1
|
Sun Y, Zhao Y, Xie X, Li H, Feng W. Printed polymer platform empowering machine-assisted chemical synthesis in stacked droplets. Nat Commun 2024; 15:6759. [PMID: 39117641 PMCID: PMC11310347 DOI: 10.1038/s41467-024-50768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Efficiently exploring organic molecules through multi-step processes demands a transition from conventional laboratory synthesis to automated systems. Existing platforms for machine-assistant synthetic workflows compatible with multiple liquid-phases require substantial engineering investments for setup, thereby hindering quick customization and throughput increasement. Here we present a droplet-based chip that facilitates the self-organization of various liquid phases into stacked layers for conducting chemical transformations. The chip's precision polymer printing capability, enabled by digital micromirror device (DMD)-maskless photolithography and dual post-chemical modifications, allows it to create customized, sub-10 µm featured patterns to confine diverse liquids, regardless of density, within each droplet. The robustness and open design of surface-templated liquid layers actualize machine-assistant droplet manipulation, synchronous reaction triggering, local oscillation, and real-time monitoring of individual layers into a reality. We propose that, with further integration of machine operation line and self-learning, this droplet-based platform holds the potential to become a valuable addition to the toolkit of chemistry process, operating autonomously and with high-throughput.
Collapse
Affiliation(s)
- Yingxue Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanyi Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Hongjiao Li
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China.
- Department State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Guan F, Wen J. Flash Organometallic Catalysis Uncovered by Continuous Microfluidic Devices. Chempluschem 2024; 89:e202300646. [PMID: 38291001 DOI: 10.1002/cplu.202300646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The flash organometallic catalysis is a new concept that refers to the study of fast and controlled organometallic catalytic reactions by using microfluidic devices. Flash reactions' kinetics (ms-s scale) is often ignored due to the lack of proper research tool in organometallic chemistry. The development of microfluidic systems offers the opportunity to discover under-studied mechanisms and new reactions. In this concept, the basic theory of kinetic measurement in a microreactor is briefly reviewed and then two examples on studying flash organometallic catalytic transformation are introduced. One example is the discovery of a highly active palladium catalytic species for Suzuki Coupling and the other example is the study of a neglected isomerization catalytic cycle with a time scale of seconds before isomerization-hydroformylation by customized microfluidic devices. The last part is summary and prospect of this new area. Customizing a microfluidic device with good engineering design for a target reaction supports flash reactions' kinetic experimentation and could become a general strategy in chemistry lab.
Collapse
Affiliation(s)
- Fanfu Guan
- Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000, China
| | - Jialin Wen
- Department of Chemical Process R&D, Lianyungang Institute of Research, Jiangsu Hengrui Pharmaceuticals Co., Ltd., 7 Kunlunshan Road, Lianyungang, 222000, China
| |
Collapse
|
3
|
Kamio S, Okamoto K, Yamagishi T, Nagaki A. Synthesis of Deuterated Compounds by Flow Chemistry. Chempluschem 2024; 89:e202300744. [PMID: 38450881 DOI: 10.1002/cplu.202300744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Development of the efficient and practical method for the synthesis of deuterated compounds which occupies the broadest area among stable isotopes is one of the most essential issues toward the industrial advance and building a sustainable society. This review describes recent advances in deuteration reactions, where the continuous flow chemistry plays pivotal roles for the successful installation of deuterium atom into diverse organic frameworks, opening new fields of isotope-based synthetic chemistry.
Collapse
Affiliation(s)
- Shintaro Kamio
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 006-8585, Sapporo, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| | - Takehiro Yamagishi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 006-8585, Sapporo, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, 060-0810, Sapporo, Japan
| |
Collapse
|
4
|
Yu J, Liu J, Li C, Huang J, Zhu Y, You H. Recent advances and applications in high-throughput continuous flow. Chem Commun (Camb) 2024; 60:3217-3225. [PMID: 38436212 DOI: 10.1039/d3cc06180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
High-throughput continuous flow technology has emerged as a revolutionary approach in chemical synthesis, offering accelerated experimentation and improved efficiency. With the aid of process analytical technology and automation, this system not only enables rapid optimisation of reaction conditions at the millimole to the picomole scale, but also facilitates automated scale-up synthesis. It can even achieve the self-planning and self-synthesis of small drug molecules with artificial intelligence incorporated in the system. The versatility of the system is highlighted by its compatibility with both electrochemistry and photochemistry, and its significant applications in organic synthesis and drug discovery. This highlight summarises its recent developments and applications, emphasising its significant impact on advancing research across multiple disciplines.
