1
|
Hou YF, Zhang Q, Dral PO. Surprising Dynamics Phenomena in the Diels-Alder Reaction of C 60 Uncovered with AI. J Org Chem 2024; 89:15041-15047. [PMID: 39358911 DOI: 10.1021/acs.joc.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We performed an extensive artificial intelligence-accelerated quasi-classical molecular dynamics investigation of the time-resolved mechanism of the Diels-Alder reaction of fullerene C60 with 2,3-dimethyl-1,3-butadiene. In a substantial fraction (10%) of reactive trajectories, the larger C60 noncovalently attracts the 2,3-dimethyl-1,3-butadiene long before the barrier so that the diene undergoes the series of complex motions including roaming, somersaults, twisting, and twisting somersaults around the fullerene until it aligns itself to pass over the barrier. These complicated processes could be easily missed in typically performed quantum chemical simulations with shorter and fewer trajectories. After the barrier is passed, the bonds take longer to form compared to the simplest prototypical Diels-Alder reaction of ethene with 1,3-butadiene despite high similarities in transition states and barrier widths evaluated with intrinsic reaction coordinate (IRC) calculations. C60 is mainly responsible for these differences as its reaction with 1,3-butadiene is similar to the reaction with 2,3-dimethyl-1,3-butadiene: the only substantial difference being that the extra methyl groups double the probability of the prolonged alignment phase in dynamics. These additional calculations of C60 with 1,3-butadiene could be performed via active learning more easily by reusing the data generated for the other two reactions, showing the potential for larger-scale exploration of the effects of different substrates in the same types of reactions.
Collapse
Affiliation(s)
- Yi-Fan Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| | - Quanhao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, China
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, Ul. Grudziądzka 5, Toruń 87-100, Poland
| |
Collapse
|
2
|
Cosinschi M, Preda AT, Pantis-Simut CA, Filipoiu N, Ghitiu I, Dulea MA, Ion L, Manolescu A, Nemnes GA. Collective dynamics of Ca atoms encapsulated in C 60 endohedral fullerenes. Phys Chem Chem Phys 2024; 26:22090-22098. [PMID: 39118483 DOI: 10.1039/d4cp01048e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Endohedral C60 fullerenes with up to four encapsulated Ca atoms were investigated by ab initio molecular dynamics simulations (AIMD). The relatively long runs allow us to describe the correlated movement of the Ca atoms inside the fullerene cage. For the systems with one or two Ca atoms a relatively unimpeded rotation was conjectured by earlier nuclear magnetic resonance experiments and supported by previous ab initio calculations used to sample the potential energy landscape. Here, by AIMD calculations, we confirm not only the circular motion, but also the correlated movement of the two Ca atoms, which is due to electric dipole interactions on the inner surface of the C60 molecule. Furthermore, systems with three and four Ca atoms present highly symmetric configurations of the embedded atoms, which are shown to rotate consistently within the fullerene cage, while more complex charge density patterns emerge. Employing artificial neural network models we perform a force-field mapping, which enables us to reproduce the main characteristics of the actual dynamics, such as the circular motion and the correlated movement of the Ca atoms.
Collapse
Affiliation(s)
- Mihaela Cosinschi
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - Amanda T Preda
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - C-A Pantis-Simut
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - N Filipoiu
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - I Ghitiu
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele-Ilfov, Romania
| | - M A Dulea
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| | - L Ion
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
| | - A Manolescu
- Department of Engineering, School of Technology, Reykjavik University, Menntavegur 1, IS-102 Reykjavik, Iceland
| | - G A Nemnes
- University of Bucharest, Faculty of Physics, 077125 Magurele-Ilfov, Romania.
