1
|
Li F, Chen L, Shi S, Hong WJ, Li M, Guo LH. Perfluorobutanoic acid: A short-chain perfluoroalkyl substance exhibiting estrogenic effects through the estrogen-related receptor γ pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136947. [PMID: 39708599 DOI: 10.1016/j.jhazmat.2024.136947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Perfluorobutanoic acid (PFBA) is an emerging contaminant that was demonstrated to exhibit estrogen effects via action on classic estrogen receptors (ERs) in a low-activity manner. The purpose of the present study is to reveal the estrogen disruption effect and mechanism of PFBA via estrogen-related receptor γ (ERRγ) pathways. In vivo experiment indicated that PFBA accumulated in zebrafish ovary and caused ovarian injury, with disturbing sex hormone levels and interfering gene expression related to estrogen synthesis and follicle regulation. In vitro, with cell proliferation assay, PFBA could promote estrogen-sensitive endometrial cancer cell Ishikawa proliferation at lowest observed effective concentrations (LOEC) 10 nM, which was close to human exposure levels. And cell proliferation was inhibited by ERRγ antagonist GSK5182. By fluorescence competitive binding assay, molecular docking and luciferase reporter gene assays, it demonstrated that PFBA could directly bind with ERRγ and activate ERRγ transcriptional activities with a LOEC of 10 nM. Furthermore, PFBA up-regulated the proliferation-related factors downstream of ERRγ and inhibited by PI3K/Akt inhibitor LY294002, which also suppressed the cell proliferation induced by PFBA. Taken together, the results revealed that PFBA had estrogen effects at the human-related exposure concentration, and demonstrated a new estrogen effects mechanism of PFBA via ERRγ pathway.
Collapse
Affiliation(s)
- Fangfang Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Lu Chen
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Sha Shi
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Wen-Jun Hong
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
2
|
He L, Zhou Y, Zhang M, Chen M, Wu Y, Qi L, Liu L, Zhang B, Yang X, He X, Wang K. I-Motif DNA Based Fluorescent Ratiometric Microneedle Sensing Patch for Sensitive Response of Small pH Variations in Interstitial Fluid. ACS Sens 2024. [PMID: 39541133 DOI: 10.1021/acssensors.4c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Detection of slight pH changes in skin interstitial fluid (ISF) is crucial yet challenging for studying pathological processes and understanding personal health conditions. In this work, we construct an i-motif DNA based fluorescent ratiometric microneedle sensing patch (IFR-pH MN patch) strategy that enables minimally invasive, high-resolution, and sensitive transdermal monitoring of small pH variations in ISF. The IFR-pH MN patch with advanced integration of both ISF sampling and pH sensing was fabricated from the cross-linking of gelatin methacryloyl and methacrylated hyaluronic acid, wrapping with pH-sensitive hairpin-containing i-motif DNA based fluorescent ratiometric probes in the matrix. Because it is mechanically robust for skin penetration and has high swelling ability, the IFR-pH MN patch could be quickly extracted as sufficient liquid from agarose gel (∼56.4 μL in 10 min). Benefiting from conformation changes of the hairpin-containing i-motif DNA under pH variation and ratiometric fluorescence signal readout, the IFR-pH MN patch could quantitate pH over a small range between pH 6.2 and 6.9 with an accuracy of 0.2 pH units in the mimic skin model. Furthermore, in vivo testing on wound and tumor mouse models indicated the ability of the biocompatible IFR-pH MN patch to penetrate the skin for obtaining transdermal pH values, demonstrating the potential applications in monitoring and intervention of pathological states.