Collapse
Affiliation(s)
- Jiaping Yu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Jiaying Liu
- Institute of Advanced Technology of Heilongjiang Academy of Sciences, Harbin, 150000, China
| | - Chaoyi Li
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Yuxiang Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- Green Pharmaceutical Engineering Research Centre, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
5
|
Ashikari Y, Yoshioka R, Yonekura Y, Yoo DE, Okamoto K, Nagaki A. Flowmicro In-Line Analysis-Driven Design of Reactions mediated by Unstable Intermediates: Flash Monitoring Approach. Chemistry 2024:e202303774. [PMID: 38216535 DOI: 10.1002/chem.202303774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
The direct observation of reactive intermediates is an important issue for organic synthesis. However, intermediates with an extreme instability are hard to be monitored by common spectroscopic methods such as FTIR. We have developed synthetic method utilizing flow microreactors, which enables a generation and reactions of unstable intermediates. Herein we report that, based on our flowmicro techniques, we developed an in-line analysis method for reactive intermediates in increments of milliseconds. We demonstrated the direct observation of the living and dead species of the anionic polymerization of alkyl methacrylates. The direct information of the living species enabled the anionic polymerization and copolymerization of oligo(ethylene glycol) methyl ether methacrylates, which is the important but difficult reaction in the conventional method.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Rikako Yoshioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Yuya Yonekura
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
- TOHO Chemical Industry Co., Ltd., 5-2931 Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Dong-Eun Yoo
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Kazuhiro Okamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10 Nishi-8 Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|
6
|
Voinarovska V, Kabeshov M, Dudenko D, Genheden S, Tetko IV. When Yield Prediction Does Not Yield Prediction: An Overview of the Current Challenges. J Chem Inf Model 2024; 64:42-56. [PMID: 38116926 PMCID: PMC10778086 DOI: 10.1021/acs.jcim.3c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Machine Learning (ML) techniques face significant challenges when predicting advanced chemical properties, such as yield, feasibility of chemical synthesis, and optimal reaction conditions. These challenges stem from the high-dimensional nature of the prediction task and the myriad essential variables involved, ranging from reactants and reagents to catalysts, temperature, and purification processes. Successfully developing a reliable predictive model not only holds the potential for optimizing high-throughput experiments but can also elevate existing retrosynthetic predictive approaches and bolster a plethora of applications within the field. In this review, we systematically evaluate the efficacy of current ML methodologies in chemoinformatics, shedding light on their milestones and inherent limitations. Additionally, a detailed examination of a representative case study provides insights into the prevailing issues related to data availability and transferability in the discipline.
Collapse
Affiliation(s)
- Varvara Voinarovska
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
- TUM
Graduate School, Faculty of Chemistry, Technical
University of Munich, 85748 Garching, Germany
| | - Mikhail Kabeshov
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Dmytro Dudenko
- Enamine
Ltd., 78 Chervonotkatska str., 02094 Kyiv, Ukraine
| | - Samuel Genheden
- Molecular
AI, Discovery Sciences R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Igor V. Tetko
- Molecular
Targets and Therapeutics Center, Helmholtz Munich − Deutsches
Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Structural Biology, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Eyke NS, Schneider TN, Jin B, Hart T, Monfette S, Hawkins JM, Morse PD, Howard RM, Pfisterer DM, Nandiwale KY, Jensen KF. Parallel multi-droplet platform for reaction kinetics and optimization. Chem Sci 2023; 14:8798-8809. [PMID: 37621435 PMCID: PMC10445457 DOI: 10.1039/d3sc02082g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
We present an automated droplet reactor platform possessing parallel reactor channels and a scheduling algorithm that orchestrates all of the parallel hardware operations and ensures droplet integrity as well as overall efficiency. We design and incorporate all of the necessary hardware and software to enable the platform to be used to study both thermal and photochemical reactions. We incorporate a Bayesian optimization algorithm into the control software to enable reaction optimization over both categorical and continuous variables. We demonstrate the capabilities of both the preliminary single-channel and parallelized versions of the platform using a series of model thermal and photochemical reactions. We conduct a series of reaction optimization campaigns and demonstrate rapid acquisition of the data necessary to determine reaction kinetics. The platform is flexible in terms of use case: it can be used either to investigate reaction kinetics or to perform reaction optimization over a wide range of chemical domains.
