerization, and reactive oxygen species (ROS) were analyzed. Obtained data show that mononuclear cells previously exposed to diazoxon exhibit greater internalization of S. Typhimurium. Likewise, greater ROS production and an increase in actin polymerization were observed. Therefore, in the proposed scenario, obtained data suggest that co-exposure to diazoxon and S. Typhimurium increases susceptibility to acquiring an illness.
Collapse
Affiliation(s)
- Daniel Alberto Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | | | | | - Carlos Eduardo Covantes-Rosales
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Gladys Alejandra Toledo-Ibarra
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Karina Janice Guadalupe Díaz-Resendiz
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Rocío Guadalupe Barcelos-García
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Alma Betsaida Benitez-Trinidad
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| | - Manuel Iván Girón-Pérez
- Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA)-Nayarit, Universidad Autónoma de Nayarit, Tepic, Nayarit, México
- Licenciatura en Biomedicina Ambiental Traslacional (LIBAT), Universidad Autónoma de Nayarit, Tepic, Nayarit, México
| |
Collapse
|
6
|
Liu X, Liu Y, Zhao X, Li X, Yao T, Liu R, Wang Q, Wang Q, Li D, Chen X, Liu B, Feng L. Salmonella enterica serovar Typhimurium remodels mitochondrial dynamics of macrophages via the T3SS effector SipA to promote intracellular proliferation. Gut Microbes 2024; 16:2316932. [PMID: 38356294 PMCID: PMC10877990 DOI: 10.1080/19490976.2024.2316932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Abstract
Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.
Collapse
Affiliation(s)
- Xingmei Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Yutao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xinyu Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xueping Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Ting Yao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Ruiying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Qian Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Qiushi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Xintong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute, Nankai University Shenzhen, Shenzhen, China
| | - Lu Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Yan J, Yang B, Xue X, Li J, Li Y, Li A, Ding P, Cao B. Transcriptome Analysis Reveals the Effect of PdhR in Plesiomonas shigelloides. Int J Mol Sci 2023; 24:14473. [PMID: 37833920 PMCID: PMC10572922 DOI: 10.3390/ijms241914473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The pyruvate dehydrogenase complex regulator (PdhR) was originally identified as a repressor of the pdhR-aceEF-lpd operon, which encodes the pyruvate dehydrogenase complex (PDHc) and PdhR itself. According to previous reports, PdhR plays a regulatory role in the physiological and metabolic pathways of bacteria. At present, the function of PdhR in Plesiomonas shigelloides is still poorly understood. In this study, RNA sequencing (RNA-Seq) of the wild-type strain and the ΔpdhR mutant strains was performed for comparison to identify the PdhR-controlled pathways, revealing that PdhR regulates ~7.38% of the P. shigelloides transcriptome. We found that the deletion of pdhR resulted in the downregulation of practically all polar and lateral flagella genes in P. shigelloides; meanwhile, motility assay and transmission electron microscopy (TEM) confirmed that the ΔpdhR mutant was non-motile and lacked flagella. Moreover, the results of RNA-seq and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) showed that PdhR positively regulated the expression of the T3SS cluster, and the ΔpdhR mutant significantly reduced the ability of P. shigelloides to infect Caco-2 cells compared with the WT. Consistent with previous research, pyruvate-sensing PdhR directly binds to its promoter and inhibits pdhR-aceEF-lpd operon expression. In addition, we identified two additional downstream genes, metR and nuoA, that are directly negatively regulated by PdhR. Furthermore, we also demonstrated that ArcA was identified as being located upstream of pdhR and lpdA and directly negatively regulating their expression. Overall, we revealed the function and regulatory pathway of PdhR, which will allow for a more in-depth investigation into P. shigelloides pathogenicity as well as the complex regulatory network.
Collapse
Affiliation(s)
- Junxiang Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Xinke Xue
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Jinghao Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Yuehua Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300353, China
- College of Pharmacy Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Peng Ding
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| | - Boyang Cao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Nankai University, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, TEDA College, Nankai University, Tianjin 300457, China
| |
Collapse
|