1
|
Borocci S, Grandinetti F, Sanna N, Zazza C. Noble Gas Anions: An Overview of Strategies and Bonding Motifs. Chem Asian J 2024; 19:e202400191. [PMID: 38735841 DOI: 10.1002/asia.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
This review article aims to provide an overview of the strategies employed to prepare noble gas anions under different environments and experimental conditions, and of the bonding motifs typically occurring in these species. Observed systems include anions fixed into synthesized salts, detected in the gas phase or in high-pressure devices. The major role of the theoretical calculations is also highlighted, not only in support of the experiments, but also as effective in predicting still unreported species. The chemistry of noble gas anions overall appears as a varied and rich paint, offering fascinating opportunities for both experimentalists and theoreticians.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100, Viterbo, Italy
- Istituto per i Sistemi Biologici (ISB) del CNR, Sede di Roma -, Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100, Viterbo, Italy
- Istituto per i Sistemi Biologici (ISB) del CNR, Sede di Roma -, Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Nico Sanna
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100, Viterbo, Italy
- Istituto per la Scienza e Tecnologia dei Plasmi (ISTP) del CNR, Via Amendola 122/D, 70126, Bari, Italy
| | - Costantino Zazza
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
2
|
Gao X, Wei S, Guo Y, Yin G, Meng Y, Ju X, Chang Q, Sun Y. A newly predicted stable calcium argon compound by ab initiocalculations under high pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:095402. [PMID: 37983903 DOI: 10.1088/1361-648x/ad0e2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
High pressure can change the valence electron arrangement of the elements, and it can be as a new method for the emergence of unexpected new compounds. In this paper, the Ca-Ar compounds at 0-200 GPa are systematically investigated by using CALYPSO structure prediction methods combined with first principles calculations. The study of the Ca-Ar system can provide theoretical guidance for the exploration of new structures of inert elemental Ar compounds under high pressure. A stable structure:P63/mmc-CaAr and six metastable structures:Rm-CaAr2,P4/mmm-CaAr2,Pm1-CaAr3,P4/mmm-CaAr3,P21/m-CaAr4andPm1-CaAr5were obtained. Our calculations show that the only stable phaseP63/mmc-CaAr can be synthesized at high pressure of 90 GPa. All the structures are ionic compounds of metallic nature, and surprisingly all Ar atoms attract electrons and act as an oxidant under high pressure conditions. The calculation results ofab initiomolecular dynamics show thatP63/mmc-CaAr compound maintains significant thermodynamic stability at high temperatures up to 1000 K. The high-pressure structures and electronic behaviors of the Ca-Ar system are expected to expand the understanding of the high-pressure chemical reactivity of compounds containing inert elements, and provide important theoretical support for the search of novel anomalous alkaline-earth metal inert element compounds.
Collapse
Affiliation(s)
- Xinlei Gao
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| | - Shuli Wei
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| | - Yanhui Guo
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| | - Guowei Yin
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| | - Yue Meng
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| | - Xiaoshi Ju
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| | - Qiang Chang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| | - Yuping Sun
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 250049, People's Republic of China
| |
Collapse
|
3
|
Tian Y, Tse JS, Liu G, Liu H. Predicted crystal structures of xenon and alkali metals under high pressures. Phys Chem Chem Phys 2022; 24:18119-18123. [PMID: 35881443 DOI: 10.1039/d2cp02657k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pressure-induced reaction between xenon (Xe) and other non-inert gas elements and the resultant crystal structures have attracted great interest. In this work, we carried out extensive simulations on the crystal structures of Xe-alkali metal (Xe-AM) systems under high pressures. Among all predicted compounds, KXe and RbXe are found to become stable at a pressure of ∼16 GPa by adopting a cubic symmetry of space group Pm3̄m. The stabilization of KXe and RbXe requires slightly lower pressure compared with that of previously reported CsXe (25 GPa), interestingly, which is in contrast to the electronegativity order of the AMs and unexpected. Our simulations also indicate that all predicted Xe compounds contain negatively charged Xe. Moreover, our in-depth analysis indicates that the occupation of AM d-orbitals plays a critical role in stabilizing these Xe-bearing compounds. These results shed light on the understanding of the reaction between Xe and AMs and the formation mechanism of the resultant crystal structures.
Collapse
Affiliation(s)
- Yifan Tian
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.
| | - John S Tse
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China. .,Physics and Engineering Physics Department, University of Saskatchewan, S7N 5E2, Canada
| | - Guangtao Liu
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.
| | - Hanyu Liu
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|