Collapse
Affiliation(s)
- Lin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Min Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Mingjian Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuchen Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Lanlin Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Lamei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Bin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Romero-Moreno R, Czowski BJ, Harris L, Kuehn JF, White KA. Intracellular pH differentially regulates transcription of metabolic and signaling pathways in normal epithelial cells. J Biol Chem 2024; 300:107658. [PMID: 39128712 PMCID: PMC11489351 DOI: 10.1016/j.jbc.2024.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Intracellular pH (pHi) dynamics regulate normal cell function, and dysregulated pHi dynamics is an emerging hallmark of cancer (constitutively increased pHi) and neurodegeneration (constitutively decreased pHi). However, the molecular mechanisms by which pHi dynamics regulate cell biology are poorly understood. Here, we discovered that altering pHi in normal human breast epithelial cells triggers global transcriptional changes. We identified 176 genes differentially regulated by pHi, with pHi-dependent genes clustering in signaling and glycolytic pathways. Using various normal epithelial cell models, we showed pH-dependent Notch homolog 1 protein expression, with increased protein abundance at high pHi. This resulted in pH-dependent downstream signaling, with increased Notch homolog 1 signaling at high pHi. We also found that high pHi increased the expression of glycolytic enzymes and regulators of pyruvate fate, including lactate dehydrogenase and pyruvate dehydrogenase kinase. These transcriptional changes were sufficient to alter lactate production, with high pHi shifting these normal epithelial cells toward a glycolytic metabolism and increasing lactate production. Thus, pHi dynamics transcriptionally regulate signaling and metabolic pathways in normal epithelial cells. Our data reveal new molecular regulators of pHi-dependent biology and a role for increased pHi in driving the acquisition of cancer-associated signaling and metabolic changes in normal human epithelial cells.
Collapse
Affiliation(s)
- Ricardo Romero-Moreno
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brandon J Czowski
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Lindsey Harris
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessamine F Kuehn
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katharine A White
- Harper Cancer Research Institute, South Bend, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
4
|
Vlasova AD, Bukhalovich SM, Bagaeva DF, Polyakova AP, Ilyinsky NS, Nesterov SV, Tsybrov FM, Bogorodskiy AO, Zinovev EV, Mikhailov AE, Vlasov AV, Kuklin AI, Borshchevskiy VI, Bamberg E, Uversky VN, Gordeliy VI. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem Soc Rev 2024; 53:3327-3349. [PMID: 38391026 DOI: 10.1039/d3cs00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.
Collapse
Affiliation(s)
- Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei M Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Diana F Bagaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra P Polyakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor M Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France.
| |
Collapse
|
5
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
6
|
Chen L, Lin X, Shi S, Li M, Mortimer M, Fang W, Li F, Guo LH. Activation of estrogen-related receptor: An alternative mechanism of hexafluoropropylene oxide homologs estrogenic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166257. [PMID: 37574057 DOI: 10.1016/j.scitotenv.2023.166257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) alternatives such as hexafluoropropylene oxide homologs (HFPOs) cause concern due to increased occurrence in the environment as well as potential bioaccumulation and toxicity. HFPOs have been demonstrated to activate the estrogen receptor (ER) pathway. The ER pathway is homologous and connected to the estrogen-related receptor (ERR) pathway, but HFPOs effects on the ERR pathway have not been studied. Hence, we assessed the potential estrogenic effects of HFPOs via ERRγ pathway. In vitro assays revealed that HFPO dimeric, trimeric, and tetrameric acids (HFPO-DA, -TA, and -TeA, respectively), acted as ERRγ agonists, activating the transcription of both human and zebrafish ERRγ at low concentrations, but inhibiting zebrafish ERRγ at high concentrations. We also found that HFPO-TA promoted the human endometrial cancer cells (Ishikawa cells) proliferation via ERRγ/EGF, Cyclin D1 pathway. The HFPO-TA-induced proliferation of Ishikawa cells was inhibited by co-exposure with a specific antagonist of ERRγ, GSK5182. In vivo exposure of female zebrafish to HFPO-TA disturbed sex hormone levels, interfered with the gene expression involved in estrogen synthesis and follicle regulation, and caused histopathological lesions in the ovaries, which were similar to those induced by a known ERRγ agonist GSK4716. Taken together, this study revealed a new mechanism concerning the estrogenic effect of HFPOs via activation of the ERRγ pathway.
