1
|
Kujala MV, Parkkonen L, Kujala J. Empathy enhances decoding accuracy of human neurophysiological responses to emotional facial expressions of humans and dogs. Soc Cogn Affect Neurosci 2024; 19:nsae082. [PMID: 39508559 PMCID: PMC11587893 DOI: 10.1093/scan/nsae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024] Open
Abstract
Despite the growing interest in the nonhuman animal emotionality, we currently know little about the human brain processing of nonconspecific emotional expressions. Here, we characterized the millisecond-scale temporal dynamics of human brain responses to conspecific human and nonconspecific canine emotional facial expressions. Our results revealed generally similar cortical responses to human and dog facial expressions in the occipital cortex during the first 500 ms, temporal cortex at 100-500 ms and parietal cortex at 150-350 ms from the stimulus onset. Responses to dog faces were pronounced at the latencies in temporal cortices corresponding to the time windows of early posterior negativity and late posterior positivity, suggesting attentional engagement to emotionally salient stimuli. We also utilized support vector machine-based classifiers to discriminate between the brain responses to different images. The subject trait-level empathy correlated with the accuracy of classifying the brain responses of aggressive from happy dog faces and happy from neutral human faces. This result likely reflects the attentional enhancement provoked by the subjective ecological salience of the stimuli.
Collapse
Affiliation(s)
- Miiamaaria V Kujala
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, PO Box 35, Jyvaskyla FI-40014, Finland
- Faculty of Veterinary Medicine, University of Helsinki, PO Box 57, Helsinki FI-00014, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, PO Box 12200, Espoo FI-00076, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, PO Box 12200, Espoo FI-00076, Finland
| | - Jan Kujala
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, PO Box 35, Jyvaskyla FI-40014, Finland
| |
Collapse
|
2
|
Reilly OT, Somerville LH, Hecht EE. Mechanisms of Social Attachment Between Children and Pet Dogs. Animals (Basel) 2024; 14:3036. [PMID: 39457966 PMCID: PMC11505475 DOI: 10.3390/ani14203036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
An increasing body of evidence indicates that owning a pet dog is associated with improvements in child health and well-being. Importantly, the degree of the social bond between child and dog may mediate the beneficial outcomes of dog ownership. The formation of social bonds is an intrinsically dyadic, interactive process where each interactor's behavior influences the other's behavior. For this reason, it is critical to evaluate the biological mechanisms of attachment in both children and their pet dogs as a socially bonded pair. Here, we review the physical, mental, and emotional outcomes that are associated with pet dog ownership or interaction in children. We then discuss the evidence that suggests that the strength of a social bond between a child and their pet dog matters for maximizing the beneficial outcomes associated with pet dog ownership, such as possible stress-buffering effects. We review the existing literature on the neural and endocrinological mechanisms of social attachment for inter-species social bonds that form between human children and dogs, situating this emerging knowledge within the context of the mechanisms of intra-species bonds in mammals. Finally, we highlight the remaining open questions and point toward directions for future research.
Collapse
Affiliation(s)
- Olivia T. Reilly
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA;
| | - Leah H. Somerville
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA;
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Erin E. Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
| |
Collapse
|
3
|
Barton SA, Kent M, Hecht EE. Covariation of Skull and Brain Morphology in Domestic Dogs. J Comp Neurol 2024; 532:e25668. [PMID: 39268838 DOI: 10.1002/cne.25668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Despite their distinct embryonic origins, the skull and brain are highly integrated. Understanding the covariation between the skull and brain can shed light on anatomical, cognitive, and behavioral traits in extant and extinct species. Domestic dogs offer a unique opportunity to investigate skull-brain covariation due to their diverse skull morphologies and neural anatomy. To assess this question, we examined T2-weighted MRI studies of 62 dogs from 33 breeds, plus an additional 17 dogs of mixed or unknown breeds. Scans were opportunistically collected from a veterinary teaching hospital of dogs that were referred for neurological examination but did not have grossly observable structural brain abnormalities. As the neurocrania of dogs become broader and shorter, there is a significant decrease in the gray matter volume of the right olfactory bulb, frontal cortex, marginal gyrus, and cerebellum. On the other hand, as the neurocrania of dogs become narrower and longer, there is a significant decrease in the gray matter volume of the olfactory bulb, frontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, periaqueductal gray, cerebellum, and brainstem. Selective breeding for specific skull shapes may impact canine brain anatomy and function.