Collapse
Affiliation(s)
- Natalie S Eyke
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Timo N Schneider
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Brooke Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Travis Hart
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sebastien Monfette
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - Joel M Hawkins
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - Peter D Morse
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - Roger M Howard
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - David M Pfisterer
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | | | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
8
|
Yim S, Oh H, Choi Y, Ahn G, Park C, Kim YH, Ryu J, Kim D. Modular Flow Reactors for Valorization of Kraft Lignin and Low-Voltage Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204170. [PMID: 36285674 PMCID: PMC9762309 DOI: 10.1002/advs.202204170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Indexed: 05/22/2023]
Abstract
Recent studies have found that green hydrogen production and biomass utilization technologies can be combined to efficiently produce both hydrogen and value-added chemicals using biomass as an electron and proton source. However, the majority of them have been limited to proof-of-concept demonstrations based on batch systems. Here the authors report the design of modular flow systems for the continuous depolymerization and valorization of lignin and low-voltage hydrogen production. A redox-active phosphomolybdic acid is used as a catalyst to depolymerize lignin with the production of aromatic compounds and extraction of electrons for hydrogen production. Individual processes for lignin depolymerization, byproduct separation, and hydrogen production with catalyst reactivation are modularized and integrated to perform the entire process in the serial flow. Consequently, this work enabled a one-flow process from biomass conversion to hydrogen gas generation under a cyclic loop. In addition, the unique advantages of the fluidic system (i.e., effective mass and heat transfer) substantially improved the yield and efficiency, leading to hydrogen production at a higher current density (20.5 mA cm-2 ) at a lower voltage (1.5 V) without oxygen evolution. This sustainable eco-chemical platform envisages scalable co-production of valuable chemicals and green hydrogen for industrial purposes in an energy-saving and safe manner.
Collapse
Affiliation(s)
- Se‐Jun Yim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Hyeonmyeong Oh
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Emergent Hydrogen Technology R&D CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Yuri Choi
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Emergent Hydrogen Technology R&D CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Gwang‐Noh Ahn
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Chae‐Hyeon Park
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yong Hwan Kim
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Jungki Ryu
- Department of Energy EngineeringSchool of Energy and Chemical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Emergent Hydrogen Technology R&D CenterUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
- Graduate School of Carbon NeutralityUlsan National Institute of Science and Technology (UNIST)Ulsan44919Republic of Korea
| | - Dong‐Pyo Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| |
Collapse
|
9
|
Volk AA, Campbell ZS, Ibrahim MYS, Bennett JA, Abolhasani M. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. Annu Rev Chem Biomol Eng 2022; 13:45-72. [PMID: 35259931 DOI: 10.1146/annurev-chembioeng-092120-024449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microfluidic devices and systems have entered many areas of chemical engineering, and the rate of their adoption is only increasing. As we approach and adapt to the critical global challenges we face in the near future, it is important to consider the capabilities of flow chemistry and its applications in next-generation technologies for sustainability, energy production, and tailor-made specialty chemicals. We present the introduction of microfluidics into the fundamental unit operations of chemical engineering. We discuss the traits and advantages of microfluidic approaches to different reactive systems, both well-established and emerging, with a focus on the integration of modular microfluidic devices into high-efficiency experimental platforms for accelerated process optimization and intensified continuous manufacturing. Finally, we discuss the current state and new horizons in self-driven experimentation in flow chemistry for both intelligent exploration through the chemical universe and distributed manufacturing. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amanda A Volk
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Zachary S Campbell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Malek Y S Ibrahim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Jeffrey A Bennett
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| | - Milad Abolhasani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; , , , ,
| |
Collapse
|
10
|
Ashikari Y, Tamaki T, Takahashi Y, Yao Y, Atobe M, Nagaki A. Investigation of Parameter Control for Electrocatalytic Semihydrogenation in a Proton-Exchange Membrane Reactor Utilizing Bayesian Optimization. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.819752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Owing to its applicability in sustainable engineering, flow electrochemical synthesis in a proton-exchange membrane (PEM) reactor has attracted considerable attention. Because the reactions in PEM reactors are performed under electro-organic and flow-synthetic conditions, a higher number of reaction parameters exist compared to ordinary reactions. Thus, the optimization of such reactions requires significant amounts of energy, time, chemical and human resources. Herein, we show that the optimization of alkyne semihydrogenation in PEM reactors can be facilitated by means of Bayesian optimization, an applied mathematics strategy. Applying the optimized conditions, we also demonstrate the generation of a deuterated Z-alkene.