Collapse
Affiliation(s)
- Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Xicha Lin
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Sha Shi
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Wendi Fang
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
7
|
Yang Y, Zhang Z, Li W, Si Y, Li L, Du W. αKG-driven RNA polymerase II transcription of cyclin D1 licenses malic enzyme 2 to promote cell-cycle progression. Cell Rep 2023; 42:112770. [PMID: 37422761 DOI: 10.1016/j.celrep.2023.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023] Open
Abstract
Increased metabolic activity usually provides energy and nutrients for biomass synthesis and is indispensable for the progression of the cell cycle. Here, we find a role for α-ketoglutarate (αKG) generation in regulating cell-cycle gene transcription. A reduction in cellular αKG levels triggered by malic enzyme 2 (ME2) or isocitrate dehydrogenase 1 (IDH1) depletion leads to a pronounced arrest in G1 phase, while αKG supplementation promotes cell-cycle progression. Mechanistically, αKG directly binds to RNA polymerase II (RNAPII) and increases the level of RNAPII binding to the cyclin D1 gene promoter via promoting pre-initiation complex (PIC) assembly, consequently enhancing cyclin D1 transcription. Notably, αKG addition is sufficient to restore cyclin D1 expression in ME2- or IDH1-depleted cells, facilitating cell-cycle progression and proliferation in these cells. Therefore, our findings indicate a function of αKG in gene transcriptional regulation and cell-cycle control.
Collapse
Affiliation(s)
- Yanting Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhenxi Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yufan Si
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Li Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wenjing Du
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
8
|
Rychkov GY, Zhou FH, Adams MK, Brierley SM, Ma L, Barritt GJ. Orai1- and Orai2-, but not Orai3-mediated I CRAC is regulated by intracellular pH. J Physiol 2021; 600:623-643. [PMID: 34877682 DOI: 10.1113/jp282502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Three Orai (Orai1, Orai2, and Orai3) and two stromal interaction molecule (STIM1 and STIM2) mammalian protein homologues constitute major components of the store-operated Ca2+ entry mechanism. When co-expressed with STIM1, Orai1, Orai2 and Orai3 form highly selective Ca2+ channels with properties of Ca2+ release-activated Ca2+ (CRAC) channels. Despite the high level of homology between Orai proteins, CRAC channels formed by different Orai isoforms have distinctive properties, particularly with regards to Ca2+ -dependent inactivation, inhibition/potentiation by 2-aminoethyl diphenylborinate and sensitivity to reactive oxygen species. This study characterises and compares the regulation of Orai1, Orai2- and Orai3-mediated CRAC current (ICRAC ) by intracellular pH (pHi ). Using whole-cell patch clamping of HEK293T cells heterologously expressing Orai and STIM1, we show that ICRAC formed by each Orai homologue has a unique sensitivity to changes in pHi . Orai1-mediated ICRAC exhibits a strong dependence on pHi of both current amplitude and the kinetics of Ca2+ -dependent inactivation. In contrast, Orai2 amplitude, but not kinetics, depends on pHi , whereas Orai3 shows no dependence on pHi at all. Investigation of different Orai1-Orai3 chimeras suggests that pHi dependence of Orai1 resides in both the N-terminus and intracellular loop 2, and may also involve pH-dependent interactions with STIM1. KEY POINTS: It has been shown previously that Orai1/stromal interaction molecule 1 (STIM1)-mediated Ca2+ release-activated Ca2+ current (ICRAC ) is inhibited by intracellular acidification and potentiated by intracellular alkalinisation. The present study reveals that CRAC channels formed by each of the Orai homologues Orai1, Orai2 and Orai3 has a unique sensitivity to changes in intracellular pH (pHi ). The amplitude of Orai2 current is affected by the changes in pHi similarly to the amplitude of Orai1. However, unlike Orai1, fast Ca2+ -dependent inactivation of Orai2 is unaffected by acidic pHi . In contrast to both Orai1 and Orai2, Orai3 is not sensitive to pHi changes. Domain swapping between Orai1 and Orai3 identified the N-terminus and intracellular loop 2 as the molecular structures responsible for Orai1 regulation by pHi . Reduction of ICRAC dependence on pHi seen in a STIM1-independent Orai1 mutant suggested that some parts of STIM1 are also involved in ICRAC modulation by pHi .