- Research Institute of the University of Bucharest (ICUB), 90 Panduri Street, 050663 Bucharest, Romania
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 077126 Magurele-Ilfov, Romania
| |
Collapse
|
3
|
Panchagnula K, Graf D, Johnson ER, Thom AJW. Targeting spectroscopic accuracy for dispersion bound systems from ab initio techniques: Translational eigenstates of Ne@C70. J Chem Phys 2024; 161:054308. [PMID: 39092939 DOI: 10.1063/5.0223298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
We investigate the endofullerene system Ne@C70 by constructing a three-dimensional Potential Energy Surface (PES) describing the translational motion of the Ne atom. This is constructed from electronic structure calculations from a plethora of methods, including MP2, SCS-MP2, SOS-MP2, RPA@PBE, and C(HF)-RPA, which were previously used for He@C60 in Panchagnula et al. [J. Chem. Phys. 160, 104303 (2024)], alongside B86bPBE-25X-XDM and B86bPBE-50X-XDM. The reduction in symmetry moving from C60 to C70 introduces a double well potential along the anisotropic direction, which forms a test of the sensitivity and effectiveness of the electronic structure methods. The nuclear Hamiltonian is diagonalized using a symmetrized double minimum basis set outlined in Panchagnula and Thom [J. Chem. Phys. 159, 164308 (2023)], with translational energies having error bars ±1 and ±2 cm-1. We find no consistency between electronic structure methods as they find a range of barrier heights and minima positions of the double well and different translational eigenspectra, which also differ from the Lennard-Jones (LJ) PES given in Mandziuk and Bačić [J. Chem. Phys. 101, 2126-2140 (1994)]. We find that generating effective LJ parameters for each electronic structure method cannot reproduce the full PES nor recreate the eigenstates, and this suggests that the LJ form of the PES, while simple, may not be best suited to describe these systems. Even though MP2 and RPA@PBE performed best for He@C60, due to the lack of concordance between all electronic structure methods, we require more experimental data in order to properly validate the choice.
Collapse
Affiliation(s)
- K Panchagnula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - D Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, University of Munich (LMU), Munich, Germany
| | - E R Johnson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry, Dalhousie University, 6243 Alumni Crescent, Halifax, Nova Scotia B3H 4R2, Canada
| | - A J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Kłos J, Tiesinga E, Kotochigova S. Quantum scattering of icosahedron fullerene C 60 with noble-gas atoms. Sci Rep 2024; 14:9267. [PMID: 38649408 DOI: 10.1038/s41598-024-59481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
There exist multiple ways to cool neutral molecules. A front runner is the technique of buffer gas cooling, where momentum-changing collisions with abundant cold noble-gas atoms cool the molecules. This approach can, in principle, produce the most diverse samples of cold molecules. We present quantum mechanical and semiclassical calculations of the elastic scattering differential cross sections and rate coefficients of the C60 fullerene with He and Ar noble-gas atoms in order to quantify the effectiveness of buffer gas cooling for this molecule. We also develop new three-dimensional potential energy surfaces for this purpose using dispersion-corrected density functional theory (DFT) with counterpoise correction. The icosahedral anisotropy of the molecular system is reproduced by expanding the potential in terms of symmetry-allowed spherical harmonics. Long-range dispersion coefficients have been computed from frequency dependent polarizabilities of C60 and the noble-gas atoms. We find that the potential of the fullerene with He is about five times shallower than that with Ar. Anisotropic corrections are very weak for both systems and omitted in the quantum scattering calculations giving us a nearly quantitative estimate of elastic scattering observables. Finally, we have computed differential cross sections at the collision energies used in experiments by Han et al. (Chem Phys Lett 235:211, 1995), corrected for the sensitivity of their apparatus, and we find satisfactory agreement for C60 scattering with Ar.
Collapse
Affiliation(s)
- Jacek Kłos
- Department of Physics, Temple University, Philadelphia, PA, 19122, USA
| | - Eite Tiesinga
- Joint Quantum Institute, College Park, MD, 20742, USA
- National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | | |
Collapse
|
5
|
Vyas VK, Bacanu GR, Soundararajan M, Marsden ES, Jafari T, Shugai A, Light ME, Nagel U, Rõõm T, Levitt MH, Whitby RJ. Squeezing formaldehyde into C 60 fullerene. Nat Commun 2024; 15:2515. [PMID: 38514674 PMCID: PMC10957948 DOI: 10.1038/s41467-024-46886-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
The cavity inside fullerene C60 provides a highly symmetric and inert environment for housing atoms and small molecules. Here we report the encapsulation of formaldehyde inside C60 by molecular surgery, yielding the supermolecular complex CH2O@C60, despite the 4.4 Å van der Waals length of CH2O exceeding the 3.7 Å internal diameter of C60. The presence of CH2O significantly reduces the cage HOMO-LUMO gap. Nuclear spin-spin couplings are observed between the fullerene host and the formaldehyde guest. The rapid spin-lattice relaxation of the formaldehyde 13C nuclei is attributed to a dominant spin-rotation mechanism. Despite being squeezed so tightly, the encapsulated formaldehyde molecules rotate freely about their long axes even at cryogenic temperatures, allowing observation of the ortho-to-para spin isomer conversion by infrared spectroscopy. The particle in a box nature of the system is demonstrated by the observation of two quantised translational modes in the cryogenic THz spectra.
