1
|
Main RM, Vornholt SM, Ettlinger R, Netzsch P, Stanzione MG, Rice CM, Elliott C, Russell SE, Warren MR, Ashbrook SE, Morris RE. In Situ Single-crystal X-ray Diffraction Studies of Physisorption and Chemisorption of SO 2 within a Metal-Organic Framework and Its Competitive Adsorption with Water. J Am Chem Soc 2024; 146:3270-3278. [PMID: 38275220 PMCID: PMC10859936 DOI: 10.1021/jacs.3c11847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Living on an increasingly polluted planet, the removal of toxic pollutants such as sulfur dioxide (SO2) from the troposphere and power station flue gas is becoming more and more important. The CPO-27/MOF-74 family of metal-organic frameworks (MOFs) with their high densities of open metal sites is well suited for the selective adsorption of gases that, like SO2, bind well to metals and have been extensively researched both practically and through computer simulations. However, until now, focus has centered upon the binding of SO2 to the open metal sites in this MOF (called chemisorption, where the adsorbent-adsorbate interaction is through a chemical bond). The possibility of physisorption (where the adsorbent-adsorbate interaction is only through weak intermolecular forces) has not been identified experimentally. This work presents an in situ single-crystal X-ray diffraction (scXRD) study that identifies discrete adsorption sites within Ni-MOF-74/Ni-CPO-27, where SO2 is both chemisorbed and physisorbed while also probing competitive adsorption of SO2 of these sites when water is present. Further features of this site have been confirmed by variable SO2 pressure scXRD studies, DFT calculations, and IR studies.
Collapse
Affiliation(s)
- Russell M. Main
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| | - Simon M. Vornholt
- Department
of Chemistry, SUNY Stony Brook, 100 Nicolls Road, 104 Chemistry, Stony Brook, New York11790-3400, United
States
| | - Romy Ettlinger
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| | - Philip Netzsch
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| | | | - Cameron M. Rice
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| | - Caroline Elliott
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| | - Samantha E. Russell
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| | - Mark R. Warren
- Diamond
Light Source Ltd, Diamond House, Harwell Science & Innovation
Campus, Didcot OX11 0DE, U.K.
| | - Sharon E. Ashbrook
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| | - Russell E. Morris
- EaStCHEM
School of Chemistry, Purdie Building,
North Haugh, St AndrewsKY16 9ST, U.K.
| |
Collapse
|
2
|
Ettlinger R, Vornholt SM, Roach MC, Tuttle RR, Thai J, Kothari M, Boese M, Holwell A, Duncan MJ, Reynolds M, Morris RE. Mixed Metal-Organic Framework Mixed-Matrix Membranes: Insights into Simultaneous Moisture-Triggered and Catalytic Delivery of Nitric Oxide using Cryo-scanning Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49835-49842. [PMID: 37818956 PMCID: PMC10614190 DOI: 10.1021/acsami.3c11283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
The fundamental chemical and structural diversity of metal-organic frameworks (MOFs) is vast, but there is a lack of industrial adoption of these extremely versatile compounds. To bridge the gap between basic research and industry, MOF powders must be formulated into more application-relevant shapes and/or composites. Successful incorporation of varying ratios of two different MOFs, CPO-27-Ni and CuBTTri, in a thin polymer film represents an important step toward the development of mixed MOF mixed-matrix membranes. To gain insight into the distribution of the two different MOFs in the polymer, we report their investigation by Cryo-scanning electron microscopy (Cryo-SEM) tomography, which minimizes surface charging and electron beam-induced damage. Because the MOFs are based on two different metal ions, Ni and Cu, the elemental maps of the MOF composite cross sections clearly identify the size and location of each MOF in the reconstructed 3D model. The tomography run was about six times faster than conventional focused ion beam (FIB)-SEM and the first insights to image segmentation combined with machine learning could be achieved. To verify that the MOF composites combined the benefits of rapid moisture-triggered release of nitric oxide (NO) from CPO-27-Ni with the continuous catalytic generation of NO from CuBTTri, we characterized their ability to deliver NO individually and simultaneously. These MOF composites show great promise to achieve optimal dual NO delivery in real-world medical applications.
Collapse
Affiliation(s)
- Romy Ettlinger
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Simon M. Vornholt
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Madeline C. Roach
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Robert R. Tuttle
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Jonathan Thai
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Maadhav Kothari
- ZEISS Research
Microscopy Solutions, Carl-Zeiss-Straße 22, Oberkochen 73447, Germany
| | - Markus Boese
- ZEISS Research
Microscopy Solutions, Carl-Zeiss-Straße 22, Oberkochen 73447, Germany
| | - Andy Holwell
- Carl
Zeiss
Microscopy Ltd, Cambourne, Cambridge CB23 6DW, United Kingdom
| | - Morven J. Duncan
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Melissa Reynolds
- Department
of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Russell E. Morris
- School
of Chemistry, University of St. Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
3
|
Lo Presti F, Pellegrino AL, Consoli N, Malandrino G. Green Ultrasound-Assisted Synthesis of Rare-Earth-Based MOFs. Molecules 2023; 28:6088. [PMID: 37630340 PMCID: PMC10458194 DOI: 10.3390/molecules28166088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Rare-earth (RE)-based metal organic frameworks (MOFs) are quickly gaining popularity as flexible functional materials in a variety of technological fields. These MOFs are useful for more than just conventional uses like gas sensors and catalyst materials; in fact, they also show significant promise in emerging technologies including photovoltaics, optical, and biomedical applications. Using yttrium and europium as ionic host centres and dopants, respectively, and 1,3,5-benzenetricarboxylic acid (H3-BTC) as an organic linker, we describe a simple and green approach for the fabrication of RE-MOFs. Specifically, Y-BTCs and Eu-doped Y-BTCs MOFs have been synthesised in a single step using an eco-friendly method that makes use of ultrasound technology. To establish a correlation between the morphological and structural properties and reaction conditions, a range of distinct reaction periods has been employed for the synthetic processes. Detailed analyses of the synthesised samples through powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR) have confirmed the phase formation. Furthermore, thermal analyses such as thermogravimetric analysis (TGA) have been employed to evaluate the thermal stability and structural modifications of the Y-BTC and Eu-doped Y-BTC samples. Finally, the luminescent properties of the synthesised samples doped with Eu3+ have been assessed, providing an evaluation of their characteristics. As a proof of concept, an Eu-doped Y-BTC sample has been applied for the sensing of nitrobenzene as a molecule test of nitro derivatives.
Collapse
Affiliation(s)
| | | | | | - Graziella Malandrino
- Dipartimento di Scienze Chimiche, Università di Catania, and INSTM UdR Catania, Viale A. Doria 6, I-95125 Catania, Italy; (F.L.P.); (A.L.P.)
| |
Collapse
|