Collapse
|
11
|
Kang JH, Ahn GN, Lee H, Yim SJ, Lahore S, Lee HJ, Kim H, Kim JT, Kim DP. Scalable Subsecond Synthesis of Drug Scaffolds via Aryllithium Intermediates by Numbered-up 3D-Printed Metal Microreactors. ACS CENTRAL SCIENCE 2022; 8:43-50. [PMID: 35106371 PMCID: PMC8796307 DOI: 10.1021/acscentsci.1c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Indexed: 05/10/2023]
Abstract
Continuous-flow microreactors enable ultrafast chemistry; however, their small capacity restricts industrial-level productivity of pharmaceutical compounds. In this work, scale-up subsecond synthesis of drug scaffolds was achieved via a 16 numbered-up printed metal microreactor (16N-PMR) assembly to render high productivity up to 20 g for 10 min operation. Initially, ultrafast synthetic chemistry of unstable lithiated intermediates in the halogen-lithium exchange reactions of three aryl halides and subsequent reactions with diverse electrophiles were carried out using a single microreactor (SMR). Larger production of the ultrafast synthesis was achieved by devising a monolithic module of 4 numbered-up 3D-printed metal microreactor (4N-PMR) that was integrated by laminating four SMRs and four bifurcation flow distributors in a compact manner. Eventually, the 16N-PMR system for the scalable subsecond synthesis of three drug scaffolds was assembled by stacking four monolithic modules of 4N-PMRs.
Collapse
Affiliation(s)
- Ji-Ho Kang
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Gwang-Noh Ahn
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Heekwon Lee
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Se-Jun Yim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Santosh Lahore
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| | - Hyune-Jea Lee
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Heejin Kim
- Department
of Chemistry, College of Science, Korea
University, Seoul 02841, Republic of Korea
| | - Ji Tae Kim
- Department
of Mechanical Engineering, The University
of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dong-Pyo Kim
- Center
for Intelligent Microprocess of Pharmaceutical Synthesis, Department
of Chemical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
| |
Collapse
|
12
|
Kim DP, Sharma BM, Nikam AV, Lahore S, Ahn GN. Cyanide-Free Cyanation of sp2 and sp-Carbons by Oxazole based Masked CN Source Using Flow Microreactors. Chemistry 2021; 28:e202103777. [PMID: 34963029 DOI: 10.1002/chem.202103777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/10/2022]
Abstract
We herein report a cyanide-free continuous-flow process for cyanation of sp 2 and sp carbons to synthesize aryl, vinyl and acetylenic nitriles from (5-methyl-2-phenyloxazol-4-yl) boronic acid [OxBA] reagent as a sole source of carbon-bound masked -CN source. Non-toxic and stable OxBA reagent is generated by lithiation-borylation of bromo-oxazole, and the consecutive Suzuki-Miyaura cross-coupling with aryl, vinyl, or acetylenic halides and demasking [4 + 2]/retro-[4 + 2] sequence were successfully accomplished to give the desired cyano compounds with reasonably good yields in a four-step flow manner. A unique feature of this cyanation protocol in flow enables to cyanate a variety of sp 2 and sp carbons to produce a broad spectrum of aryl acetonitrile. It is envisaged that the OxBA based cyanation would replace existing unstable and toxic approaches as well as non-toxic cyanation using two different sources of "C" and "N" to incorporate the -CN group.
Collapse
Affiliation(s)
- Dong-Pyo Kim
- Pohang University of Science and Technology, chemical engineering, san 31, Hyoja-dong, Nam-gu, 790-784, Pohang, KOREA, REPUBLIC OF
| | - Brijesh M Sharma
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| | - Arun V Nikam
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| | - Santosh Lahore
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| | - Gwang-Noh Ahn
- Pohang Gonggwa Daehakgyo Sinsojae Gonghakgwa: Pohang University of Science and Technology Department of Materials Science and Engineering, Department of Chemical Engineering, KOREA, REPUBLIC OF
| |
Collapse
|
13
|
Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Switchable Chemoselectivity of Reactive Intermediates Formation and Their Direct Use in A Flow Microreactor. Chemistry 2021; 27:16107-16111. [PMID: 34549843 DOI: 10.1002/chem.202103183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 11/10/2022]
Abstract
A chemoselectivity switchable microflow reaction was developed to generate reactive and unstable intermediates. The switchable chemoselectivity of this reaction enables a selection for one of two different intermediates, an aryllithium or a benzyl lithium, at will from the same starting material. Starting from bromo-substituted styrenes, the aryllithium intermediates were converted to the substituted styrenes, whereas the benzyl lithium intermediates were engaged in an anionic polymerization. These chemoselectivity-switchable reactions can be integrated to produce polymers that cannot be formed during typical polymerization reactions.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Takashi Tamaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Tomoko Kawaguchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Mai Furusawa
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Yuya Yonekura
- TOHO Chemical Industry Co., Ltd., 5-2931, Urago-cho, Yokosuka, Kanagawa, 237-0062, Japan
| | - Susumu Ishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yusuke Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Yoko Aizawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku Kyoto, 615-8510, Japan
| |
Collapse
|