Collapse
Affiliation(s)
- Vijyesh K Vyas
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK
| | - George R Bacanu
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK
| | | | | | - Tanzeeha Jafari
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia
- Department of Cybernetics, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Anna Shugai
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia
| | - Mark E Light
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK
| | - Urmas Nagel
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia
| | - Toomas Rõõm
- National Institute of Chemical Physics and Biophysics, Akademia tee 23, 12618, Tallinn, Estonia.
| | - Malcolm H Levitt
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK.
| | - Richard J Whitby
- School of Chemistry, University of Southampton, SO17 1BJ, Southampton, UK.
| |
Collapse
|
6
|
Panchagnula K, Graf D, Albertani FEA, Thom AJW. Translational eigenstates of He@C60 from four-dimensional ab initio potential energy surfaces interpolated using Gaussian process regression. J Chem Phys 2024; 160:104303. [PMID: 38465682 DOI: 10.1063/5.0197903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
We investigate the endofullerene system 3He@C60 with a four-dimensional potential energy surface (PES) to include the three He translational degrees of freedom and C60 cage radius. We compare second order Møller-Plesset perturbation theory (MP2), spin component scaled-MP2, scaled opposite spin-MP2, random phase approximation (RPA)@Perdew, Burke, and Ernzerhof (PBE), and corrected Hartree-Fock-RPA to calibrate and gain confidence in the choice of electronic structure method. Due to the high cost of these calculations, the PES is interpolated using Gaussian Process Regression (GPR), owing to its effectiveness with sparse training data. The PES is split into a two-dimensional radial surface, to which corrections are applied to achieve an overall four-dimensional surface. The nuclear Hamiltonian is diagonalized to generate the in-cage translational/vibrational eigenstates. The degeneracy of the three-dimensional harmonic oscillator energies with principal quantum number n is lifted due to the anharmonicity in the radial potential. The (2l + 1)-fold degeneracy of the angular momentum states is also weakly lifted, due to the angular dependence in the potential. We calculate the fundamental frequency to range between 96 and 110 cm-1 depending on the electronic structure method used. Error bars of the eigenstate energies were calculated from the GPR and are on the order of ∼±1.5 cm-1. Wavefunctions are also compared by considering their overlap and Hellinger distance to the one-dimensional empirical potential. As with the energies, the two ab initio methods MP2 and RPA@PBE show the best agreement. While MP2 has better agreement than RPA@PBE, due to its higher computational efficiency and comparable performance, we recommend RPA as an alternative electronic structure method of choice to MP2 for these systems.
Collapse
Affiliation(s)
- K Panchagnula
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - D Graf
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - F E A Albertani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - A J W Thom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Gracheva SV, Tamm NB, Lyssenko KA, Ioffe IN, Lukonina NS, Goryunkov AA. Oxidative cage opening in the C 70 fullerene facilitated by preceding trifluoromethylation. Phys Chem Chem Phys 2024; 26:8038-8042. [PMID: 38379506 DOI: 10.1039/d3cp05480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Two novel derivatives of the C70 fullerene with 9- and 10-membered cage openings were obtained by means of oxidation and decarbonylation of C70(CF3)8. The major product, C70(O)(CF3)8O2, features a cleaved C-C bond transformed into two carbonyl functions plus an ether bridge. The second product, C69O(CF3)8O, has one of the carbonyls replaced with another ether bridge. We provide a DFT analysis of the possible formation pathways to give the oxidized compounds under the action of pyridine N-oxide.
Collapse
Affiliation(s)
- Sofia V Gracheva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia.
| | - Nadezhda B Tamm
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia.
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia.
| | - Ilya N Ioffe
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia.
| | - Natalia S Lukonina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia.
| | - Alexey A Goryunkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991, Moscow, Russia.
| |
Collapse
|
8
|
Balch AL. Open-cage fullerenes as ligands for metals. Dalton Trans 2024; 53:3930-3948. [PMID: 38240369 DOI: 10.1039/d3dt03741j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The remarkable structures of open-cage fullerenes with functionalization on the outer surface and an accessible inner void make them interesting ligands for reactions with metal complexes. The behaviors of open-cage fullerenes in reactions with various metal complexes are examined and compared to the corresponding reactions with intact fullerenes. The structural results from X-ray diffraction are emphasized. Open-cage fullerenes frequently undergo unanticipated structural changes such as carbon-carbon bond cleavage upon reactions with metal complexes. Much more remains to be learned about the possibility of inserting metal ions larger than Li+ into the interior void of these open-cage fullerenes and about the effects of redox reactions on metal complexes of open-cage fullerenes.