Collapse
Affiliation(s)
- Sophie A Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Marc Kent
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Inglis FM, Taylor PA, Andrews EF, Pascalau R, Voss HU, Glen DR, Johnson PJ. A diffusion tensor imaging white matter atlas of the domestic canine brain. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-21. [PMID: 39301427 PMCID: PMC11409835 DOI: 10.1162/imag_a_00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
There is increasing reliance on magnetic resonance imaging (MRI) techniques in both research and clinical settings. However, few standardized methods exist to permit comparative studies of brain pathology and function. To help facilitate these studies, we have created a detailed, MRI-based white matter atlas of the canine brain using diffusion tensor imaging. This technique, which relies on the movement properties of water, permits the creation of a three-dimensional diffusivity map of white matter brain regions that can be used to predict major axonal tracts. To generate an atlas of white matter tracts, thirty neurologically and clinically normal dogs underwent MRI imaging under anesthesia. High-resolution, three-dimensional T1-weighted sequences were collected and averaged to create a population average template. Diffusion-weighted imaging sequences were collected and used to generate diffusivity maps, which were then registered to the T1-weighted template. Using these diffusivity maps, individual white matter tracts-including association, projection, commissural, brainstem, olfactory, and cerebellar tracts-were identified with reference to previous canine brain atlas sources. To enable the use of this atlas, we created downloadable overlay files for each white matter tract identified using manual segmentation software. In addition, using diffusion tensor imaging tractography, we created tract files to delineate major projection pathways. This comprehensive white matter atlas serves as a standard reference to aid in the interpretation of quantitative changes in brain structure and function in clinical and research settings.
Collapse
Affiliation(s)
- Fiona M Inglis
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Erica F Andrews
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Raluca Pascalau
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Henning U Voss
- Cornell Magnetic Resonance Imaging Facility, College of Human Ecology, Cornell University, Cornell, Ithaca, NY, United States
| | - Daniel R Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Philippa J Johnson
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
5
|
Boch M, Huber L, Lamm C. Domestic dogs as a comparative model for social neuroscience: Advances and challenges. Neurosci Biobehav Rev 2024; 162:105700. [PMID: 38710423 PMCID: PMC7616343 DOI: 10.1016/j.neubiorev.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Dogs and humans have lived together for thousands of years and share many analogous socio-cognitive skills. Dog neuroimaging now provides insight into the neural bases of these shared social abilities. Here, we summarize key findings from dog fMRI identifying neocortical brain areas implicated in visual social cognition, such as face, body, and emotion perception, as well as action observation in dogs. These findings provide converging evidence that the temporal cortex plays a significant role in visual social cognition in dogs. We further briefly review investigations into the neural base of the dog-human relationship, mainly involving limbic brain regions. We then discuss current challenges in the field, such as statistical power and lack of common template spaces, and how to overcome them. Finally, we argue that the foundation has now been built to investigate and compare the neural bases of more complex socio-cognitive phenomena shared by dogs and humans. This will strengthen and expand the role of the domestic dog as a powerful comparative model species and provide novel insights into the evolutionary roots of social cognition.
Collapse
Affiliation(s)
- Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria.
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna 1210, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna 1010, Austria
| |
Collapse
|
6
|
Guran CNA, Boch M, Sladky R, Lonardo L, Karl S, Huber L, Lamm C. Functional mapping of the somatosensory cortex using noninvasive fMRI and touch in awake dogs. Brain Struct Funct 2024; 229:1193-1207. [PMID: 38642083 PMCID: PMC11147932 DOI: 10.1007/s00429-024-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/29/2024] [Indexed: 04/22/2024]
Abstract
Dogs are increasingly used as a model for neuroscience due to their ability to undergo functional MRI fully awake and unrestrained, after extensive behavioral training. Still, we know rather little about dogs' basic functional neuroanatomy, including how basic perceptual and motor functions are localized in their brains. This is a major shortcoming in interpreting activations obtained in dog fMRI. The aim of this preregistered study was to localize areas associated with somatosensory processing. To this end, we touched N = 22 dogs undergoing fMRI scanning on their left and right flanks using a wooden rod. We identified activation in anatomically defined primary and secondary somatosensory areas (SI and SII), lateralized to the contralateral hemisphere depending on the side of touch, and importantly also activation beyond SI and SII, in the cingulate cortex, right cerebellum and vermis, and the sylvian gyri. These activations may partly relate to motor control (cerebellum, cingulate), but also potentially to higher-order cognitive processing of somatosensory stimuli (rostral sylvian gyri), and the affective aspects of the stimulation (cingulate). We also found evidence for individual side biases in a vast majority of dogs in our sample, pointing at functional lateralization of somatosensory processing. These findings not only provide further evidence that fMRI is suited to localize neuro-cognitive processing in dogs, but also expand our understanding of in vivo touch processing in mammals, beyond classically defined primary and secondary somatosensory cortices.