Collapse
Affiliation(s)
- Grigori Y Rychkov
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Fiona H Zhou
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Melissa K Adams
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Stuart M Brierley
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, Australia
| | - Linlin Ma
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Greg J Barritt
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Dong H, Zhao L, Zhou Y, Wei X, Xu C, Zhang Y, Xu M. Novel Self-Calibrating Amperometric and Ratiometric Electrochemical Nanotip Microsensor for pH Measurement in Rat Brain. Anal Chem 2021; 93:13815-13822. [PMID: 34609844 DOI: 10.1021/acs.analchem.1c02436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain pH has been proven to be a key factor in maintaining normal brain function. The relationship between local pH fluctuation and brain disease has not been extensively studied due to lack of the accurate in situ analysis technology. Herein, we have for the first time proposed a voltammetric pH sensor by measuring the ratio of current signals instead of the previously reported potential based on the Nernst equation. Single-walled carbon nanotubes (CNT) were first self-assembled on the electrode surface of a carbon-fiber nanotip electrode (CFNE). Then, poly-o-phenylenediamine (PoPD) molecules were deposited as pH-responsive molecules through in situ electrochemical polymerization. The compact CFNE/CNT/PoPD exhibited a good redox process with the on-off-on ratiometric electrochemical response to pH ranging from 4.5 to 8.2, providing self-correction for in situ pH detection. Thus, the proposed sensor enabled the accurate measurement of pH with excellent selectivity even in the presence of proteins or electroactive species. In addition, the sensor showed high repeatability, reproducibility, and reversibility in measuring pH and even demonstrated good stability when it was exposed to air for 5 months. Finally, we successfully detected the fluctuation of pH in rat brains with cerebral ischemia and rat whole blood. Overall, this research not only provides a good tool for the detection of rat brain pH but also provides a new strategy for further designing nanosensors for intracellular or subcellular pH.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Cuicui Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, Henan, P. R. China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
10
|
Teixeira V, Martins TS, Prinz WA, Costa V. Target of Rapamycin Complex 1 (TORC1), Protein Kinase A (PKA) and Cytosolic pH Regulate a Transcriptional Circuit for Lipid Droplet Formation. Int J Mol Sci 2021; 22:9017. [PMID: 34445723 PMCID: PMC8396576 DOI: 10.3390/ijms22169017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Lipid droplets (LDs) are ubiquitous organelles that fulfill essential roles in response to metabolic cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). However, our understanding of signaling networks, especially transcriptional mechanisms, regulating membrane biogenesis is very limited. Here, we show that the nutrient-sensing Target of Rapamycin Complex 1 (TORC1) regulates LD formation at a transcriptional level, by targeting DGA1 expression, in a Sit4-, Mks1-, and Sfp1-dependent manner. We show that cytosolic pH (pHc), co-regulated by the plasma membrane H+-ATPase Pma1 and the vacuolar ATPase (V-ATPase), acts as a second messenger, upstream of protein kinase A (PKA), to adjust the localization and activity of the major transcription factor repressor Opi1, which in turn controls the metabolic switch between phospholipid metabolism and lipid storage. Together, this work delineates hitherto unknown molecular mechanisms that couple nutrient availability and pHc to LD formation through a transcriptional circuit regulated by major signaling transduction pathways.
Collapse
Affiliation(s)
- Vitor Teixeira
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Telma S. Martins
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - William A. Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA;
| | - Vítor Costa
- Yeast Signalling Networks, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (V.C.)
- Yeast Signalling Networks, IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
12
|
Ohshima K, Morii E. Metabolic Reprogramming of Cancer Cells during Tumor Progression and Metastasis. Metabolites 2021; 11:metabo11010028. [PMID: 33401771 PMCID: PMC7824065 DOI: 10.3390/metabo11010028] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer cells face various metabolic challenges during tumor progression, including growth in the nutrient-altered and oxygen-deficient microenvironment of the primary site, intravasation into vessels where anchorage-independent growth is required, and colonization of distant organs where the environment is distinct from that of the primary site. Thus, cancer cells must reprogram their metabolic state in every step of cancer progression. Metabolic reprogramming is now recognized as a hallmark of cancer cells and supports cancer growth. Elucidating the underlying mechanisms of metabolic reprogramming in cancer cells may help identifying cancer targets and treatment strategies. This review summarizes our current understanding of metabolic reprogramming during cancer progression and metastasis, including cancer cell adaptation to the tumor microenvironment, defense against oxidative stress during anchorage-independent growth in vessels, and metabolic reprogramming during metastasis.
Collapse
|