Collapse
Affiliation(s)
- Alan L Balch
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, USA..
| |
Collapse
|
9
|
Liu W, Huang G, Chen CY, Tan T, Fuyuki H, Hu S, Nakamura T, Truong MA, Murdey R, Hashikawa Y, Murata Y, Wakamiya A. An open-cage bis[60]fulleroid as an electron transport material for tin halide perovskite solar cells. Chem Commun (Camb) 2024; 60:2172-2175. [PMID: 38315560 DOI: 10.1039/d3cc05843c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
An open-cage bis[60]fulleroid (OC) was applied as an electron transport material (ETM) in tin (Sn) halide perovskite solar cells (PSCs). Due to the reduced offset between the energy levels of Sn-based perovskites and ETMs, the power conversion efficiency (PCE) of Sn-based PSCs with OC reached 9.6% with an open-circuit voltage (VOC) of 0.72 V. Additionally, OC exhibited superior thermal stability and provided 75% of the material without decomposition after vacuum deposition. The PSC using vacuum-deposited OC as the ETM could afford a PCE of 7.6%, which is a big leap forward compared with previous results using vacuum-deposited fullerene derivatives as ETMs.
Collapse
Affiliation(s)
- Wentao Liu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Guanglin Huang
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Chien-Yu Chen
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tiancheng Tan
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Harata Fuyuki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Shuaifeng Hu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Minh Anh Truong
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Richard Murdey
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
10
|
Cardillo-Zallo I, Biskupek J, Bloodworth S, Marsden ES, Fay MW, Ramasse QM, Rance GA, Stoppiello CT, Cull WJ, Weare BL, Whitby RJ, Kaiser U, Brown PD, Khlobystov AN. Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS NANO 2024; 18:2958-2971. [PMID: 38251654 PMCID: PMC10832048 DOI: 10.1021/acsnano.3c07853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the nanoscale. We report on a nanoscale system consisting of endohedral fullerenes encapsulated within single-walled carbon nanotubes ((Kr@C60)@SWCNT), capable of the delivery and release of krypton atoms on-demand, via coalescence of host fullerene cages under the action of the electron beam (in situ) or heat (ex situ). The state and dynamics of Kr atoms were investigated by energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS), and X-ray photoelectron spectroscopy (XPS). Kr atom positions were measured precisely using aberration-corrected high-resolution TEM (AC-HRTEM), aberration-corrected scanning TEM (AC-STEM), and single-atom spectroscopic imaging (STEM-EELS). The electron beam drove the formation of 2Kr@C120 capsules, in which van der Waals Kr2 and transient covalent [Kr2]+ bonding states were identified. Thermal coalescence led to the formation of longer coalesced nested nanotubes containing more loosely bound Krn chains (n = 3-6). In some instances, delocalization of Kr atomic positions was confirmed by STEM analysis as the transition to a one-dimensional (1D) gas, as Kr atoms were constrained to only one degree of translational freedom within long, well-annealed, nested nanotubes. Such nested nanotube structures were investigated by Raman spectroscopy. This material represents a highly compressed and dimensionally constrained 1D gas stable under ambient conditions. Direct atomic-scale imaging has revealed elusive bonding states and a previously unseen 1D gaseous state of matter of this noble gas element, demonstrating TEM to be a powerful tool in the discovery of chemistry at the single-atom level.