Collapse
Affiliation(s)
- C-N Alexandrina Guran
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
| | - Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Lucrezia Lonardo
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Sabrina Karl
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Lonardo L, Völter CJ, Hepach R, Lamm C, Huber L. Do dogs preferentially encode the identity of the target object or the location of others' actions? Anim Cogn 2024; 27:28. [PMID: 38553650 PMCID: PMC10980658 DOI: 10.1007/s10071-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The ability to make sense of and predict others' actions is foundational for many socio-cognitive abilities. Dogs (Canis familiaris) constitute interesting comparative models for the study of action perception due to their marked sensitivity to human actions. We tested companion dogs (N = 21) in two screen-based eye-tracking experiments, adopting a task previously used with human infants and apes, to assess which aspects of an agent's action dogs consider relevant to the agent's underlying intentions. An agent was shown repeatedly acting upon the same one of two objects, positioned in the same location. We then presented the objects in swapped locations and the agent approached the objects centrally (Experiment 1) or the old object in the new location or the new object in the old location (Experiment 2). Dogs' anticipatory fixations and looking times did not reflect an expectation that agents should have continued approaching the same object nor the same location as witnessed during the brief familiarization phase; this contrasts with some findings with infants and apes, but aligns with findings in younger infants before they have sufficient motor experience with the observed action. However, dogs' pupil dilation and latency to make an anticipatory fixation suggested that, if anything, dogs expected the agents to keep approaching the same location rather than the same object, and their looking times showed sensitivity to the animacy of the agents. We conclude that dogs, lacking motor experience with the observed actions of grasping or kicking performed by a human or inanimate agent, might interpret such actions as directed toward a specific location rather than a specific object. Future research will need to further probe the suitability of anticipatory looking as measure of dogs' socio-cognitive abilities given differences between the visual systems of dogs and primates.
Collapse
Affiliation(s)
- Lucrezia Lonardo
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Veterinärplatz 1, Vienna, 1210, Austria.
| | - Christoph J Völter
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Veterinärplatz 1, Vienna, 1210, Austria
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Robert Hepach
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, 1010, Austria
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine of Vienna, Medical University of Vienna and University of Vienna, Veterinärplatz 1, Vienna, 1210, Austria
| |
Collapse
|
8
|
Berg P, Mappes T, Kujala MV. Olfaction in the canine cognitive and emotional processes: From behavioral and neural viewpoints to measurement possibilities. Neurosci Biobehav Rev 2024; 157:105527. [PMID: 38160722 DOI: 10.1016/j.neubiorev.2023.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Domestic dogs (Canis familiaris) have excellent olfactory processing capabilities that are utilized widely in human society e.g., working with customs, police, and army; their scent detection is also used in guarding, hunting, mold-sniffing, searching for missing people or animals, and facilitating the life of the disabled. Sniffing and searching for odors is a natural, species-typical behavior and essential for the dog's welfare. While taking advantage of this canine ability widely, we understand its foundations and implications quite poorly. We can improve animal welfare by better understanding their olfactory world. In this review, we outline the olfactory processing of dogs in the nervous system, summarize the current knowledge of scent detection and differentiation; the effect of odors on the dogs' cognitive and emotional processes and the dog-human bond; and consider the methodological advancements that could be developed further to aid in our understanding of the canine world of odors.
Collapse
Affiliation(s)
- Päivi Berg
- Department of Biological and Environmental Science, Faculty of Mathematics and Science, University of Jyväskylä, PO BOX 35, FI-40014, Finland; Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, PO BOX 35, FI-40014, Finland,.
| | - Tapio Mappes
- Department of Biological and Environmental Science, Faculty of Mathematics and Science, University of Jyväskylä, PO BOX 35, FI-40014, Finland
| | - Miiamaaria V Kujala
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, PO BOX 35, FI-40014, Finland,; Faculty of Veterinary Medicine, University of Helsinki, PO BOX 57, FI-00014, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
| |
Collapse
|