1
|
Peschke F, Taladriz-Sender A, Watson AJ, Burley GA. Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations. Bioconjug Chem 2024; 35:1788-1796. [PMID: 39385696 PMCID: PMC11583209 DOI: 10.1021/acs.bioconjchem.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.
Collapse
Affiliation(s)
- Frederik Peschke
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Andrea Taladriz-Sender
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Allan J.B. Watson
- EaStCHEM,
School of Chemistry, University of Saint
Andrews, North Haugh,
Fife, St Andrews KY16 9ST, United Kingdom
| | - Glenn A. Burley
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
2
|
Nadeem S, Riaz Ahmed S, Luqman T, Tan DKY, Maryum Z, Akhtar KP, Muhy Ud Din Khan S, Tariq MS, Muhammad N, Khan MKR, Liu Y. A comprehensive review on Gossypium hirsutum resistance against cotton leaf curl virus. Front Genet 2024; 15:1306469. [PMID: 38440193 PMCID: PMC10909863 DOI: 10.3389/fgene.2024.1306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Cotton (Gossypium hirsutum L.) is a significant fiber crop. Being a major contributor to the textile industry requires continuous care and attention. Cotton is subjected to various biotic and abiotic constraints. Among these, biotic factors including cotton leaf curl virus (CLCuV) are dominant. CLCuV is a notorious disease of cotton and is acquired, carried, and transmitted by the whitefly (Bemisia tabaci). A cotton plant affected with CLCuV may show a wide range of symptoms such as yellowing of leaves, thickening of veins, upward or downward curling, formation of enations, and stunted growth. Though there are many efforts to protect the crop from CLCuV, long-term results are not yet obtained as CLCuV strains are capable of mutating and overcoming plant resistance. However, systemic-induced resistance using a gene-based approach remained effective until new virulent strains of CLCuV (like Cotton Leaf Curl Burewala Virus and others) came into existence. Disease control by biological means and the development of CLCuV-resistant cotton varieties are in progress. In this review, we first discussed in detail the evolution of cotton and CLCuV strains, the transmission mechanism of CLCuV, the genetic architecture of CLCuV vectors, and the use of pathogen and nonpathogen-based approaches to control CLCuD. Next, we delineate the uses of cutting-edge technologies like genome editing (with a special focus on CRISPR-Cas), next-generation technologies, and their application in cotton genomics and speed breeding to develop CLCuD resistant cotton germplasm in a short time. Finally, we delve into the current obstacles related to cotton genome editing and explore forthcoming pathways for enhancing precision in genome editing through the utilization of advanced genome editing technologies. These endeavors aim to enhance cotton's resilience against CLCuD.
Collapse
Affiliation(s)
- Sahar Nadeem
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Pakistan Agriculture Research Council (PARC), Horticulture Research Institute Khuzdar Baghbana, Khuzdar, Pakistan
| | - Tahira Luqman
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Nazar Muhammad
- Agriculture and Cooperative Department, Quetta, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
3
|
Drazdauskienė U, Kapustina Ž, Medžiūnė J, Dubovskaja V, Sabaliauskaitė R, Jarmalaitė S, Lubys A. Fusion sequencing via terminator-assisted synthesis (FTAS-seq) identifies TMPRSS2 fusion partners in prostate cancer. Mol Oncol 2023; 17:993-1006. [PMID: 37300660 DOI: 10.1002/1878-0261.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/26/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023] Open
Abstract
Genetic rearrangements that fuse an androgen-regulated promoter area with a protein-coding portion of an originally androgen-unaffected gene are frequent in prostate cancer, with the fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2-ERG fusion) being the most prevalent. Conventional hybridization- or amplification-based methods can test for the presence of expected gene fusions, but the exploratory analysis of currently unknown fusion partners is often cost-prohibitive. Here, we developed an innovative next-generation sequencing (NGS)-based approach for gene fusion analysis termed fusion sequencing via terminator-assisted synthesis (FTAS-seq). FTAS-seq can be used to enrich the gene of interest while simultaneously profiling the whole spectrum of its 3'-terminal fusion partners. Using this novel semi-targeted RNA-sequencing technique, we were able to identify 11 previously uncharacterized TMPRSS2 fusion partners and capture a range of TMPRSS2-ERG isoforms. We tested the performance of FTAS-seq with well-characterized prostate cancer cell lines and utilized the technique for the analysis of patient RNA samples. FTAS-seq chemistry combined with appropriate primer panels holds great potential as a tool for biomarker discovery that can support the development of personalized cancer therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonata Jarmalaitė
- National Cancer Institute, Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics, Vilnius, Lithuania
| |
Collapse
|
4
|
Alser M, Lindegger J, Firtina C, Almadhoun N, Mao H, Singh G, Gomez-Luna J, Mutlu O. From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures. Comput Struct Biotechnol J 2022; 20:4579-4599. [PMID: 36090814 PMCID: PMC9436709 DOI: 10.1016/j.csbj.2022.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
We now need more than ever to make genome analysis more intelligent. We need to read, analyze, and interpret our genomes not only quickly, but also accurately and efficiently enough to scale the analysis to population level. There currently exist major computational bottlenecks and inefficiencies throughout the entire genome analysis pipeline, because state-of-the-art genome sequencing technologies are still not able to read a genome in its entirety. We describe the ongoing journey in significantly improving the performance, accuracy, and efficiency of genome analysis using intelligent algorithms and hardware architectures. We explain state-of-the-art algorithmic methods and hardware-based acceleration approaches for each step of the genome analysis pipeline and provide experimental evaluations. Algorithmic approaches exploit the structure of the genome as well as the structure of the underlying hardware. Hardware-based acceleration approaches exploit specialized microarchitectures or various execution paradigms (e.g., processing inside or near memory) along with algorithmic changes, leading to new hardware/software co-designed systems. We conclude with a foreshadowing of future challenges, benefits, and research directions triggered by the development of both very low cost yet highly error prone new sequencing technologies and specialized hardware chips for genomics. We hope that these efforts and the challenges we discuss provide a foundation for future work in making genome analysis more intelligent.
Collapse
Affiliation(s)
| | | | - Can Firtina
- ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | | | - Haiyu Mao
- ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | | | | | - Onur Mutlu
- ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland
| |
Collapse
|