Collapse
Affiliation(s)
- Ian Cardillo-Zallo
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Johannes Biskupek
- Electron
Microscopy Group of Materials Science, Central Facility for Electron
Microscopy, Ulm University, Ulm 89081, Germany
| | - Sally Bloodworth
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Elizabeth S. Marsden
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Michael W. Fay
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United
Kingdom
| | - Quentin M. Ramasse
- SuperSTEM
Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, United Kingdom
- School of
Chemical and Process Engineering and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Graham A. Rance
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United
Kingdom
| | - Craig T. Stoppiello
- Centre
for Microscopy and Microanalysis, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - William J. Cull
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Benjamin L. Weare
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2QL, United
Kingdom
| | - Richard J. Whitby
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Ute Kaiser
- Electron
Microscopy Group of Materials Science, Central Facility for Electron
Microscopy, Ulm University, Ulm 89081, Germany
| | - Paul D. Brown
- Department
of Mechanical, Materials & Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Kopcha WP, Biswas R, Sun Y, Chueng STD, Dorn HC, Zhang J. Water-soluble endohedral metallofullerenes: new horizons for biomedical applications. Chem Commun (Camb) 2023; 59:13551-13561. [PMID: 37877250 PMCID: PMC11033704 DOI: 10.1039/d3cc03603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Endohedral metallofullerenes (EMFs) offer a safe avenue to manipulate metals important to biomedical applications such as MRI contrast, X-ray contrast, radiolabeling, radiotherapy, chemotherapy, and the control of inflammation by scavenging reactive oxygen species (ROS). Moreover, functionalizing the double bonds on the surface of EMFs modifies their solubility, supramolecular behaviour, binding, targeting characteristics, and physical properties. While most existing water-soluble derivatives possess a statistical mixture of appended functional groups, progress has been made in creating molecularly-precise derivatives with a defined number of surface functional groups, leading to potentially more nuanced control of their behaviour and properties. Further elucidation of the structure-function relationships of these materials is expected to enhance their utility in biomedical applications and possibly broaden their use in diverse areas of science and technology.
Collapse
Affiliation(s)
- William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | - Rohin Biswas
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | - Yue Sun
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| | | | - Harry C Dorn
- Department of Chemistry, Virginia Polytechnic Institute and State University, 1040 Drillfield Dr, Blacksburg, VA, 24061, USA.
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Rd., Piscataway, NJ, 08854, USA.
| |
Collapse
|
12
|
Ghavanloo E, Lashani R, Giannopoulos GI. Prediction of frequency band gaps in one-dimensional endohedral fullerene and carbon nano-onion chains. J Mol Model 2023; 29:349. [PMID: 37878084 DOI: 10.1007/s00894-023-05753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
CONTEXT Acoustics have always played a central role in contemporary engineering, especially in the fields of communication, sensing, and even in more extraordinary applications such as non-invasive high-intensity focused ultrasound surgery. The rapid development of nano-scale-based technologies makes imperative the need for novel acoustic devices that take advantage of nanomaterials as well as their extraordinary physical properties. The successful design of such acoustic components requires the implementation of efficient nanostructures accompanied by fast and accurate modeling. Here, endohedral fullerene and carbon nano-onion one-dimensional nano-chains are explored as possible candidate nanodevices that generate unique frequency band gaps. METHODS The wave propagation in chains of fullerene-based molecules is predicted by representing them as infinite one-dimensional mass-in-mass chains properly assembled by the use of springs whose coefficients are expressed according to the van der Walls (vdW) atomistic interactions. Based on Bloch's theorem, interesting elastic wave dispersion curves are obtained and illustrated, characterized by distinctive frequency ranges that waves cannot propagate, revealing the unique vibroacoustic behavior of the proposed nano-systems.
Collapse
Affiliation(s)
- Esmaeal Ghavanloo
- School of Mechanical Engineering, Shiraz University, Shiraz, 71963-16548, Iran.
| | - Reza Lashani
- School of Mechanical Engineering, Shiraz University, Shiraz, 71963-16548, Iran
| | | |
Collapse
|
13
|
Chao D, Liu TX, Zhang P, Xia S, Zhang G. Copper-Mediated Radical-Induced Ring-Opening Relay Cascade Carboannulation Reaction of [60]Fullerene with Cyclobutanone Oxime Esters: Access to [60]Fullerene-Fused Cyclopentanes. J Org Chem 2023; 88:13076-13088. [PMID: 37651613 DOI: 10.1021/acs.joc.3c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An unexpected copper-mediated radical-induced ring-opening relay cascade carboannulation reaction of [60]fullerene with cyclobutanone oxime esters is presented for the preparation of various Cl-/Br-incorporated [60]fullerene-fused cyclopentanes. The unique relay cascade transformation uses inexpensive copper salts as promoters and halogen sources and features simple redox-neutral conditions and a broad substrate scope, providing a practical access to a class of novel five-membered carbocycle-fused fullerenes.
Collapse
Affiliation(s)
- Di Chao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tong-Xin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Pengling Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shilu Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
14
|
Huang G, Ide Y, Hashikawa Y, Hirose T, Murata Y. CH 3 CN@open-C 60 : An Effective Inner-Space Modification and Isotope Effect Inside a Nano-Sized Flask. Chemistry 2023; 29:e202301161. [PMID: 37264730 DOI: 10.1002/chem.202301161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Despite several small molecules being encapsulated inside cage-opened fullerene derivatives, such species have not considerably affected the structures and properties of the outer carbon cages. Herein, we achieved an effective inner-space modification for an open-cage C60 derivative by insertion of a neutral CH3 CN molecule into the cavity. The CH3 CN@open-C60 thus obtained showed an enhanced polarity, thus affording an easy separation from a mixture containing the empty cage by column chromatography on silica gel, without the preparative HPLC that was needed for previous cases. The less negative reduction potentials with respect to those of empty cage reflect the decreased energy level of the LUMO, which is supported by the DFT calculations. NMR spectroscopy, single-crystal X-ray analysis, and theoretical calculations revealed that both the presence of the encapsulated CH3 CN and cage deformation caused by the CH3 CN play an essential role in the change of the electronic properties. Furthermore, the favored binding affinity of deuterated acetonitrile CD3 CN with internal C60 surface is discussed.
Collapse
Affiliation(s)
- Guanglin Huang
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yuki Ide
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yoshifumi Hashikawa
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| | - Yasujiro Murata
- Institute for Chemical Research, Kyoto University Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
15
|
Serwatka T, Roy PN. Quantum Criticality and Universal Behavior in Molecular Dipolar Lattices of Endofullerenes. J Phys Chem Lett 2023:5586-5591. [PMID: 37307244 DOI: 10.1021/acs.jpclett.3c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fullerene cages allow the confinement of single molecules and the construction of molecular assemblies whose properties strongly differ from those of free species. In this work, we employ the density-matrix renormalization group method to show that chains of fullerenes filled with polar molecules (LiF, HF, and H2O) can form dipole-ordered quantum phases. In symmetry broken environments, these ordered phases are ferroelectric, a property that makes them promising candidates for quantum devices. We demonstrate that for a given guest molecule, the occurrence of these quantum phases can be enforced or influenced either by changing the effective electric dipole moment or by isotopic substitution. In the ordered phase, all systems under consideration are characterized by universal behavior that depends only on the ratio of the effective electric dipole and of the rotational constant. A phase diagram is derived, and further molecules are proposed as candidates for dipole-ordered endofullerene chains.
Collapse
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
16
|
Serwatka T, Yim S, Ayotte P, Roy PN. On the nature of the Schottky anomaly in endohedral water. J Chem Phys 2023; 158:124310. [PMID: 37003742 DOI: 10.1063/5.0148882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
In this work, we study the heat capacity contribution of a rigid water molecule encapsulated in C60 by performing six-dimensional eigenstate calculations with the inclusion of its quantized rotational and translational degrees of freedom. Two confinement model potentials are considered: in the first, confinement is described using distributed pairwise Lennard-Jones interactions, while in the second, the water molecule is trapped within an eccentric but isotropic 3D harmonic effective confinement potential [Wespiser et al., J. Chem. Phys. 156, 074304 (2022)]. Contributions to the heat capacity from both the ortho and para nuclear spin isomers of water are considered to enable the effects of their interconversion to be assessed. By including a symmetry-breaking quadrupolar potential energy term in the Hamiltonian, we can reproduce the experimentally observed Schottky anomaly at ∼2 K [Suzuki et al., J. Phys. Chem. Lett. 10, 1306 (2019)]. Furthermore, our calculations predict a second Schottky anomaly at ∼0.1 K resulting from the H configuration, a different orientational arrangement of the fullerene cages in crystalline solid C60. Contributions from the H configuration to CV also explain the second peak observed at ∼7 K in the experimentally measured heat capacity.
Collapse
Affiliation(s)
- Tobias Serwatka
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Spencer Yim
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Patrick Ayotte
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Pierre-Nicholas Roy
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Electronic Structure Calculations on Endohedral Complexes of Fullerenes: Reminiscences and Prospects. Molecules 2023; 28:molecules28031384. [PMID: 36771050 PMCID: PMC9920411 DOI: 10.3390/molecules28031384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
The history of electronic structure calculations on the endohedral complexes of fullerenes is reviewed. First, the long road to the isolation of new allotropes of carbon that commenced with the seminal organic syntheses involving simple inorganic substrates is discussed. Next, the focus is switched to author's involvement with fullerene research that has led to the in silico discovery of endohedral complexes. The predictions of these pioneering theoretical studies are juxtaposed against the data afforded by subsequent experimental developments. The successes and failures of the old and modern quantum-chemical calculations on endohedral complexes are summarized and their remaining deficiencies requiring further attention are identified.
Collapse
|